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Abstract— Data assimilation in the context of puff based
dispersion models is studied. A representative two dimensional
Gaussian puff atmospheric dispersion model is used for the
purpose of testing and comparing several data assimilation
techniques. A continuous nonlinear observation model, and a
quantized probabilistic nonlinear observation model, are used
to simulate the measurements. The quantized model is used to
simulate bar sensor readings of the concentration. Dispersion
models usually lead to high dimensional space-gridded state space
models. In the case of puff based dispersion models, this may
be avoided by using puff parameters themselves as the states,
but at the cost on nonlinearity and variable dimensionality.
The potential of sampling based techniques is discussed in this
context, with a particular focus on the Particle Filter approach,
for which variable state dimensionality creates no difficulties.
The performance of Particle Filter is compared with that of the
Extended Kalman Filter, and its advantages and limitations are
illustrated.
Keywords: Chem-Bio Dispersion, Gaussian Puff, Particle
Filter, Bar Sensor, Variable State Dimensionality.

I. I NTRODUCTION

Real-time detection, tracking, and prediction of chemical
and biological releases is important for fast response to
chemical and biological accidents and attacks. Knowledge
about the releases is obtained by fusing data from an array
of deployed and possibly mobile sensors and an atmospheric
dispersion model. The use of atmospheric dispersion model
along with the meteorological model is essential because of
the very limited coverage of the sensors in time and space.
Gaussian puff based models [1] are often used to make fast
release concentration prediction, in which a series of Gaussian
shaped puffs are released at the sources and propagated in the
atmosphere. Sensors used in dispersion applications usually
have imprecise bar readings. The bar readings provide limited
information about the true concentration and increase the
nonlinearity of the measurement process.

Data assimilation is the science and art of fusing the obser-
vations with the model predictions, to get a better estimate.
Real-time and operational data assimilation for atmospheric
release dispersion, need to deal with two main problems:
high nonlinearity and high state dimensionality. Nonlinearities
in the dispersion model and the observation model pose
significant challenges for data assimilation techniques. Further,
due to continuous release/emissions initially and potential

subsequent puff splitting, the number of puffs and therefore
the length of the state vector is not constant, but increaseswith
time. The state dimension may become so high that estimating
all states from the sensor data is impossible.

The Extended Kalman Filter (EKF) [2] is one of the most
widely used nonlinear filters. However, the EKF poses certain
problems for the dispersion applications because of its low-
order linearization approximation, computationally expensive
Jacobian calculations and propagation and update of large
state error covariance matrix, which is a memory intensive
process. Unscented Kalman Filter [3] uses deterministic sam-
pling techniques for better approximation in nonlinear filtering
applications. Reduced-rank filters, which employ reduced-rank
approximation to the full-rank covariance matrix, hold good
potential for data assimilation in large scale models [4]. The
Ensemble Kalman Filters (EnKF) [5], [6] approximate the
error covariance matrix by the ensemble covariance around the
ensemble mean. Each ensemble member is propagated through
the nonlinear dynamics directly and the ensemble mean and
covariance computed from the ensemble provides the neces-
sary statistics used in the measurement update step. Because
the ensemble size is much smaller than the state dimension, the
computational complexity with the EnKF is significantly re-
duced than that of the EKF. It is also assumed that a relatively
small number of ensemble members is adequate to capture the
main characteristics of the release dispersion in the dominant
subspace, which is of a lower dimension than the whole state
space. However, the EnKF cannot be used with the puff based
models due to the inherent variable state dimensionality in
these models. At a measurement time, the ensemble members,
the puffs of which may be emitted at different source locations
(to account for source location uncertainty) and may have
undergone different advection and splitting processes, may
have different dimensions. For example, at a time instant one
ensemble member may consist of ten puffs while another may
consist of fifteen. Even if all the ensemble members have the
same number of puffs, the correspondence among the puffs
of different ensemble members is often unavailable. As a
result, the ensemble mean and covariance as well as the cross
correlation matrix between concentration and puffs cannotbe
computed and the measurement update cannot be carried out.

Particle Filters [7] provide a good alternative for such non-



standard dynamical models. Particle Filters provide estimates
of the higher moments, and are mostly suitable for highly
nonlinear and non-Gaussian models. The variable and high
dimensionality of the state vector, which poses a problem
to the standard nonlinear assimilation techniques, can be
dealt with using Particle Filters. Daum, et al. [8] showed
that a carefully designed Particle Filter should mitigate the
curse of dimensionality for certain filtering problems. The
efficiency of Particle Filter and Ensemble based filters, fordata
assimilation in a high dimensional linear diffusion model,is
discussed in our earlier work [9]. Further, the Monte Carlo
nature of Particle Filtering techniques provides the potential
for predicting Multiple Hypotheses scenarios in case of large
uncertainty, typical of such large models. Multiple Hypotheses
are crucial in case of lethal releases and when significant
uncertainties exist in the source and the atmospheric data.

In this paper, a representative nonlinear puff based disper-
sion model is designed for the purpose of data assimilation.
This model incorporates the characteristic feature of rapid
growth in state dimensionality with time. The performance
of Particle Filter is studied, using two different nonlinear
sensor models, and the various advantages of sampling based
techniques are discussed. The representative dispersion model
is introduced and its dynamics are described in Section II, and
the two sensor models are described in Section III. The state
space description in introduced in Section IV and the various
data assimilation techniques used, are described in Section
V. The results of data assimilation on the representative
dispersion model, using the two sensor models are discussed
in Section VI. The conclusions and further work are discussed
in Section VII.

II. D ISPERSIONMODEL

The atmospheric dispersion model used is based on the
RIMPUFF [1] (Riso Mesoscale PUFF) model which was
designed to calculate the concentration and doses resulting
from the dispersion of airborne particles. It is a Lagrangian
mesoscale atmospheric dispersion puff model, which applies
both to homogeneous and inhomogeneous terrain with moder-
ate topography on a horizontal scale of up to 50 km, and re-
sponds to changing (non-stationary) meteorological conditions
[1]. The model simulates the time changing release (emission)
of airborne materials by sequentially releasing a series of
Gaussian shaped puffs at a fixed rate on a specified grid.
The amount of airborne materials allocated to individual puffs
equals the release rate times the time elapsed between puff
releases. At each time step, the model advects, diffuses and
deposits the individual puffs according to local meteorological
parameter values. This model is used as a basis for the present
dispersion model, which can be used as a benchmark model for
testing various data assimilation techniques. Also, to reduce
the computational complexity of the simulations, the present
model is restricted to the two dimensional horizontal spread
of the plume, the vertical effects on dispersion being ignored.

A. Gaussian Puff Characteristics

The concentration distribution in each puff is Gaussian
in the two dimensional space. The mean of the Gaussian
represents the location of the puff center, and the standard
deviations represent the size of the puff in various directions.
For simplicity, the Gaussian is assumed circular in our case.
The standard deviationσx in the downwind direction is used
as a mathematical tool and is made equal to the standard
deviation σy in the crosswind direction [1]. The standard
deviation of this circular Gaussian is denotedσxy. This is
illustrated in figure 1.

Wind direction

Fig. 1. Model Illustration

Each Gaussian puff has four parameters:[X,Y, σxy, Q],
where

[X,Y ] = Centroid of the Gaussian puff

σxy = Puff size (std. deviation)

Q = Activity (mass) of the puff

B. Concentration Calculation

The concentration at a grid point[xg, yg], at each time step,
is calculated by summing the contributions of all the puffs at
that instant.

C =
N
∑

i=1

Qi

2πσ2
xy(i)

exp

[

−1

2

(

(Xi − xg)
2 + (Yi − yg)

2

σ2
xy(i)

)]

(1)

where,N is the number of puffs.



Height Stability Diffusion coefficients

 (m) category py qy pz qz

A 1.503 0.833 0.151 1.219

B 0.876 0.823 0.127 1.108

50 C 0.659 0.807 0.165 0.996

D 0.640 0.784 0.215 0.885

E 0.801 0.754 0.264 0.774

F 1.294 0.718 0.241 0.662

A 0.179 1.296 0.051 1.317

B 0.324 1.025 0.07 1.151

100 C 0.466 0.866 0.137 0.985

D 0.504 0.818 0.265 0.818

E 0.411 0.882 0.487 0.652

F 0.253 1.057 0.717 0.486

A 0.671 0.903 0.025 1.5

B 0.415 0.903 0.033 1.32

C 0.232 0.903 0.104 0.997

180 D 0.208 0.903 0.307 0.734

E 0.345 0.903 0.546 0.557

TABLE I

KARLSRUHE-JÜLICH DIFFUSION [1]

C. Puff Dynamics

The advection and diffusion of each puff takes place accord-
ing to local meteorological parameter values. The advection of
each puff is calculated according to the wind vector,u at the
puff center and the time step,∆T is used to determine the
next position of the puff center.

Xk+1 = Xk + uX∆T (2)

Yk+1 = Yk + uY ∆T (3)

where,u = [uX , uY ]T (4)

Expansion with time of a single puff is fundamentally
related to the relative diffusion process. It is computed from si-
multaneous measurements or specifications of the atmospheric
turbulence intensity and/or stability in the dispersion area. For
this model, standard plume dispersion information is used.
Pasquill parameterisation, using a modified Karlsruhe-Jülich
system, (table I) is used as a basis for the present model.

This parameterization is valid for limited cases of near
ground level releases and dispersion over flat terrains. The
dispersion categories are based on surface wind speed mea-
surements, incoming insolation or cloud cover (see table II).
The growth of each puff is described by

σxy = pyxqy (5)

where,x = downwind distance given by,

xk+1 = xk +
√

u2
X + u2

Y ∆T

andpy, qy = stability dependent parameters

(Karlsruhe-J̈ulich diffusion coefficients)

Surface (10 m) Daytime Night-time

wind speed Incoming solar radiation Cloudiness

(m s-1) Strong Moderate Slight ≥4/8 ≤3/8

<2 A A-B B - -

2-3 A-B B C E F

3-5 B B-C C D E

5-6 C C-D D D D

>6 C D D D D

A : Extremely unstable conditions B : Moderately unstable conditions

C : Slightly unstable conditions D : Neutral conditions

E : Slightly stable conditions F : Stable conditions

TABLE II

PASQUILL STABILITY CATEGORIES[1]

Deposition is neglected for the present model and hence
the mass of each puff remains constant during the dispersion
process.

1) Puff Splitting: A puff splitting scheme is usually em-
ployed in the puff based dispersion models like RIMPUFF,
to account for dispersion over complex terrains which might
result in plume splitting. This scheme is included in our model
to represent a similar structure for testing purpose. When an
initially small puff is grown to the size comparable with the
grid spacing of the flow model, the original puff is replaced
with five new smaller puffs, under the following constraints
[1]:

1)
∑5

i=1 Qi = Q

2)
∑5

i=1 Qi(d
2
i + σ2

xy(i)) = Qσ2
xy

3)
∑5

i=1 Ci(X,Y ) = C(X,Y ) for i = 1 to 5
4) σxy(i) = 1

2σxy (arbitrarily assigned)

The solution corresponding to these constraints is illustrated
in figure 2. After splitting, the new puffs can set off in indi-
vidual directions in response to the information of divergence
now explicitly contained in the flow field.

The model described in this section, is used as a representa-
tive atmospheric dispersion model for demonstrating the data
assimilation methodologies.

III. SENSORMODELS

Two observation models are used for studying data assim-
ilation performance. The first model is a continuous model,
which measures concentration according to equation 1, and
gives a noisy output with a certain varianceR at each sensor
location.

The second model is based on a model for a simple ion
mobility sensor described in [10]. The outputs of the sensor
are discrete numbers of bar readings ranging from 0 to 7.
These bar readings indicate concentration magnitude [10];the
sensor displaysi = 0, . . . , 7, when the “measured” continuous-
valued concentration magnitudecv is between thresholdsTi

and Ti+1. As in [10], the thresholds are assumed to be
exactly known. The measured concentrationcv is assumed



Fig. 2. Puff-Splitting Illustration [1]

normally distributed about the true concentrationc obtained
using equation 1. The varianceR of the measurement error
cv − c is given by

R = αc + J (6)

whereα is the constant of proportionality andJ accounts for
the thermal motion of the electrons in the components.

The probability of a readingi given the true concentration
c is then given by the following integral

P (i|c) =
1√
2πR

∫ Ti+1

Ti

e−
(cv−c)2

2R dcv (7)

This probability is used in the update of the important weights
of a Particle Filter.

IV. STATE SPACE MODEL DESCRIPTION

A general nonlinear stochastic state space description of the
discrete time model and the measurements with additive zero
mean noise, can be shown as below:

xk+1 = f (xk, uk, wk) (8)

yk = h (xk) + vk (9)

When such a stochastic description of model and measure-
ments is available, it is possible to incorporate the measure-
ments into the model to obtain an optimal estimate of the
system theoretically. The standard assignment of states for the
dispersion problem uses concentrations measured on a spatial
grid. Using a puff model, the opportunity exists to dramatically
reduce the dimensionality of the resulting state space. Here,
the atmospheric dispersion model described in the previous
section is interpreted as a state space model as follows:

Define a state vector for each Gaussian puff as~zi =
[

Xi Y i σi
xy Qi

]T
, which captures all the information

of the ith Gaussian. For the dynamical system, the state vector
is given by ~Z, which is a vector of all~zis, concatenated into
a single vector. The state space model of the discrete time
atmospheric dispersion model is then given by

~Z(k + 1) = F (~Z(k), ~u(k), ~w(k)) (10)

~u(k), being the wind velocity vector at the instantk. The
output of the dynamical system is given by the concentrations
calculated, at various grid points of the dispersion region,
according to equation 1.

V. ESTIMATION TECHNIQUES

Nonlinearities in the system dynamics model and the quan-
tized (bar readings) nonlinear observation models lead to non-
Gaussian state distributions. These factors pose significant
challenges for data assimilation techniques. Further, dueto
continuous release/emissions initially and potential subsequent
puff splitting, the length of the state vector is not constant, but
varies with time. Also, with time, the state dimension becomes
very high leading to difficulties in the full state estimation.

A. Extended Kalman Filter

The Extended Kalman Filter (EKF) is one of the most
widely used nonlinear filters, and it involves model lineariza-
tion around the most recent estimate. Varying state dimension
necessitates block operations on covariance matrices at each
time step.

At each step, if there is a new puff release, its covariance is
initialized with P0. The propagation equations for the puffs,
when there is no splitting, are as follows:

x̂0|0 = x0 (11)

P0|0 = P0 (12)

x̂k+1|k = f
(

x̂k|k,uk

)

(13)

Pk+1|k = FkPk|kF
T
k + Qk (14)

where,F = ∂f

∂x
. When there is puff splitting, the state mean

and covariance propagation occurs as above, and they change
according to the following equations due to splitting:

x̂k+1|k = Ax̂k+1|k,BS (15)

Pk+1|k = APk+1|k,BSAT (16)

where A is the linear operator corresponding to the puff
splitting process described in section II-C.1,x̂k+1|k,BS and
Pk+1|k,BS are the propagated state mean and the error co-
variance before puff splitting.

The propagated state mean and covariances for all the puffs
are then concatenated appropriately and are updated with the
sensor measurements as follows:

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − h(x̂k+1|k)) (17)

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1

+Rk+1)
−1 (18)

Pk+1|k+1 = Pk+1|k − Kk+1Hk+1Pk+1|k (19)



where,H = ∂h

∂x
.

The implementation of EKF requires Jacobian calculation,
which is an expensive computation. The state error covariance
matrix rapidly increases in size due to increase in the state
dimension with time. Further, a quantized nonlinear observa-
tion model, such as the bar sensor model, poses continuity
problems during the measurement update in the EKF.

Particle Filters provide a good alternative for such non-
standard dynamical and observation models. The Bootstrap
Particle Filter is implemented on the representative atmo-
spheric dispersion model using the two sensor models, dis-
cussed in the earlier section. The implementation of the
Particle Filter, as applicable to our present models, is outlined
in the following:

B. Particle Filter

In Particle Filters, the posterior distributionp(xk|Yk) is
approximated withN weighted particles{x(i)

k , w
(i)
k }N

i=1, given
by

PN (dxk|Yk) ≈
N
∑

i=1

w
(i)
k δ

x
(i)
k

(dxk) (20)

where x
(i)
k are the particles drawn from the importance

function or proposal distribution,w(i)
k are the normalized

importance weights, satisfying
∑N

i=1 w
(i)
k = 1, andδ

x
(i)
k

(dxk)

denotes the Dirac-delta mass located inx
(i)
k . We useXk and

Yk to denote the state trajectory{xj}k
j=0 and measurement

history {yj}k
j=1, respectively. The expectation of a known

function f(xk) with respect top(xk|Yk) is then approximated
by

∫

f(xk)p(xk)dxk ≈
N
∑

i=1

w
(i)
k f(x

(i)
k ) (21)

For example, the approximation to the arithmetic mean ofxk

is
∑N

i=1 w(i)x(i).
Particle Filter updates the particle representation

{x(i)
k , w

(i)
k }N

i=1 in a recursive manner. A cycle of a generic
Particle Filter includes [7]

• Sequential Importance Sampling

– For i = 1, . . . N , samplex(i)
k+1 from the importance

function q(xk+1|X(i)
k ,Yk+1)

– For i = 1, . . . N , evaluate and normalize the impor-
tance weights

w
(i)
k+1 ∝ w

(i)
k

p(yk+1|x(i)
k+1)p(x

(i)
k+1|x

(i)
k )

q(x
(i)
k+1|X

(i)
k ,Yk+1)

(22)

• Resampling: Multiply/Discard particles{x(i)
k+1}N

i=1 with

respect to high/low importance weightsw(i)
k+1 to obtain

N new particles{x(i)
k+1}N

i=1 with equal weights.

It should be noted that the computation of the mean and
covariance is not required for the process of the Particle Filter.

The importance function plays a significant role in the
particle filter. One of the simplest importance function is given

by q(xk+1|X(i)
k ,Yk+1) = p(xk+1|x(i)

k ). This implementation
is called the Bootstrap Particle Filter. The corresponding
importance weights arew(i)

k+1 ∝ w
(i)
k p(yk+1|x(i)

k+1). Sampling

x
(i)
k+1 from p(xk+1|x(i)

k ) is equivalent to the dynamic propa-

gation ofx(i)
k to time tk+1.

The optimal importance function that minimizes the vari-
ance of the importance weightw

(i)
k+1 conditional uponx(i)

k and

yk+1 is given by q(xk+1|X(i)
k ,Yk) = p(xk+1|x(i)

k ,yk+1).
The corresponding importance weights arew(i)

k+1 ∝
w

(i)
k p(yk+1|x(i)

k ). The optimal Particle Filter, using the op-
timal importance function, gives the limiting performanceof
Particle Filters. Note that, when the state model and the ob-
servation model are linear Gaussian, all the above-mentioned
probability density functions are Gaussian. In this case, the
optimal Particle Filter reduces to the Kalman filter.

The measurement likelihood, in the Particle Filter, for the
continuous observation model,is given by:

P (cv|c) =
1√
2πR

e−
(cv−c)2

2R (23)

For the case of bar sensor model, the likelihood is calculated
using the following equation:

P (i|c) =
1√
2πR

∫ Ti+1

Ti

e−
(cv−c)2

2R dcv (24)

wherec is the predicted concentration at timek +1, andcv is
obtained by sampling from a Gaussian distribution with mean
c, and the measurement noise varianceR.

Particle Filter does not involve the calculation of Jacobians,
the storage of large state error covariance matrices and associ-
ated block operations due to varying state dimensions. Eachof
the particles, in general, may have different state dimensions.
Each particle corresponds to a particular distribution of con-
centration, whose mean concentration can be calculated fora
single point estimate. Thus, Particle Filters provide a unified
approach to the case of variable state dimensions.

VI. RESULTS AND DISCUSSION

The performance of the estimation techniques, is studied for
the discussed models using simulated atmospheric dispersion
and concentration measurements. The grid resolution over the
dispersion region is200m and sensors are located every1km
along both the axes as shown in figure 3.

The total simulation runtime is3600s and sampling interval
is 20s. The source location and strength are uncertain. The
release occurs for20% of the simulation time, with a10%
standard deviation. This is implemented as a fraction of the
total number of time steps and is modeled as a random variable
with mean0.2 and a standard deviation of0.02. There is a
puff release every three time steps. The nominal value of the
wind speed is5m/s, with a standard deviation of20%. The
wind direction changes from15 deg to 60 deg after 1800s.
The truth is simulated using a perturbed model, taking all these
uncertainties into account. The observations are obtainedfrom
this truth, using the two sensor models described in sectionIII.
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The variable state dimensionality is illustrated in figure 4,
where the number of puffs is plotted against the time step, for
the truth. The initial increase in the number of puffs due to
source release can be seen till the time step of42. There is
again a sharp increase at two different later stages due to puff
splitting.

For the continuous observation model, the variance at each
sensor location is chosen to be0.001. The nominal model
is used for the purpose of testing the estimation algorithms
using these observations. The Extended Kalman Filter and the
Bootstrap Particle Filter are implemented on the representative
2D atmospheric dispersion model. The number of particles
used in the Particle Filter, is30. The results are averaged over
100 Monte Carlo simulations.

For error calculations, a grid domain of15 × 15 km2 is
used. In figure 5, the root mean squared error in concentrations
across all grid points in the domain is calculated and is plotted
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Fig. 5. RMS error in the concentrations for continuous sensor

vs. time, for the Particle Filter as well as for the nominal model
without data assimilation. The decrease in the rms error forthe
nominal model without data assimilation, can be explained by
the dispersion of the plume over a larger area with time. The
implementation of the EKF and the Particle Filter improves
the estimates with time as more and more observations are
assimilated. It can be seen that the Particle Filter performance
is comparable to that of the EKF in the case of continuous
observation model.

For the bar sensor model, the values of the parametersα
and J are chosen to be0.001 and 10−16 respectively. The
probabilities of various bar readings for these parameterscan
be seen in figure 6. While the leftmost mode corresponds to a
reading of0 bar, the rightmost mode corresponds to a reading
of 7. The bar sensor readings are simulated from the truth,
using these parameters.
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Implementation of the EKF in the case of bar sensor model
faces the problems of continuity. Further, calculation of the
Jacobian matrix corresponding to the probabilistic bar sensor
model is not meaningful, because there is no change in the
bar reading for a small change in the local concentration.
Linearization is not a valid approach for such observation
models. The Particle Filter does not face this problem and its
implementation, as can be seen from figure 7, improves the
estimates with time as more observations are assimilated. The
same can also be observed in figure 8, where the concentration
contours are plotted at two different time instants, for different
levels. It can be seen that the estimates after assimilationby
the Particle Filter, compare favorably with the truth.

VII. C ONCLUSION

A test bed is designed to assess the performance of various
data assimilation techniques for puff based dispersion models.
A two dimensional Gaussian puff based dispersion model is

used as a representative model for this purpose. The splitting
of puffs which is a characteristic of more complex models
is incorporated in the representative model. Two kinds of
observation models are used to demonstrate the potential of
sampling based filters. A continuous observation model is used
to test the performance of Particle Filter against the widely
used Extended Kalman filter. It was seen that while both the
filters are comparable in terms of estimation performance,
Particle Filter offers significant advantages in terms of ease of
implementation and memory requirements. Further, Particle
Filter can be effectively applied for a quantized observation
model, as demonstrated using the probabilistic bar sensor
model. The EKF, and other linearization based filters, fail
with such sensor models. The application potential of Particle
Filter, in the context of variable state dimensionality, high state
dimension, non-linearities and quantized observations, is thus
demonstrated.

The possibilities of incorporating the advantages of other
sampling based filters will be explored in the future. The
deterministic sampling techniques of the Unscented Filters and
the reduced rank representation used in the Ensemble Kalman
Filtering techniques hold good potential, towards improving
the estimation performance while managing the computational
requirements.
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