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Abstract— The paper builds upon a recent approach to find importance that the two type of uncertainties to be modeled
the approximate bounds of a real function using Polynomial and propagated separately [6].
Chaos expansions. Given a function of random variables with Unlike the probability theory, where the probability mass

compact support probability distributions, the intuition is to . . . . , .
quantify the uncertainty in the response using Polynomial 'S assigned to singletons, in the Shafer’s theory of evidenc

Chaos expansion and discard all the information provided about  [23], the probability mass is assigned to sets, given itsgrow
the randomness of the output and extract only the bounds on modeling ignorance. In conjunction with the Dempster’s

of its compact support. To solve for the bounding range of rule of combinations [4] which is a generalization of the
polynomials, we transform the Polynomial Chaos expansion of the Bayes' rule, the Dempster-Shafer (DS) theory of

in the Bernstein form, and use the range enclosure property id ff ful thodol f i
of Bernstein polynomials to find the minimum and maximum evidence offers a powerful methodology for representirg an

value of the response. This procedure is used to propagate @ggregating epistemic uncertainties.
Dempster-Shafer structures on closed intervals through non- One can define Dempster-Shafer structures on focal ele-

linear functions and it is applied on an algebraic challenge ments that are closed intervals on the real line for example.

problem. Ferson [7] shows how this structures can be transformed
into probability bounds and vice-versa by discretizatioo.

I. INTRODUCTION propagate these focal elements through system functions,

In interval analysis a fundamental problem is finding thdt involves finding the solution to the interval propagation
interval bounds for the range of a real function. When suchroblem. _ _
a function is monotone or it can be expressed in terms of We build upon a recent approach to find the approximate
arithmetic operations, then interval computations candeelu Pounds of a real function using Polynomial Chaos expansions
to approximate the bounds of the response. However thelfdroduced by Monti [13], [24] and applied for worst-case
bounds are gross overestimations due to the dependency &Rglysis and robust stability. Given a function of random
the wrapping effect [10]. yarla_bles_ with compact support pr_obablllty distributipttse _
Applications of interval methods can be found in estimalNtuition is to quantify the uncertainty in the responsengsi
tion, optimization techniques, robust control, roboticela Poly_nomlal Chaos expansion and discard all the information
finance [15], [10], just to name a few. First, introduced b)prowded about.the randomness of the output and extract only
Moore [14], as a method to control for numerical errordn® Pounds of its compact support. _
in computers, the field of interval analysis has evolved 'ntroduced by Norbert Weiner [28], Polynomial Chaos

with better approximations to the range of real functions agitially coined as the Homogeneous Chaos was used to rep-
presented in Ref.[19], [18]. resent a Gaussian process as a series of Hermite polynomials

glhis method has been generalized to the Askey-scheme

methods to propagatepistemic uncertaintyhrough nonlin- ©f orthogonal polynomials used to model random variables
ear functions. In contrast to theleatory uncertainty{26], characterized by different probability density functipirs
[27], [11], defined by variability which is irreducible, the ¢Uding Beta and Uniform which have compact support [29],
epistemic uncertainty is derived from incomplete knowkedg 1 1€ Polynomial Chaos is mathematically attractive due to
or ignorance and can be reduced with an increase in "qje functional representations of the stochastic vargalle
formation. Due to their major differences, it is of greatSeParates the deterministic partin the polynomial coefiits
and the stochastic part in the orthogonal polynomial basis.
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To demonstrate this approach for propagating Dempsterhere K = ZBnc:¢ m1(B)ms(C) represents the amount
Shafer structures on closed intervals through nonlineae-fu of probability mass due to conflict.
tions, we apply the proposed method on an algebraic chal-While a number of combination rules have been derived
lenge problem used to investigate the propagation of epit aggregate information [22], we present also the mixing
temic uncertainty [17]. rule which is used in the numerical example. Givebelief
The problem of propagating DS structures on closegtructures to be aggregated, the formula for the mixing rule
intervals through nonlinear functions is stated in Section is given by:
and the proposed method is presented in Section Ill. The .
numerical example is given in Section IV and the conclusions R
and future work are discussed in Section V. mi.a(A) = n ;w’mzm) ©

Il. PROBLEM STATEMENT where w; are the corresponding weights proportional with
A. Theory of Evidence the reliability of the sources.
The primitive function in the theory of evidence is the
basic probability assignment (bpa)epresented here by, B. DS structures on closed intervals

which is similar to the probability in the probability thgor Given two nondecreasing function and F, where
Th.e bpa for a given se'.c can be undersfcood as the_ weightpEE ‘R — [0,1] and F(z) < F(z) for all rc R, we
evidence that the truth is in that set, evidence, which c&nngy represent the imprecision in the cumulative distrduti
be further subdivided among the members of the set. The bR@ction (CDF), F(z) = Prob(X < =), by the probability
defines a map of the power set over fteme of discernment 4, (p-box)[F, F) as follows: F(z) < F(z) < F(z) [7].

Q to the interval[0, 1]: m : 22 — [0,1]. The focal element o re an ¥
of m is every subsed C 2 such thatm(A)
belief structurem verifies:

A Dempster-Shafer structure on closed intervals can in-
>0andthe guce a unique p-box, while the inverse is not uniquely
determined. Many Dempster-Shafer structures exist for
Z m(A) =1 where m(4;)=p; (1) the same p-box. Given the following body of evidence,
ACQ { ([&pf_l}»pl)_» ([&2@2]7272) 5 e ([&nafn]vpn)}u the )
In this work we are considering normalized belief struc-Cl.J.mUIat'Ve. belief function (C.BF) and the cumulative plausi
tures (closed-world assumption) which satisfy the follogvi bility function (CPF) are defined by:
relation: m(¢) = 0, where¢ is the null set. As an example CBF(2) = F(z) — 4 7
consider the followingbody of evidence(Q2,m): Q = (z) = E(x) sz ()

z;<x
{M, N, P} with m({M,N}) =0.3 andm({N, P}) =0.7. _ ~
Based on the mass function two new functions can be CPF(z)=F(z)= Y _ pi (8)
induced. Thebelief functionor thelower bound Bel, which z;<w
_qt:antlfgs. the total amount of support given to the set of Similarly one can obtain the complementary cumulative
interest- belief function (CCBF) and the complementary cumulative
Bel(A) = > m(B) (2) plausibility function (CCPF).
BCA
The plausibility functionor the upper bound PI, which CCBF(z) =1 CPF(z) = ) _ p ©)
quantifies the maximum amount of potential given to the set Sio®
of interestA (here A is the complement ofi): CCPF(z)=1-CBF(z)= Y _pi (10)
Pi(A)= ¥ m(B)=1- Bel(A) ?) e
BNA#£d Thus the complementary cumulative distribution function
The precise probability is bounded by the two quantitie€CCPF): Fe(x) = Prob(X > x), is bounded as follows:
def!ned above, .al’.‘ld when the _e_quallty is satisfied then the CCBF(z) < Fu(z) < CCPF(z) 11)
belief measure is just a probability measure and all thelfoca
elements are singletons. Example Consider the following body of evidence
Bel(A) < prob(A) < PI(A) @ 1 ([1,4,2/3) , ([3,6],1/3) }, the lower and the upper

_ ] cumulative functions are plotted in Fig.1.
Given two bpa’sm; andm, based on independent argu-

ments on the same frame of discernment, the Dempstegs \apping of DS structures
rule of combination provides the means to calculate the

aggregation of the two belief structures: Consider the following functiony = f(a,b), where
1 f : R? - R, anda and b are given by the following
mis(A#4¢) = —— S mi(B)ma(C) (5) bodies of evidence{ ([ar,ai),pf) , .. ([an, @], p%) }
1-K = L :
BAC=A and{ ([b1,b1],9}), ... ([bn,bs),P%) } respectively. We are

mi2(p) = 0 interested in finding the induced Dempster-Shafer stractur



and write the polynomial chaos expansion for the uncertain
arguments and the response:

0.81

0.6f

4 p71
........... | a=> aw;(&) where & ~U(-1,1) (15)
=0

CDF

0.4 p—!
b= bjwj (52) where 452 ~ Z/[(*l, ].) (16)
0.2 - - = Cumulative belief function j=0
—— Cumulative plausibility function P_1
P I ] B ~ (n+p)!
T e y= };} yktp(§) where  P= "= (7
X =

For this paper we are only concerned with the Uniform
distribution, however due to the specificity of this apptica
any other probability distribution with compact supporhca
in they variable. The basic probability assignment describin?e used (eq. Beta). The sensitivity of the method with respec
y is given by [30]: o the shape of the probability density function over the
compact support remains to be studied.

Fig. 1. P-box induced by the Dempster-Shafer structure

my(Y) = Z mi(A;) ma(B;) (12) Here n is the number of uncertain input variables and
f(A“B]):YH:_/HZ_/ p the order of the polynomial chaos expansion. The basis
b Pi function,, is then-th degree Legendre polynomial and the
whereY = [y, 7], A; = [a;,a;] and B; = [b;, 5] polynomial coefficients of the input variables are given by:
Thus the problem of finding the mapping of a body of a+a a—a
evidence on closed intervals is reduced to interval prop- ©° = g2 U T T 0 92T T Gl =0 (18
agation [12]. This problem can be solved using the ad- b+b b—b
vanced techniques developed in the interval analysis field "0~ "9 ° by = o bp=...=bp1=0 (19

[10]. However, due to '_[he depenqlency problem the obtam_ed The first six multidimensional Legendre polynomials for
bounds are conservative which is detrimental to the beh%e bivariate case are given by:

structure, since the evidence is assigned automatically to

other elements which are not in the body of evidence. This Po(€) = vo(&1)o(&) =1 (20)
problem becomes more acute when the uncertainty has to be V(€)= (E)bo(E) =6 1)
propagated over a period of time. 1

V28) =va(G)to(&) =5BG-1) (22

Il PROPOSED APPROACH Ws(6) =vo(€)n(&) =6 (23)

We propose a new approach in approximating the prop- Pi(&) =1(E)1(&) = €16 (24)
agation of intervals using a non-intrusive polynomial chao 1.

method [3] in combination with Bernstein polynomials [25]. Ps(€) =va(&)vn(e) =504 -1 (29

Th_e approach of using polynomial chaos n propagatlng We are interested in finding the polynomial coefficients
epistemic uncertainty has been considered previously in

- ; ) : r Which characterize the stochastic behavior of the output
Ref.[13] for a limited number of arithmetic operations and’” . . . - .
. . LT ariable. Using the Galerkin projection and the orthogibyal
relies on sampling or global optimization in the genera

case which is inaccurate for small number of samples argéoperty of the polynomials one can isolate the coefficients

computationally expensive. k @s shown in Ref. 5]
< fv 'l:bk > 1
= = d 26

.The_problem ir_1 solv?ng the mapping of DS structures agnere (&) = TI1, si(&) is the joint probability density
given in Eq.(12) is to find” = [y, y] such that: function. The integral can be evaluated using sampling or
- guadrature techniques.
Y =f(4,B) (13) We show that by bringing the polynomial chaos expansion
where A = [a,a] and B = [b,b]. While in this paper we 0 @ Bernstein form using the Garloff's method [8], we can

present only the bivariate case, the method can be scaled &fficiently find the minimum and the maximum value of the

A. Non-intrusive polynomial chaos

to the desired number of variables. compact support thanks to the properties of the Bernstein
The problem can be transformed into finding the stochastRolynomials: the smallest and the largest coefficient bound
responsey by defininga ~ U(a, @) andb ~ U(b, b): the output of the function modeled.

To transform our expansion from Legendre polynomial ba-
y = f(a,b) (14) sis to Bernstein polynomial basis we expand our Polynomial



Chaos expansion, Eqg.(17) into a simple power series andFinally, the Bernstein coefficients are obtain using Eq:(31
identify the new coefficients: Boo = 4, 801 = 4, 810 = 4, and 811 = 8, and the Bernstein

basis is given by:
y= 3 anf! 27) e
=N By, =q5(1-&)(1—-&) B
where the multi-indexI = (i1,...,i,) € N* and N = u L " 1
(n1,...,n,) € N" is the multi-index of maximum degrees; Bio = 15(61 +1)(1 —&) Bii = (& +1)(&+1)
thus the maximum degree @f, is given byn;. Here, we ) )
denote¢! = ¢ .. ... ¢in and the inequalityl < J implies € Bounding the range of polynomials
i1 < J1ye ey in < e Given the Bernstein expansion in Eq.(28), the range en-
closing property [9] gives a bound on the polynomial in terms
of the Bernstein coefficients:
We are interested in the transformation of the power series

1

= E(l —&)(&+1)

B. Garloff’'s method to calculate the Bernstein coefficients

. - . . . 3 < < —
in EQ.(27) into its Bernstein form: min Br<y(§) < gnéagﬁJ VEeG=[¢ (34)
y=> BB (&) (28) Provided that the initial box is small enough, the range
I<N provided by the Bernstein form is exact. Compared with

where BN (¢) is the Ith Bernstein polynomial of degred other fqrms in estimating the range, it is experi_mentally
f shown in Ref. [25] that the Bernstein form provides the

on the general boxd = [£,&]. In our bi-variate cas& = o , o
; 3 smallest average overestimation error in the univariage.ca
[—1,1] x [-1,1] since&y, & ~ U(—1,1). _ s
For the previous example the rangeyas bounded by4, 8].
BN (¢) = B (1) .- B (&) (29) Tighter bounds can be obtained by subdivision of the

o ) . initial box and choosing the minimum and the maximum
The univariate Bernstein polynomiai (¢) on the general ¢ g the Bernstein coefficients corresponding to each sub-

interval [¢, ¢] is given by: box. An efficient algorithm for range computation that in-
corporates a number of features such as subdivision, €ut-of

_A\k(F _ s\n—k
B (&) = (n> (€ @, (€-9 (30) test, simplified vertex test, monotonicity test and others i
k (I provided in Ref.[20].
The Bernstein coefficients; are given by: Therefore, getting back to our problem in mapping DS

structures on closed intervals, Eqg.(12) and Eq.(13), theubu
interval or the focal elemerit’ = [y, 7] is given by:

Br = Z ((jl:))@.] (31)

J<I<KN — ; 77 —
= | Y= {I%lg]lﬂl and 7= gngal%(ﬂ.] (35)
where we write(;) = (1) -...- (). _ _ _
The scaled coefficients; are obtained as described in 1his methodology is applied to map all the focal elements
Ref.[1] from theas coefficients in Eq.(27) and the bax; N the initial body of evidence through the nonlinear fuanti
Their corresponding masses are obtained using Eq.(12). Thi
a = a(é— §)I (32) way a body of evidence for the response is constructed.
- J _
aro= > (I>QJ€J ' (33) IV. NUMERICAL RESULTS
I<J<N

. ] ) To prove the concept, we have selected an algebraic

Example Consider the following Polynomial Chaos ex-proplem from a set of challenges used to investigate the
pansion given by, = 2,p = 3 and P = 10: propagation of epistemic uncertainty [17]. The presented
—5 4 n 4 problem has been investigated previously in the literature

4 Yo(&) +91(8) +¥s(8) + ¥u(8) by Oberkampf and Helton [16]. In the present paper we are
Transforming this expansion into a simple power seriegsing the exact parameters for the simulation as in Ref.[16]

we obtain the folowing polynomial: Consider the following mapping:
y=5+& + &+ 616 y = f(a,b) = (a+b)" (36)
whereago = 5,a10 = 1,a01 = 1, anday; = 1. Here the  where the information concerningandb is provided by the
multi-index of maximum degree BN = (1, 1). following sources and their corresponding bpa:
The following intermediate coefficients are obtain from
Eq.(33) in order to perform the scaling operatian, = A {([0.6 0.9] 1.0)}
4,d01 = 0,d10 = 0, andd,; = 1. The final set of power- Y

coefficients is given by EQ.(32)ig0 = 4,91 = 0,410 = 0,

anday, — 4. Ay {([0.1,0.5],0.2) , ([0.5,1.0}70.8)}



By {([03:05]70-1) ; ([0~670~8],0.9)} In Table I, given theith focal element of4 and thejth
focal element of3, the Box# is given by3(j — 1) +i. The
By {([0.2,0.4],0.1) , ([0.4,0.6],0.7) , ([0.6,1.0],0,2)} numbers in bold indicate that a smaller lower bound or a
larger upper bound has been found by the genetic algorithm.
Bs {([0.070_2]71) ) ([0_270_4]71) 7 ([04370.5]7})} In this particular example we have overestimated most of the
3 3 3 lower bounds and we have provided no underestimation for
Given the above information, we are looking to boundhe upper bounds.
the probability of the response in the unsafe region when The focal elements from the DS structure in Table |
y > 1.7. The function and the desired unsafe region argre also graphically presented in Fig.3. The wider boxes
shown in Fig.2. represent the bounds found by the proposed approach while
the narrow boxes depict the bounds returned by the genetic
algorithm, and the lines show the range computed using
interval arithmetics.

TABLE |
INDUCED DS STRUCTURE FOR THE RESPONSE
Box# y g my Box# y 7 my
1 0687 0909 0.011 10 0.890 1.061 0.023
2 0721 1.222 0.044 11 0.967 1.630 0.093
3 0741 1.097 0.056 12 1.007 1450 0.117
4 0804 0961 0.014 13 0953 1.152 0.030
5 0.853 1426 0.058 14 1.069 1.834 0.120
6 0.880 1.275 0.072 15 1.123 1.623 0.150
7 0850 1012 0.014 16 0952 1.236 0.007
8 0912 1528 0.058 17 1.068 2.039 0.027
9 0945 1.363 0.072 18 1.122 1.794 0.033
Fig. 2. The function and the unsafe region
The bpa fora and b is obtained by aggregating the 2 A Unsafe i

information from the first two sources and the last thre: : Region
sources respectively using the mixing rule in Eq.(6) unde =  |= === =mimimimimimmim e m e - =
the equal reliability assumption. Thus the new DS strusture

obtained are given by: 1.5f

A {([0.170.5],0.1)7 ([0.5,1.0],0.4) , ([0.6,0.9]70.5)} -

B {([0.0,0.2],0.111) , ([0.2,0.4],0.144) | ol [|] [|] [l] \ [f/

(0.3,0.5],0.144) , ([0.4,0.6],0.233) , Pl(y>1.7)
0.5f — Interval PC-Bernstein 1
([0.6,0.8],0.3) , ([0-671-0}»0-067)} — Reference Interval GA
) Interval IA
The fopal elements of the DS structwkare obtalngd by 1 2345678 9101112131415161718
propagating the product spagkx 5 through the nonlinear Box#
function in Eq.(36), and the basic probability assignment i
obtained using Eq.(12). Thus the induced body of evidence Fig. 3. Focal elements from the induced DS structure

for the responsg is given in Table I.

The following parameters have been used in obtaining To compute the lowest and the highest probabilityyof
the polynomial chaos expansion of the response and ther, we use the Fig.3 to sum over all the bpa’s of the intervals
afferent boundsn = 2,p = 5, and P = 19 such that that are properly included in the unsafe region for the lower
the total degree of the polynomial is no greater tHan bound and for the upper bound, sum over all the bpa’s of
The integrals in EQ.(26) have been numerically evaluatetthe intervals that intersect the unsafe region. No interval
using Gauss-Legendre quadrature rule w2 points in are properly included in the unsafe region, thus the lower
each direction, and the Bernstein coefficients have bedmound is0.0. Three intervals are found to intersect the unsafe
obtain usingl1 subdivisions in each direction. The obtainedregion, boxes14, 17 and 18. Summing over their bpa’s we
intervals are compared with the intervals given by intervalound the upper bound to b@18. All three methods give
analysis (INTLAB [21]), and with the reference intervals0.0 < Prob(y > 1.7) < 0.18, which is in agreement with
provided by a genetic algorithm (GA). the result published by Oberkampf in Ref.[16].



Both the CCBF and the CCPF given by Eq.(9)-(10) are[4]
plotted in Fig.4 along with the marking for the unsafe region 5]
A reason of concern is the overestimation of the lower bound,
due to the finite polynomial chaos expansion, which in this
example may provide a larger lower bound for the probability[S]
of failure. Observe the gross bounds provided by the interva
arithmetics due to dependency effect.

(7]
1 T T 1 [8]
= = = Bel : PC-Bernstein
| 'i‘ = P| : PC-Bernstein [9]
0.8+ 'I i " = = = Be|: GA [10]
1 —_— Pl GA
: ; = = = Bel : Interval Analysis [11]
it m—— P| : Interval Analysis
1 06 [ 1 i
o !
3 15
ul s L --- > [12]
0.4f ' ; 1
[ ! Unsafe [13]
[ ! Region
r -
02 L n 1 4
L} ] [14]
1
N 1 o ]_,. [15]
0.5 1 1.5 2
16
y [16]
Fig. 4. CCBF and CCPF from the induced DS structure [17]
V. CONCLUSIONS 18]

A new approach in approximating the interval propagation
for epistemic uncertainty quantification has been present
The input variables are represented as a polynomial expgpg;
sion of random variables on compact support, and by apply-
ing the Galerkin projection in a non-intrusive way we ﬁnd[21
the response of the system also as a polynomial expansion,
here in the Legendre basis. It exploits the efficient mappinll;%
of random variables using polynomial chaos expansion fro
which it extracts only the bounds of its compact support. [23]

We further propose to transform the output polynomial
chaos expansion from the Legendre basis to the Bernstdfd!
basis, and use the range enclosure property of Bernstein
forms to efficiently extract the bounds of the range of
the output. The method does not suffer of the dependen&?]
problem as in the interval arithmetics, however much work
remains to be done in studying the accuracy of interva6l
propagation using polynomial chaos. The proposed approach
is applied on a challenge problem previously investigated b
Oberkampf et al. to propagate epistemic uncertainty and tf#]
numerical results obtained provide a basis for optimism.
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