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Abstract— The paper builds upon a recent approach to find
the approximate bounds of a real function using Polynomial
Chaos expansions. Given a function of random variables with
compact support probability distributions, the intuition is to
quantify the uncertainty in the response using Polynomial
Chaos expansion and discard all the information provided about
the randomness of the output and extract only the bounds
of its compact support. To solve for the bounding range of
polynomials, we transform the Polynomial Chaos expansion
in the Bernstein form, and use the range enclosure property
of Bernstein polynomials to find the minimum and maximum
value of the response. This procedure is used to propagate
Dempster-Shafer structures on closed intervals through non-
linear functions and it is applied on an algebraic challenge
problem.

I. INTRODUCTION

In interval analysis a fundamental problem is finding the
interval bounds for the range of a real function. When such
a function is monotone or it can be expressed in terms of
arithmetic operations, then interval computations can be used
to approximate the bounds of the response. However these
bounds are gross overestimations due to the dependency and
the wrapping effect [10].

Applications of interval methods can be found in estima-
tion, optimization techniques, robust control, robotics and
finance [15], [10], just to name a few. First, introduced by
Moore [14], as a method to control for numerical errors
in computers, the field of interval analysis has evolved
with better approximations to the range of real functions as
presented in Ref.[19], [18].

In the present paper we are interested in using interval
methods to propagateepistemic uncertaintythrough nonlin-
ear functions. In contrast to thealeatory uncertainty[26],
[27], [11], defined by variability which is irreducible, the
epistemic uncertainty is derived from incomplete knowledge
or ignorance and can be reduced with an increase in in-
formation. Due to their major differences, it is of great
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importance that the two type of uncertainties to be modeled
and propagated separately [6].

Unlike the probability theory, where the probability mass
is assigned to singletons, in the Shafer’s theory of evidence
[23], the probability mass is assigned to sets, given its power
on modeling ignorance. In conjunction with the Dempster’s
rule of combinations [4] which is a generalization of the
of the Bayes’ rule, the Dempster-Shafer (DS) theory of
evidence offers a powerful methodology for representing and
aggregating epistemic uncertainties.

One can define Dempster-Shafer structures on focal ele-
ments that are closed intervals on the real line for example.
Ferson [7] shows how this structures can be transformed
into probability bounds and vice-versa by discretization.To
propagate these focal elements through system functions,
it involves finding the solution to the interval propagation
problem.

We build upon a recent approach to find the approximate
bounds of a real function using Polynomial Chaos expansions
introduced by Monti [13], [24] and applied for worst-case
analysis and robust stability. Given a function of random
variables with compact support probability distributions, the
intuition is to quantify the uncertainty in the response using
Polynomial Chaos expansion and discard all the information
provided about the randomness of the output and extract only
the bounds of its compact support.

Introduced by Norbert Weiner [28], Polynomial Chaos
initially coined as the Homogeneous Chaos was used to rep-
resent a Gaussian process as a series of Hermite polynomials.
This method has been generalized to the Askey-scheme
of orthogonal polynomials used to model random variables
characterized by different probability density functions, in-
cluding Beta and Uniform which have compact support [29].

The Polynomial Chaos is mathematically attractive due to
the functional representations of the stochastic variables. It
separates the deterministic part in the polynomial coefficients
and the stochastic part in the orthogonal polynomial basis.
This becomes particularly useful in characterizing the uncer-
tainty of the response of a dynamical system represented by
ordinary differential equations with uncertain parameters.

To solve for the bounding range of polynomials, we
propose to transform the Polynomial Chaos expansion in
the Bernstein form, and use the range enclosure property of
Bernstein polynomials to find the minimum and maximum
value of the response [2]. The transformation does not
require polynomial evaluations and it guarantees the global
optimality of the bounds [8] and it is shown to be more
efficient than existent interval global optimizers [20].



To demonstrate this approach for propagating Dempster-
Shafer structures on closed intervals through nonlinear func-
tions, we apply the proposed method on an algebraic chal-
lenge problem used to investigate the propagation of epis-
temic uncertainty [17].

The problem of propagating DS structures on closed
intervals through nonlinear functions is stated in SectionII
and the proposed method is presented in Section III. The
numerical example is given in Section IV and the conclusions
and future work are discussed in Section V.

II. PROBLEM STATEMENT

A. Theory of Evidence

The primitive function in the theory of evidence is the
basic probability assignment (bpa), represented here bym,
which is similar to the probability in the probability theory.
The bpa for a given set can be understood as the weight of
evidence that the truth is in that set, evidence, which cannot
be further subdivided among the members of the set. The bpa
defines a map of the power set over theframe of discernment
Ω to the interval[0, 1]: m : 2Ω → [0, 1]. The focal element
of m is every subsetA ⊆ Ω such thatm(A) > 0 and the
belief structurem verifies:

∑

A⊆Ω

m(A) = 1 where m(Ai) = pi (1)

In this work we are considering normalized belief struc-
tures (closed-world assumption) which satisfy the following
relation:m(φ) = 0, whereφ is the null set. As an example
consider the followingbody of evidence(Ω,m): Ω =
{M,N,P} with m({M,N}) = 0.3 andm({N,P}) = 0.7.

Based on the mass function two new functions can be
induced. Thebelief functionor the lower bound, Bel, which
quantifies the total amount of support given to the set of
interestA:

Bel(A) =
∑

B⊆A

m(B) (2)

The plausibility functionor the upper bound, Pl, which
quantifies the maximum amount of potential given to the set
of interestA (hereĀ is the complement ofA):

Pl(A) =
∑

B∩A 6=φ

m(B) = 1 −Bel(Ā) (3)

The precise probability is bounded by the two quantities
defined above, and when the equality is satisfied then the
belief measure is just a probability measure and all the focal
elements are singletons.

Bel(A) ≤ prob(A) ≤ Pl(A) (4)

Given two bpa’sm1 andm2 based on independent argu-
ments on the same frame of discernment, the Dempster’s
rule of combination provides the means to calculate the
aggregation of the two belief structures:

m12(A 6= φ) =
1

1 −K

∑

B∩C=A

m1(B)m2(C) (5)

m12(φ) = 0

whereK =
∑

B∩C=φm1(B)m2(C) represents the amount
of probability mass due to conflict.

While a number of combination rules have been derived
to aggregate information [22], we present also the mixing
rule which is used in the numerical example. Givenn belief
structures to be aggregated, the formula for the mixing rule
is given by:

m1...n(A) =
1

n

n∑

i=1

wimi(A) (6)

wherewi are the corresponding weights proportional with
the reliability of the sources.

B. DS structures on closed intervals

Given two nondecreasing functionsF and F , where
F , F : R → [0, 1] and F (x) ≤ F (x) for all x ∈ R, we
can represent the imprecision in the cumulative distribution
function (CDF),F (x) = Prob(X ≤ x), by the probability
box (p-box)[F , F ] as follows:F (x) ≤ F (x) ≤ F (x) [7].

A Dempster-Shafer structure on closed intervals can in-
duce a unique p-box, while the inverse is not uniquely
determined. Many Dempster-Shafer structures exist for
the same p-box. Given the following body of evidence,
{

([x1, x1], p1) , ([x2, x2], p2) , . . . ([xn, xn], pn)
}

, the
cumulative belief function (CBF) and the cumulative plausi-
bility function (CPF) are defined by:

CBF (x) = F (x) =
∑

xi≤x

pi (7)

CPF (x) = F (x) =
∑

xi≤x

pi (8)

Similarly one can obtain the complementary cumulative
belief function (CCBF) and the complementary cumulative
plausibility function (CCPF).

CCBF (x) = 1 − CPF (x) =
∑

xi>x

pi (9)

CCPF (x) = 1 − CBF (x) =
∑

xi>x

pi (10)

Thus the complementary cumulative distribution function
(CCDF),Fc(x) = Prob(X > x), is bounded as follows:

CCBF (x) ≤ Fc(x) ≤ CCPF (x) (11)

Example: Consider the following body of evidence
{

([1, 4], 2/3) , ([3, 6], 1/3)
}

, the lower and the upper
cumulative functions are plotted in Fig.1.

C. Mapping of DS structures

Consider the following function:y = f(a, b), where
f : R

2 → R, and a and b are given by the following
bodies of evidence

{
([a1, a1], p

a
1) , . . . ([an, an], pa

n)
}

and
{

([b1, b1], p
b
1) , . . . ([bn, bn], pb

n)
}

respectively. We are
interested in finding the induced Dempster-Shafer structure
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Fig. 1. P-box induced by the Dempster-Shafer structure

in they variable. The basic probability assignment describing
y is given by [30]:

mf (Y ) =
∑

f(Ai,Bj)=Y

m1(Ai)
︸ ︷︷ ︸

pa
i

m2(Bj)
︸ ︷︷ ︸

pb
j

(12)

whereY = [y, y], Ai = [ai, ai] andBj = [bj , bj ]

Thus the problem of finding the mapping of a body of
evidence on closed intervals is reduced to interval prop-
agation [12]. This problem can be solved using the ad-
vanced techniques developed in the interval analysis field
[10]. However, due to the dependency problem the obtained
bounds are conservative which is detrimental to the belief
structure, since the evidence is assigned automatically to
other elements which are not in the body of evidence. This
problem becomes more acute when the uncertainty has to be
propagated over a period of time.

III. PROPOSED APPROACH

We propose a new approach in approximating the prop-
agation of intervals using a non-intrusive polynomial chaos
method [3] in combination with Bernstein polynomials [25].
The approach of using polynomial chaos in propagating
epistemic uncertainty has been considered previously in
Ref.[13] for a limited number of arithmetic operations and
relies on sampling or global optimization in the general
case which is inaccurate for small number of samples and
computationally expensive.

A. Non-intrusive polynomial chaos

The problem in solving the mapping of DS structures as
given in Eq.(12) is to findY = [y, y] such that:

Y = f(A,B) (13)

whereA = [a, a] andB = [b, b]. While in this paper we
present only the bivariate case, the method can be scaled up
to the desired number of variables.

The problem can be transformed into finding the stochastic
responsey by defininga ∼ U(a, a) andb ∼ U(b, b):

y = f(a, b) (14)

and write the polynomial chaos expansion for the uncertain
arguments and the response:

a =

p−1
∑

i=0

aiψi(ξ1) where ξ1 ∼ U(−1, 1) (15)

b =

p−1
∑

j=0

bjψj(ξ2) where ξ2 ∼ U(−1, 1) (16)

y =

P−1∑

k=0

ykψk(ξ) where P =
(n+ p)!

n!p!
(17)

For this paper we are only concerned with the Uniform
distribution, however due to the specificity of this application
any other probability distribution with compact support can
be used (eq. Beta). The sensitivity of the method with respect
to the shape of the probability density function over the
compact support remains to be studied.

Here n is the number of uncertain input variables and
p the order of the polynomial chaos expansion. The basis
functionψn is then-th degree Legendre polynomial and the
polynomial coefficients of the input variables are given by:

a0 =
a+ a

2
, a1 =

a− a

2
, a2 = . . . = ap−1 = 0 (18)

b0 =
b+ b

2
, b1 =

b− b

2
, b2 = . . . = bp−1 = 0 (19)

The first six multidimensional Legendre polynomials for
the bivariate case are given by:

ψ0(ξ) = ψ0(ξ1)ψ0(ξ2) = 1 (20)

ψ1(ξ) = ψ1(ξ1)ψ0(ξ2) = ξ1 (21)

ψ2(ξ) = ψ2(ξ1)ψ0(ξ2) =
1

2
(3ξ21 − 1) (22)

ψ3(ξ) = ψ0(ξ1)ψ1(ξ2) = ξ2 (23)

ψ4(ξ) = ψ1(ξ1)ψ1(ξ2) = ξ1ξ2 (24)

ψ5(ξ) = ψ2(ξ1)ψ1(ξ2) =
1

2
(3ξ21 − 1)ξ2 (25)

We are interested in finding the polynomial coefficients
yk which characterize the stochastic behavior of the output
variable. Using the Galerkin projection and the orthogonality
property of the polynomials one can isolate the coefficients
yk as shown in Ref. [5]:

yk =
< f,ψk >

< ψ2
k >

=
1

< ψ2
k >

∫

Ω

fψkς(ξ)dξ (26)

where ς(ξ) =
∏n

i=1 ςi(ξi) is the joint probability density
function. The integral can be evaluated using sampling or
quadrature techniques.

We show that by bringing the polynomial chaos expansion
to a Bernstein form using the Garloff’s method [8], we can
efficiently find the minimum and the maximum value of the
compact support thanks to the properties of the Bernstein
polynomials: the smallest and the largest coefficient bound
the output of the function modeled.

To transform our expansion from Legendre polynomial ba-
sis to Bernstein polynomial basis we expand our Polynomial



Chaos expansion, Eq.(17) into a simple power series and
identify the new coefficients:

y =
∑

I≤N

αIξ
I (27)

where the multi-indexI = (i1, . . . , in) ∈ N
n and N =

(n1, . . . , nn) ∈ N
n is the multi-index of maximum degrees;

thus the maximum degree ofξk is given bynk. Here, we
denoteξI = ξi1

1 · . . . · ξin
n and the inequalityI ≤ J implies

i1 ≤ j1, . . . , in ≤ jn.

B. Garloff ’s method to calculate the Bernstein coefficients

We are interested in the transformation of the power series
in Eq.(27) into its Bernstein form:

y =
∑

I≤N

βIB
N

I
(ξ) (28)

whereB
N

I
(ξ) is the Ith Bernstein polynomial of degreeN

on the general boxG = [ξ, ξ]. In our bi-variate caseG =
[−1, 1] × [−1, 1] sinceξ1, ξ2 ∼ U(−1, 1).

B
N

I
(ξ) = Bn1

i1
(ξ1) · . . . ·B

nn

in
(ξn) (29)

The univariate Bernstein polynomialBn
k (ξ) on the general

interval [ξ, ξ] is given by:

Bn
k (ξ) =

(
n

k

)
(ξ − ξ)k(ξ − ξ)n−k

(ξ − ξ)n
(30)

The Bernstein coefficientsβI are given by:

βI =
∑

J≤I≤N

(
I

J

)

(
N

J

) α̂J (31)

where we write
(
I

J

)
=

(
i1
j1

)
· . . . ·

(
in

jn

)
.

The scaled coefficientŝαI are obtained as described in
Ref.[1] from theαI coefficients in Eq.(27) and the boxG:

α̂I = α̃I(ξ − ξ)
I (32)

α̃I =
∑

I≤J≤N

(
J

I

)

αJξ
J−I (33)

Example: Consider the following Polynomial Chaos ex-
pansion given byn = 2, p = 3 andP = 10:

y = 5ψ0(ξ) +ψ1(ξ) +ψ3(ξ) +ψ4(ξ)

Transforming this expansion into a simple power series
we obtain the folowing polynomial:

y = 5 + ξ1 + ξ2 + ξ1ξ2

wherea00 = 5, a10 = 1, a01 = 1, and a11 = 1. Here the
multi-index of maximum degree isN = (1, 1).

The following intermediate coefficients are obtain from
Eq.(33) in order to perform the scaling operation:ã00 =
4, ã01 = 0, ã10 = 0, and ã11 = 1. The final set of power-
coefficients is given by Eq.(32):̂a00 = 4, â01 = 0, â10 = 0,
and â11 = 4.

Finally, the Bernstein coefficients are obtain using Eq.(31):
β00 = 4, β01 = 4, β10 = 4, andβ11 = 8, and the Bernstein
basis is given by:

B
11
00 = 1

16 (1 − ξ1)(1 − ξ2) B
11
01 =

1

16
(1 − ξ1)(ξ2 + 1)

B
11
10 = 1

16 (ξ1 + 1)(1 − ξ2) B
11
11 =

1

16
(ξ1 + 1)(ξ2 + 1)

C. Bounding the range of polynomials

Given the Bernstein expansion in Eq.(28), the range en-
closing property [9] gives a bound on the polynomial in terms
of the Bernstein coefficients:

min
I≤N

βI ≤ y(ξ) ≤ max
J≤N

βJ ∀ ξ ∈ G = [ξ, ξ] (34)

Provided that the initial box is small enough, the range
provided by the Bernstein form is exact. Compared with
other forms in estimating the range, it is experimentally
shown in Ref. [25] that the Bernstein form provides the
smallest average overestimation error in the univariate case.
For the previous example the range ofy is bounded by[4, 8].

Tighter bounds can be obtained by subdivision of the
initial box and choosing the minimum and the maximum
of all the Bernstein coefficients corresponding to each sub-
box. An efficient algorithm for range computation that in-
corporates a number of features such as subdivision, cut-off
test, simplified vertex test, monotonicity test and others is
provided in Ref.[20].

Therefore, getting back to our problem in mapping DS
structures on closed intervals, Eq.(12) and Eq.(13), the output
interval or the focal elementY = [y, y] is given by:

y = min
I≤N

βI and y = max
J≤N

βJ (35)

This methodology is applied to map all the focal elements
in the initial body of evidence through the nonlinear function.
Their corresponding masses are obtained using Eq.(12). This
way a body of evidence for the response is constructed.

IV. NUMERICAL RESULTS

To prove the concept, we have selected an algebraic
problem from a set of challenges used to investigate the
propagation of epistemic uncertainty [17]. The presented
problem has been investigated previously in the literature
by Oberkampf and Helton [16]. In the present paper we are
using the exact parameters for the simulation as in Ref.[16].

Consider the following mapping:

y = f(a, b) = (a+ b)a (36)

where the information concerninga andb is provided by the
following sources and their corresponding bpa:

A1 :

{
(
[0.6, 0.9], 1.0

)
}

A2 :

{
(
[0.1, 0.5], 0.2

)
,

(
[0.5, 1.0], 0.8

)
}



B1 :

{
(
[0.3, 0.5], 0.1

)
,

(
[0.6, 0.8], 0.9

)
}

B2 :

{
(
[0.2, 0.4], 0.1

)
,

(
[0.4, 0.6], 0.7

)
,

(
[0.6, 1.0], 0.2

)
}

B3 :

{
(
[0.0, 0.2],

1

3

)
,

(
[0.2, 0.4],

1

3

)
,

(
[0.3, 0.5],

1

3

)
}

Given the above information, we are looking to bound
the probability of the response in the unsafe region when
y > 1.7. The function and the desired unsafe region are
shown in Fig.2.

Fig. 2. The function and the unsafe region

The bpa for a and b is obtained by aggregating the
information from the first two sources and the last three
sources respectively using the mixing rule in Eq.(6) under
the equal reliability assumption. Thus the new DS structures
obtained are given by:

A :

{
(
[0.1, 0.5], 0.1

)
,

(
[0.5, 1.0], 0.4

)
,

(
[0.6, 0.9], 0.5

)
}

B :

{
(
[0.0, 0.2], 0.111

)
,

(
[0.2, 0.4], 0.144

)
,

(
[0.3, 0.5], 0.144

)
,

(
[0.4, 0.6], 0.233

)
,

(
[0.6, 0.8], 0.3

)
,

(
[0.6, 1.0], 0.067

)
}

The focal elements of the DS structureY are obtained by
propagating the product spaceA× B through the nonlinear
function in Eq.(36), and the basic probability assignment is
obtained using Eq.(12). Thus the induced body of evidence
for the responsey is given in Table I.

The following parameters have been used in obtaining
the polynomial chaos expansion of the response and the
afferent bounds:n = 2, p = 5, and P = 19 such that
the total degree of the polynomial is no greater than5.
The integrals in Eq.(26) have been numerically evaluated
using Gauss-Legendre quadrature rule with20 points in
each direction, and the Bernstein coefficients have been
obtain using11 subdivisions in each direction. The obtained
intervals are compared with the intervals given by interval
analysis (INTLAB [21]), and with the reference intervals
provided by a genetic algorithm (GA).

In Table I, given theith focal element ofA and thejth
focal element ofB, the Box# is given by3(j − 1) + i. The
numbers in bold indicate that a smaller lower bound or a
larger upper bound has been found by the genetic algorithm.
In this particular example we have overestimated most of the
lower bounds and we have provided no underestimation for
the upper bounds.

The focal elements from the DS structure in Table I
are also graphically presented in Fig.3. The wider boxes
represent the bounds found by the proposed approach while
the narrow boxes depict the bounds returned by the genetic
algorithm, and the lines show the range computed using
interval arithmetics.

TABLE I

INDUCED DS STRUCTURE FOR THE RESPONSEy

Box# y y mf Box# y y mf

1 0.687 0.909 0.011 10 0.890 1.061 0.023
2 0.721 1.222 0.044 11 0.967 1.630 0.093
3 0.741 1.097 0.056 12 1.007 1.450 0.117
4 0.804 0.961 0.014 13 0.953 1.152 0.030
5 0.853 1.426 0.058 14 1.069 1.834 0.120
6 0.880 1.275 0.072 15 1.123 1.623 0.150
7 0.850 1.012 0.014 16 0.952 1.236 0.007
8 0.912 1.528 0.058 17 1.068 2.039 0.027
9 0.945 1.363 0.072 18 1.122 1.794 0.033

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0.5

1

1.5

2

Box#

y

Unsafe
Region

Reference Interval GA
Interval IA

Interval PC−Bernstein

Pl(y>1.7)

Fig. 3. Focal elements from the induced DS structure

To compute the lowest and the highest probability ofy >
1.7, we use the Fig.3 to sum over all the bpa’s of the intervals
that are properly included in the unsafe region for the lower
bound and for the upper bound, sum over all the bpa’s of
the intervals that intersect the unsafe region. No intervals
are properly included in the unsafe region, thus the lower
bound is0.0. Three intervals are found to intersect the unsafe
region, boxes:14, 17 and18. Summing over their bpa’s we
found the upper bound to be0.18. All three methods give
0.0 ≤ Prob(y > 1.7) ≤ 0.18, which is in agreement with
the result published by Oberkampf in Ref.[16].



Both the CCBF and the CCPF given by Eq.(9)-(10) are
plotted in Fig.4 along with the marking for the unsafe region.
A reason of concern is the overestimation of the lower bound,
due to the finite polynomial chaos expansion, which in this
example may provide a larger lower bound for the probability
of failure. Observe the gross bounds provided by the interval
arithmetics due to dependency effect.
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Fig. 4. CCBF and CCPF from the induced DS structure

V. CONCLUSIONS

A new approach in approximating the interval propagation
for epistemic uncertainty quantification has been presented.
The input variables are represented as a polynomial expan-
sion of random variables on compact support, and by apply-
ing the Galerkin projection in a non-intrusive way we find
the response of the system also as a polynomial expansion,
here in the Legendre basis. It exploits the efficient mapping
of random variables using polynomial chaos expansion from
which it extracts only the bounds of its compact support.

We further propose to transform the output polynomial
chaos expansion from the Legendre basis to the Bernstein
basis, and use the range enclosure property of Bernstein
forms to efficiently extract the bounds of the range of
the output. The method does not suffer of the dependency
problem as in the interval arithmetics, however much work
remains to be done in studying the accuracy of interval
propagation using polynomial chaos. The proposed approach
is applied on a challenge problem previously investigated by
Oberkampf et al. to propagate epistemic uncertainty and the
numerical results obtained provide a basis for optimism.
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