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Abstract—Data assimilation in the context of puff based subsequent puff splitting, the number of puffs and themefor
dispersion models is studied. A representative two dimensional the length of the state vector is not constant, but increages

Gaussian puff atmospheric dispersion model is used for the yime The state dimension may become so high that estimating
purpose of testing and comparing several data assimilation g .

techniques. A continuous nonlinear observation model, and a all states from the sensor Qata IS ImpOSSI_bIe.

quantized probabilistic nonlinear observation model, are used ~ The Extended Kalman Filter (EKF) [2] is one of the most
to simulate the measurements. The quantized model is used towidely used nonlinear filters. However, the EKF poses certai
simulate bar sensor readings of the concentration. Dispersion problems for the dispersion applications because of its low
models usually lead to high dimensional space-gridded state spaceqder linearization approximation, computationally exgige

models. In the case of puff based dispersion models, this may . . .

be avoided by using puff parameters themselves as the states,‘JaCOb'an Calculafuons and propagation and update_ of Ia_lrge
but at the cost on nonlinearity and variable dimensionality. State error covariance matrix, which is a memory intensive
The potential of sampling based techniques is discussed in this process. Unscented Kalman Filter [3] uses deterministic-sa
context, with a particular focus on the Particle Filter approach, pling techniques for better approximation in nonlineaefiltg

for which variable state dimensionality creates no difficulties. applications. Reduced-rank filters, which employ reducetk

The performance of Particle Filter is compared with that of the imation to the full K . trix. hold
Extended Kalman Filter, and its advantages and limitations are approximation to the full-rank covariance matrix, hold doo

illustrated. potential for data assimilation in large scale models [4]je T
Keywords: Chem-Bio Dispersion, Gaussian Puff, Particle Ensemble Kalman Filters (EnKF) [5], [6] approximate the
Filter, Bar Sensor, Variable State Dimensionality. error covariance matrix by the ensemble covariance ardumd t
ensemble mean. Each ensemble member is propagated through
. INTRODUCTION the nonlinear dynamics directly and the ensemble mean and

Real-time detection, tracking, and prediction of chemicabvariance computed from the ensemble provides the neces-
and biological releases is important for fast response gary statistics used in the measurement update step. Becaus
chemical and biological accidents and attacks. Knowledglge ensemble size is much smaller than the state dimenk®n, t
about the releases is obtained by fusing data from an ar@mputational complexity with the EnKF is significantly re-
of deployed and possibly mobile sensors and an atmospheaticed than that of the EKF. It is also assumed that a relgtivel
dispersion model. The use of atmospheric dispersion modehall number of ensemble members is adequate to capture the
along with the meteorological model is essential because mo&in characteristics of the release dispersion in the damntin
the very limited coverage of the sensors in time and spacebspace, which is of a lower dimension than the whole state
Gaussian puff based models [1] are often used to make fapace. However, the EnKF cannot be used with the puff based
release concentration prediction, in which a series of Gans models due to the inherent variable state dimensionality in
shaped puffs are released at the sources and propagates irtttese models. At a measurement time, the ensemble members,
atmosphere. Sensors used in dispersion applicationslysutie puffs of which may be emitted at different source loaadio
have imprecise bar readings. The bar readings provideelimit(to account for source location uncertainty) and may have
information about the true concentration and increase thadergone different advection and splitting processesy ma
nonlinearity of the measurement process. have different dimensions. For example, at a time instast on

Data assimilation is the science and art of fusing the obsensemble member may consist of ten puffs while another may
vations with the model predictions, to get a better estimateonsist of fifteen. Even if all the ensemble members have the
Real-time and operational data assimilation for atmodphesame number of puffs, the correspondence among the puffs
release dispersion, need to deal with two main problendf different ensemble members is often unavailable. As a
high nonlinearity and high state dimensionality. Nonlirié@s result, the ensemble mean and covariance as well as the cross
in the dispersion model and the observation model poserrelation matrix between concentration and puffs carteot
significant challenges for data assimilation techniquastheér, computed and the measurement update cannot be carried out.
due to continuous release/emissions initially and paaénti Particle Filters [7] provide a good alternative for such nion



standard dynamical models. Particle Filters provide estid A. Gaussian Puff Characteristics

of the higher moments, and are mostly suitable for highly . . . .
nonlinear and non-Gaussian models. The variable and hi hThe conce_ntratlo_n distribution in each puff is Gaussm_m
dimensionality of the state vector, which poses a proble the two dimensional space. The mean of the Gaussian

to the standard nonlinear assimilation techniques, can réaresfents the location OT the puff centgr, aqd the_standard
dealt with using Particle Filters. Daum, et al. [8] showe eviations represent the size of the puff in various dicei

that a carefully designed Particle Filter should mitigdte t or simplicity, the_ G_auss_lan IS assumgd C|r_cula_r In our case
curse of dimensionality for certain filtering problems. Th(z,l-he standard de_.\watloax n thg downwind direction is used
efficiency of Particle Filter and Ensemble based filtersdfatia as a _mathematlcal tool an_d IS T“ad.e equal to the standard
assimilation in a high dimensional linear diffusion model, dev!at!on oy N thg crosswind d_|rec_t|on [1]. The st_ant;lard
discussed in our earlier work [9]. Further, the Monte Carl eviation c.)f t.hls circular Gaussian is denoted,. This is
nature of Particle Filtering techniques provides the pibaén Nlustrated in figure 1.
for predicting Multiple Hypotheses scenarios in case afidar
uncertainty, typical of such large models. Multiple Hypeglks
are crucial in case of lethal releases and when significe
uncertainties exist in the source and the atmospheric data.

In this paper, a representative nonlinear puff based dispi /7 Ty
sion model is designed for the purpose of data assimilatic
This model incorporates the characteristic feature ofdap
growth in state dimensionality with time. The performanc
of Particle Filter is studied, using two different nonlinea A
sensor models, and the various advantages of sampling ba
techniques are discussed. The representative dispersidalm €T .
is introduced and its dynamics are described in Sectiomt, a
the two sensor models are described in Section Ill. The st Y
space description in introduced in Section IV and the variot Uim’t Wind di
data assimilation techniques used, are described in &ect Y s ./
V. The results of data assimilation on the representati /
dispersion model, using the two sensor models are discus: , v
in Section VI. The conclusions and further work are discdsst ! 2
in Section VII. \ <

rection

A 8
v

Il. DISPERSIONMODEL
Fig. 1. Model lllustration
The atmospheric dispersion model used is based on the
RIMPUFF [1] (Riso Mesoscale PUFF) model which was
designed to calculate the concentration and doses reagultj
from the dispersion of airborne particles. It is a Lagrangia

Each Gaussian puff has four parametdX. Y, o,,, Q]

mesoscale atmospheric dispersion puff model, which applie [X,Y] = Centroid of the Gaussian puff
both to homogeneous and inhomogeneous terrain with moder- ’ . o

ate topography on a horizontal scale of up to 50 km, and re- ory = Puff size (std. deviation)
sponds to changing (non-stationary) meteorological ¢ Q = Activity (mass) of the puff

[1]. The model simulates the time changing release (emi¥sio
of airborne materials by sequentially releasing a series Bf Concentration Calculation
Gaussian shaped puffs at a fixed rate on a specified grid
The amount of airborne materials allocated to individudfgpu .

equals the release rate times the time elapsed between X

The concentration at a grid poifit,, y,], at each time step,
ﬁalculated by summing the contributions of all the puffs a

releases. At each time step, the model advects, diffuses %t instant.

deposits the individual puffs according to local meteogdadal

parameter values. This model is used as a basis for the presen 1 ((x 2 4 (v, 5
dispersion model, which can be used as a benchmark modeldfor L; exp [_ <( ) 2+ (i — yy) )1
testing various data assimilation techniques. Also, taiced P 277%(7;) 2 Oy (3)

the computational complexity of the simulations, the pnése Q)

model is restricted to the two dimensional horizontal sgrea
of the plume, the vertical effects on dispersion being igdor where, N is the number of puffs.



Height Stability Diffusion coefficients Surface (10 m) Daytime Night-time
(m) category Py Ay Pz 4- wind speed Incoming solar radiation Cloudiness
A 1.503 0.833 0.151 1.219 (ms") Stong | Moderate Slight 24/8 <38
B 0.876 0.823 0.127 1108 - A B B
50 C 0.659 0.807 0.165 0.996 23 A-B B c E F
D 0.640 0.784 0.215 0.885 35 B B-C c b E
E 0.801 0.754 0.264 0.774 5.6 C D N D D
F 1.294 0.718 0.241 0.662
>6 C D D D D
A 0.179 1.296 0.051 1.317
B 0324 1.025 0.07 1.151 A :Extremely unstable conditions B :Moderately unstable conditions
00 € 6 60 Wiy 28 C:Slightly unstable conditions D :Neutral conditions
D 0.504 0.818 0.265 0.818
E 0411 0.882 0.487 0.652 E :Slightly stable conditions F :Stable conditions
F 0.253 1.057 0.717 0.486
A 0.671 0.903 0.025 1.5 TABLE Il
B 0415 0903 0033 132 PASQUILL STABILITY CATEGORIES[1]
C 0.232 0.903 0.104 0.997
180 D 0.208 0.903 0.307 0.734
E 0.345 0.903 0.546 0.557
TABLE | Deposition is neglected for the present model and hence
KARLSRUHE-JULICH DIFFUSION [1] the mass of each puff remains constant during the dispersion
process.

1) Puff Splitting: A puff splitting scheme is usually em-
ployed in the puff based dispersion models like RIMPUFF,
C. Puff Dynamics to account for dispersion over complex terrains which might
result in plume splitting. This scheme is included in our mlod
The advection and diffusion of each puff takes place accorgy represent a similar structure for testing purpose. When an
ing to local meteorological parameter values. The adveaifo jnjtially small puff is grown to the size comparable with the
each puff is calculated according to the wind vectomt the grig spacing of the flow model, the original puff is replaced

puff center and the time stepAT" is used to determine theith five new smaller puffs, under the following constraints
next position of the puff center. [1]:

DXQi=0Q i
Xipr1 = Xp+uxAT (2 2 Zézl Quldi + Uffy(i)) - Qaz.y
Y o Y + u AT (3) 3) Zi:l Oi(X,Y) = O(X,Y) fOI’ 1 = 1 tO 5
b+l = 1k YT 4) 0,y(i) = 204, (arbitrarily assigned)
where,u = [ux, uy] (4)  The solution corresponding to these constraints is ikett
in figure 2. After splitting, the new puffs can set off in indi-

Expansion W'th. t'm? Of. a single puff IS fundamenFaIIX/idual directions in response to the information of diverce
related to the relative diffusion process. It is computeafisi- explicitly contained in the flow field

multaneous measurements or specifications of the atmospher.l.he model described in this section, is used as a representa-

:E_rbulengel mttens(ljty :ndll or Sta(;).'“ty m_the_d:csperstl_oeaa_n:or tive atmospheric dispersion model for demonstrating tha da
is model, standard plume dispersion information is usezgssimilation methodologies.

Pasquill parameterisation, using a modified Karlsrullesti
system, (table 1) is used as a basis for the present model. I1l. SENSORMODELS

This parameterization is valid for limited cases of near Ty observation models are used for studying data assim-
ground level releases and dispersion over flat terrains. Tfigion performance. The first model is a continuous model,
dispersion categories are based on surface wind speed M@gch measures concentration according to equation 1, and
surements, incoming insolation or cloud cover (see table lhjves a noisy output with a certain varianBeat each sensor
The growth of each puff is described by location.

The second model is based on a model for a simple ion
mobility sensor described in [10]. The outputs of the sensor

Oy = pyz™ () are discrete numbers of bar readings ranging from 0 to 7.
where,z = downwind distance given by, These bar readings indicate concentration magnitude {i8];
_ /5 2 AT sensor displays= 0,...,7, vv_hen the “measured” continuous-
Trt1 Tk + ux +uy valued concentration magnitude is between thresholds;
andp,,q, = stability dependent parameters and T;,,. As in [10], the thresholds are assumed to be

(Karlsruhe-dilich diffusion coefficients)  exactly known. The measured concentratignis assumed



Define a state vector for each Gaussian puff s =
[ X' YY" ol @ ]T, which captures all the information
of thei*" Gaussian. For the dynamical system, the state vector
is given by Z, which is a vector of alE’s, concatenated into
a single vector. The state space model of the discrete time

atmospheric dispersion model is then given by
Zk+1) = F(Z(k),ik),d(k)) (10)

i(k), being the wind velocity vector at the instaht The
output of the dynamical system is given by the concentration
calculated, at various grid points of the dispersion region
according to equation 1.

V. ESTIMATION TECHNIQUES

Nonlinearities in the system dynamics model and the quan-
tized (bar readings) nonlinear observation models leadio n
Gaussian state distributions. These factors pose sigmifica
challenges for data assimilation techniques. Further, tdue
continuous release/emissions initially and potentiaksgioient
puff splitting, the length of the state vector is not constant
varies with time. Also, with time, the state dimension beeam
very high leading to difficulties in the full state estimatio

A. Extended Kalman Filter

The Extended Kalman Filter (EKF) is one of the most
widely used nonlinear filters, and it involves model lingari
normally distributed about the true concentratiombtained tion around the most recent estimate. Varying state diroansi
using equation 1. The variande of the measurement errornecessitates block operations on covariance matricescht ea
¢, — c is given by time step.
R=ac+J (6) At each step, if there is a new puff release, its covariance is

) , ) initialized with Py. The propagation equations for the puffs,
wherea is the constant of proportionality anflaccounts for | hen there is no splitting, are as follows:

the thermal motion of the electrons in the components.
The probability of a reading given the true concentration

Fig. 2. Puff-Splitting Illustration [1]

c is then given by the following integral Xopp = Xo (11)

) 1 Ti+1 B (C,Ufc)Q Polo = PO (12)

Plile) = V2R /T e dey (7) Xppan = (upeun) (13)

’ _ T

This probability is used in the update of the important wisgh Pitie = FrPrpFi +Qx (14)

of a Particle Filter. where, F' = %. When there is puff splitting, the state mean
and covariance propagation occurs as above, and they change
IV. STATE SPACE MODEL DESCRIPTION according to the following equations due to splitting:
A general nonlinear stochastic state space descriptiomeof t N .
Xpy1k = AXpiir,Bs (15)

discrete time model and the measurements with additive zero
mean noise, can be shown as below: Piie = APppppsA” (16)
Xpi1 = f(Xe, U, Wy) 8) whgr_eA is the Iinear_oper_ator cqrresponding to the puff
splitting process described in section 1I-C,, |, s and
Vi = h0w) +vi ©) P 1x,Bs are the propagated state mean and the error co-
When such a stochastic description of model and measuyatiance before puff splitting.

ments is available, it is possible to incorporate the memsur The propagated state mean and covariances for all the puffs
ments into the model to obtain an optimal estimate of ti¥€ then concatenated appropriately and are updated veith th
system theoretically. The standard assignment of statebdo Sensor measurements as follows:
di§persipn problem uses concentratiqns measured on @Ispati Xpiihrr = Xepas + K1 (Yeer — hGppe)) (17)
grid. Using a puff model, the opportunity exists to dramatic K _p HY, | (Hy. P H?
reduce the dimensionality of the resulting state spaceeHer kol AR s e L
the atmospheric dispersion model described in the previous +Rpq1) ! (18)
section is interpreted as a state space model as follows: Piiijpr1 = Prop — Kt He 1 Prgage (29)



where, H = a py q(xk+1|X§:’),Yk+1) = p(xk+‘1|x§f)).. This implementation.
The |mplementation of EKF requires Jacobian calculatiois called the Bootstrap Particle Filter. The corresponding
which is an expensive computation. The state error covagiarimportance weights arey,@rl o wp(yrrilx{,). Sampling

matrix rapidly increases in size due to increase in the stqgé , from p(Xk+1\Xk ) is equivalent to the dynamic propa-
dimension with time. Further, a quantized nonlinear observ at|on ofx ) to time thos.

tion model, such as the bar sensor model, poses continuity,, optlmal importance function that minimizes the vari-

problems during the measurement update in the EKF. ance of the importance wei h)tk conditional u orx ) and
Particle Filters provide a good alternative for such non- P 911 pong;

standard dynamical and observation models. The Bootstipt1 IS given by a1 X, Y0) = pociet %, yi):
Particle Filter is implemented on the representative atméhe correspondmg importance  weights are{’),
spheric dispersion model using the two sensor models, dzs,i )p(yk+1|x ). The optimal Particle Filter, using the op-
cussed in the earlier section. The implementation of thienal importance function, gives the limiting performanae
Particle Filter, as applicable to our present models, ifirmd Particle Filters. Note that, when the state model and the ob-
in the following: servation model are linear Gaussian, all the above-megdion
probability density functions are Gaussian. In this cabe, t

B. Particle Filter optimal Particle Filter reduces to the Kalman filter.
In Particle Filters, the posterior distributicw(xk\Yk) is The measurement likelihood, in the Particle Filter, for the
approximated withV weighted partlcles{x,C ,w;c }Z 1, given continuous observation model,is given by:
by P (clo) 1 _ (ev=0)? 23)
Cylc) = e 2R
N (dxk| i) Zwk 8, (dxy,) (20) V2R

For the case of bar sensor model, the likelihood is calcdlate

where x,(f) are the particles drawn from the importancéISIng the following equation:

function or proposal distributionw,g) are the normalized
importance weights, satisfying . 1w,(€) =1, andé (7>(dxk)

(CU C)

P (ilc) = de, (24)

z+1
V2TR /
denotes the Dirac-delta mass Iocatedcfj‘?. We UseXk and wherec is the predicted concentration at timke- 1, andc, is
Yy to denote the state trajectof; }*_, and measurement obtained by sampling from a Gaussian distribution with mean
history {y;}* i—1, respectively. The expectation of a known:, and the measurement noise variatte
function f (x) with respect tao(xx|Y) is then approximated  Particle Filter does not involve the calculation of Jacabja
by the storage of large state error covariance matrices amtiass
) 2 ated block operations due to varying state dimensions. Bach
/f(xk)p(xk)dxk ~ Zwk f(x;.") (21)  the particles, in general, may have different state dinerssi
’ Each particle corresponds to a particular distribution arfi-c
For example the approximation to the arithmetic meaw,of centration, whose mean concentration can be calculated for
is Z w( )x(®), single point estimate. Thus, Particle Filters provide diedi
Part|cle Filter updates the particle representaticipproach to the case of variable state dimensions.
{xk ,wk } ¥, in a recursive manner. A cycle of a generic
Particle Filter includes [7] VI. RESULTS AND DISCUSSION
. Sequential Importance Sampling The performance of the estimation techniques, is studied fo
the discussed models using simulated atmospheric dispersi
and concentration measurements. The grid resolution beer t
dispersion region i200m and sensors are located evérym
“along both the axes as shown in figure 3.
The total simulation runtime i8600s and sampling interval

— Fori=1,... N, samplex,ﬂrl from the importance
function Q(Xk+1|Xk Y1)

— Fori=1,... N, evaluate and normalize the impor
tance welghts

(4) (@) | (8) is 20s. The source location and strength are uncertain. The
N D(YE+1]x )P(X \ ) . hgth .
w;ﬁrl x w;(;) bl bl (22) release occurs fo0% of the simulation time, with al0%
q(x k+1|X s Yit1) standard deviation. This is implemented as a fraction of the

— . : . (1) \N : total number of time steps and is modeled as a random variable
* Resampllng._ Multlpllelscard pa”"’f'e@‘@yl}i:l Wlth with mean0.2 and a standard deviation 6f02. There is a
respect to h|gh/Iow importance Welghztaé to obtain puff release every three time steps. The nominal value of the
N new paft'C|es{Xk+1}N 1 with equal weights. wind speed issm/s, with a standard deviation df0%. The
It should be noted that the computation of the mean amdnd direction changes from5deg to 60deg after 1800s.
covariance is not required for the process of the Partidteri The truth is simulated using a perturbed model, taking ab¢h
The importance function plays a significant role in thencertainties into account. The observations are obtdioad
particle filter. One of the simplest importance functioniigeg this truth, using the two sensor models described in sedtion



Disp

10}

rsion Area — Sensor Ioc@tions

3000%—e—e——o—o—5—o—o e o o
p © o o o o o o e o o o o o o
> © o o o o o o o o o o o o o o
2500 1
P © o o o o o o o o o o o o o o
$ © © o o o o o o o o o o o o o
2000%- e e e o -* e o o o * e o o o o
$ © © o o o o o o o o o o o o o
P © o o o o o o o o o o o o o o
> 1500
» © © o o o o o o o o o o o o o
> © o o o o o o o o o o o o o o
1000%- o e e e * e o o o * e o o o ¥
> o o o o o o o o o o o o o o o
P © o o o o o o o o o o o o o o
500
> © o o o o o o o o o o o o o o
P © o o o o o o o o o o o o o oo
5] oo o o % o oo o K o oo o
0 500 1000 1500 2000 2500 00
X

180

160

140

120

100

80

number of puffs

60

40

20

1 T T
The variable state dimensionality is illustrated in figure £ : P 1
where the number of puffs is plotted against the time step, f
the truth. The initial increase in the number of puffs due t
source release can be seen till the time steg2fThere is
again a sharp increase at two different later stages duefto ¢

Fig. 3. Sensor locations on the grid

No. of puffs vs. time steps

0 50 100
time steps

Fig. 4. Number of puffs

splitting.

For the continuous observation model, the variance at ee
sensor location is chosen to l9e001. The nominal model
is used for the purpose of testing the estimation algorithn
using these observations. The Extended Kalman Filter amd 1
Bootstrap Particle Filter are implemented on the repregiset
2D atmospheric dispersion model. The number of particle

RMS error
0.07 T

—— pf
model
ekf q

0.06

0.041

rms error

0.03F

0.02

0 . . .
0 50 100 150 200

Time Step

Fig. 5. RMS error in the concentrations for continuous senso

vs. time, for the Particle Filter as well as for the nominaldeb
without data assimilation. The decrease in the rms errathfer
nominal model without data assimilation, can be explaingd b
the dispersion of the plume over a larger area with time. The
implementation of the EKF and the Particle Filter improves
the estimates with time as more and more observations are
assimilated. It can be seen that the Particle Filter perfioica

is comparable to that of the EKF in the case of continuous
observation model.

For the bar sensor model, the values of the parameters
and J are chosen to b@.001 and 10~ !¢ respectively. The
probabilities of various bar readings for these parametans
be seen in figure 6. While the leftmost mode corresponds to a
reading of0 bar, the rightmost mode corresponds to a reading
of 7. The bar sensor readings are simulated from the truth,
using these parameters.

Bar Sensor: Probabilistic Output

Pr(log(c)|bar)
o o o o o o o
w IS 3 o ~ © ©

o
N

o
=

used in the Particle Filter, i%0. The results are averaged ovel 20 -15 ~10 00(©) -5 0 5
100 Monte Carlo simulations.

For error calculations, a grid domain af x 15 km? is
used. In figure 5, the root mean squared error in concemisatio Fig. 6. Probabailistic Bar Sensor likelihood

across all grid points in the domain is calculated and istg@dbt
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Implementation of the EKF in the case of bar sensor modek;

faces the problems of continuity. Further, calculation lod t
Jacobian matrix corresponding to the probabilistic bassen

model is not meaningful, because there is no change in the

used as a representative model for this purpose. The sglitti
of puffs which is a characteristic of more complex models
is incorporated in the representative model. Two kinds of
observation models are used to demonstrate the potential of
sampling based filters. A continuous observation modelésius

to test the performance of Particle Filter against the widel
used Extended Kalman filter. It was seen that while both the
filters are comparable in terms of estimation performance,
Particle Filter offers significant advantages in terms cfecaf
implementation and memory requirements. Further, Particl
Filter can be effectively applied for a quantized obseorati
model, as demonstrated using the probabilistic bar sensor
model. The EKF, and other linearization based filters, fail
with such sensor models. The application potential of Blerti
Filter, in the context of variable state dimensionalitglhstate
dimension, non-linearities and quantized observatianghus
demonstrated.

The possibilities of incorporating the advantages of other
sampling based filters will be explored in the future. The
deterministic sampling techniques of the Unscented Biked
the reduced rank representation used in the Ensemble Kalman
Filtering techniques hold good potential, towards impngvi
the estimation performance while managing the computation
requirements.
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