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Abstract—The paper presents two methods of updating the
weights of a Gaussian mixture to account for the density
propagation within a data assimilation setting. The evolution of
the first two moments of the Gaussian components is given by the
linearized model of the system. When observations are available,
both the moments and the weights are updated to obtain a better
approximation to the a posteriori probability density function.
This can be done through a classical Gaussian Sum Filter. When
the measurement model offers little or no information in updating
the states of the system, better estimates may be obtained
by updating the weights of the mixands to account for the
propagation effect on the probability density function. The update
of the forecast weights proves to be important in pure forecast
settings, when the frequency of the measurements is low, when
the uncertainty of the measurements is large or the measurement
model is ambiguous making the system unobservable. Updating
the weights not only provides us with better estimates but also
with a more accurate probability density function. The numerical
results show that updating the weights in the propagation step
not only gives better estimates between the observations but also
gives superior performance for systems where the measurements
are ambiguous.

Keywords: Gaussian Sum Filter, Fokker-Planck, Uncer-
tainty Propagation, Weight Update, Improved Forecast.

I. INTRODUCTION

The nonlinear filtering problem has been extensively studied
and various methods are provided in literature. The Extended
Kalman Filter (EKF) is historically the first, and still the most
widely adopted approach to solve the nonlinear estimation
problem. It is based on the assumption that the nonlinear
system dynamics can be accurately modeled by a first-order
Taylor series expansion [1].

Since the EKF provides us only with a rough approxi-
mation of the a-posteriori probability density function (pdf)
and solving for the exact solution of the conditional pdf is
very expensive, researchers have been looking for mathemat-
ically convenient approximations. However, the accuracy and
efficient implementation of these models have been an issue
for highly nonlinear systems. The Bayes filter [2] offers the
optimal recursive solution to the nonlinear filtering problem.
However, the implementation of the Bayes filter in real time is
computationally intractable because of the multi-dimensional
integrals involved in the recursive equations. An efficient

implementation of the Bayes filter is possible when all the
involved random variables are assumed to be Gaussian [3],
[4]. Several other approximate techniques such as Sequential
Monte Carlo (SMC) methods [5], Gaussian closure [6] (or
higher order moment closure), Equivalent Linearization [7],
and Stochastic Averaging [8], [9] can also be used to find
a solution to nonlinear filtering problem. Sequential Monte
Carlo Methods or Particle filters [10] consists of discretiz-
ing the domain of the random variable into a set of finite
number of particles and transforming these particle through
the nonlinear map to obtain the distribution characteristics
of the transformed random variable. Although SMC based
methods are suitable for highly nonlinear and non-Gaussian
models, they require extensive computational resources and
effort, and becomes increasing infeasible for high-dimensional
dynamic systems [11]. The latter methods (Gaussian closure,
stochastic averaging etc.) are similar in several respects, and
they are suitable only for linear or moderately nonlinear
systems, because the effect of higher order terms can lead
to significant errors. Furthermore, all these approaches provide
only an approximate description of the uncertainty propagation
problem by restricting the solution to a small number of
parameters - for instance, the first N moments of the sought
pdf.

In Ref. [12], a weighted sum of Gaussian density functions
has been proposed to approximate the conditional pdf. It can
be shown that as the number of Gaussian components in-
creases the Gaussian sum approximation converges uniformly
to any probability density function [13]. For a dynamical
system with additive Gaussian white noise, the first two
moments of the Gaussian components are propagated using
the linearized model, and the weights of the new Gaussian
components are set equal to the prior weights. In the case
where observations are available both the moments and the
weights are accordingly updated [12], [14] using Bayes rule
to obtain an approximation of the a posteriori pdf, yielding the
so called Gaussian Sum Filter (GSF). Extensive research has
been done on Gaussian sum filters [10], which have become
popular in the target tracking community. Such efforts have
been materialized in methods like Gaussian Sum Filters [12],
GSF with a more advanced measurement update [14], Mixture



of Kalman Filters [15] and Interactive Multiple-Model [16].
However, in all of these methods the weights of different
components of a Gaussian mixture are kept constant while
propagating the uncertainty through a nonlinear system and
are updated only in the presence of measurement data. This
assumption is valid if the underlying dynamics is linear or the
system is marginally nonlinear or measurements are precise
and available very frequently. The same is not true for the
general nonlinear case and new estimates of weights are
required for accurate propagation of the state pdf. However,
the existing literature provides no means for adaptation of
the weights of different Gaussian components in the mixture
model during the propagation of state pdf. The lack of adaptive
algorithms for weights of Gaussian mixture are felt to be
serious disadvantages of existing algorithms and provide the
motivation for this paper.

The present paper is concerned with improving the con-
ventional Gaussian sum filter approximation by adapting the
weights of Gaussian mixture model in case of both pure
propagation and measurement update. In the case of pure
propagation, temporally sparse observations, large measure-
ment noise or unobservable systems, a better approximation
to the forecast pdf is obtained if the Gaussian components
weights can be updated, in some optimal way, to account
for the uncertainty propagation between the measurement time
steps [17]. In Refs. [17], [18], two novel methods are discussed
to update the weights corresponding to different components
of the Gaussian mixture model. The first method updates
the weights by constraining the Gaussian sum approximation
to satisfy the Fokker-Planck-Kolmogorov (FPKE) equation
and is appropriate for continuous-time dynamical systems.
The second method updates the forecast weights such that
they minimize the integral square difference between the
true forecast pdf and its Gaussian sum approximation and
is mostly appropriate for discrete-time nonlinear dynamical
systems [17]. In this paper, we will make use of our ear-
lier work on Gaussian sum approximation to improve upon
conventional Gaussian sum filter methods and obtain a better
approximation of a-posteriori pdf. We will present two new
Gaussian sum filters for the nonlinear filtering problem and
the performance of the proposed method will be compared
with the performance of the classical Gaussian Sum Filter and
SMC methods.

The organisation of the paper is as follows: first, the
conventional Gaussian sum filter will be introduced in Section
II followed by the introduction of two new methods to update
the weights of Gaussian sum mixture during the propagation
step. Numerical results are presented in Section V and the
conclusions and future work are discussed in Section VI.

II. CONVENTIONAL GAUSSIAN SUM FILTERS

Consider a general n-dimensional continuous-time noise
driven nonlinear dynamic system with uncertain initial condi-

tions and discrete measurement model, given by the equations:

ẋ(t) = f(t,x(t)) + g(t,x(t))Γ(t) (1)

zk = h(tk, xk) + vk (2)

and a set of k observations, Zk = {zi | i = 1 . . . k}.
We denote, xk = x(tk), Γ(t) represents a Gaussian white

noise process with the correlation function Qδ(tk+1−tk), and
the initial state uncertainty is captured by the pdf p(t0,x0).
The probability density function of the initial condition is
given by the following Gaussian sum,

p(t0, x0) =
N∑

i=1

wi
0N (x0 | µi

0,P
i
0) (3)

where,

N (x | µ,P) = |2πP|−1/2 exp

[
−1

2
(x − µ)T P−1 (x − µ)

]

The random vector vk denotes the measurement noise,
which is temporally uncorrelated, zero-mean random sequence
with known covariance, Rk. The process noise and the mea-
surement noise are uncorrelated with each other and with the
initial condition.

Let us assume that the underlying conditional pdf (forecast
pdf if t > tk or a posteriori pdf if t = tk) can be approximated
by a finite sum of Gaussian pdfs

p̂(t, x(t) | Zk) =
N∑

i=1

wi
t|kpgi

(4)

pgi
= N (x(t) | µi

t|k,Pi
t|k)

where µi
t|k and Pi

t|k represent the conditional mean and co-
variance of the ith component of the Gaussian pdf with respect
to the k measurements, and wi

t|k denotes the amplitude of
ith Gaussian in the mixture. The positivity and normalization
constraint on the mixture pdf, p̂(t, x|Zk), leads to following
constraints on the amplitude vector:

N∑
i=1

wi
t|k = 1, wi

t|k ≥ 0, ∀ t (5)

A Gaussian Sum Filter [12] may be used to propagate
and update the conditional pdf. Since all the components of
the mixture pdf (4) are Gaussian and thus, only estimates of
their mean and covariance need to be propagated between tk
and tk+1 using the conventional Extended Kalman Filter time
update equations:

µ̇i
t|k = f(t, µi

t|k) (6)

Ṗi
t|k = Ai

t|kP
i
t|k + Pi

t|k(Ai
t|k)T + g(t, µi

t|k)QgT (t, µi
t|k) (7)

Ai
t|k =

∂f(t, x(t))

∂x(t)

∣∣∣∣
x(t)=µi

t|k

(8)

wi
t|k = wi

k|k for tk ≤ t ≤ tk+1 (9)



The measurement update is done using Bayes rules:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)∫

p(zk|xk)p(xk|Zk−1)dxk
(10)

While both the state and the covariance matrix are updated
using the Extended Kalman Filter measurement update equa-
tions, the weights are updated using also Bayes rule but under
the assumption that Pi

k+1|k → 0 as is shown in Ref. [3].

µi
k+1|k+1 = µi

k+1|k + Ki
k

(
zk − h(t,µi

k+1|k)
)

(11)

Pi
k+1|k+1 =

(
I − Ki

kH
i
k

)
Pi

k+1|k (12)

Hi
k =

∂h(t, xk)
∂xk

∣∣∣∣
xk=µi

k+1|k

(13)

Ki
k = Pi

k+1|kH
i
k

(
Hi

kP
i
k+1|k(Hi

k)t + Rk

)−1

(14)

wi
k+1|k+1 =

wi
k+1|kβi

k∑N
i=1 wi

k+1|kβi
k

(15)

where

βi
k = N

(
zk − h(t,µi

k+1|k), Hi
kP

i
k+1|k(Hi

k)t + Rk

)
(16)

An optimal state estimate and corresponding error covari-
ance matrix can be obtained by making use of the following
relations:

µt|k =
N∑

i=1

wi
t|kµi

t|k (17)

Pt|k =
N∑

i=1

wi
t|k

[
Pi

t|k + (µi
t|k − µt|k)(µi

t|k − µt|k)T
]

(18)

Notice that it is assumed that weights wi
t|k do not change

between measurement updates. This assumption is valid if
underlying dynamics is linear or the system is marginally
nonlinear. The same is not true for the general nonlinear
case and new estimates of weights are required for accurate
propagation of the state pdf. The reason that the weights are
not changed is because it is assumed that the covariances
are small enough [12] such that the linearizations become
representative for the dynamics around the means. This is
particularly a problem, if the uncertainty in measurement
model is large and measurements are not available frequently.

In practice this assumption may be easily violated resulting
in a poor approximation of the forecast pdf. Practically, the
dynamic system may exhibit strong nonlinearities and the
total number of Gaussian components, needed to represent
the pdf, may be restricted due to computational requirements.
The existing literature provides no means for adaption of
the weights of different Gaussian components in the mixture
model during the propagation of the state pdf. The lack of
adaptive means for updating the weights of Gaussian mixture
are felt to be serious disadvantages of existing algorithms and
provide the motivation for this paper.

III. UPDATE FORECAST WEIGHTS - CONTINUOUS-TIME

NONLINEAR DYNAMICAL SYSTEM

In this section, we summarize a recently developed method
to update the weights of different components of the Gaussian
mixture (4) during propagation. It can be shown that the true
state probability density function, p(t,x(t)|Zk), satisfies the
FPKE (19) between observations [2], which is a second order
partial differential equation in p(t,x(t)|Zk).

∂

∂t
p(t,x|Zk) = LFPp(t,x|Zk) (19)

The main idea is to modify the weights of the approximate
conditional pdf given by Gaussian mixture (4), p̂(t,x|Zk),
such that it satisfies the FPKE (19).

The FPKE error can be used as a feedback to update the
weights of different Gaussian components in the mixture pdf.
In another words, we seek to minimize the FPKE error under
the assumption (4), (6) and (7).

The substitution (4) in (19) leads to

e(t,x) =
∂p̂(t,x|Zk)

∂t
− LFP(p̂(t,x|Zk)) (20)

LFP =


− n∑

i=1

∂D(1)
i (t,x)
∂xi

+
n∑

i=1

n∑
j=1

∂2D(2)
ij (t,x)

∂xi∂xj



(21)

D(1)(t,x) = f(t,x) +
1
2

∂g(t,x)
∂x

Qg(t,x) (22)

D(2)(t,x) =
1
2
g(t,x)QgT(t,x) (23)

where LFP(·) is the so called Fokker-Planck operator, and,

∂p̂(t,x|Zk)

∂t
=

N∑
i=1

wi
t|k


 ∂pgi

∂µi
t|k

T

µ̇i
t|k +

n∑
j=1

n∑
k=1

∂pgi

∂P i,jk
t|k

Ṗ i,jk
t|k


 (24)

where P i,jk
t|k is the jkth element of the ith covariance matrix

Pi
t|k. Further, substitution of (22) and (23) along with (24) in

(21) leads to

e(t,x) =
N∑

i=1

wi
t|kLi(t,x) = LT wt|k (25)

where wt|k is a N × 1 vector of Gaussian weights, and Li is
given by

Li(t,x) =


 ∂pgi

∂µi
t|k

T

f(t,µi
t|k) +

n∑
j=1

n∑
k=1

∂pgi

∂P i,jk
t|k

Ṗ i,jk
t|k

+
n∑

j=1

(
fj(t, x)

∂pgi

∂xj
+ pgi

∂fj(t,x)
∂xj

+
1
2

∂d
(1)
j (t,x)pgi

∂xj
− 1

2

n∑
k=1

∂2d
(2)
jk (t,x)pgi

xjxk

)]
(26)

d(1)(t,x) and d(2)(t,x) are given as:

d(1)(t,x) =
1
2

∂g(t,x)
∂x

Qg(t,x) (27)

d(2)(t,x) =
1
2
g(t,x)QgT (t,x) (28)



Further, different derivatives in the above equation can be
computed using the following analytical formulas:

∂pgi

∂µi
t|k

= (Pi
t|k)−1

(
x − µi

t|k
)

pgi

∂pgi

∂Pi
t|k

=
pgi

2
(Pi

t|k)−1

[(
x − µi

t|k
) (

x − µi
t|k

)T

(Pi
t|k)−1 − I

]
∂pgi

∂x
= −(Pi

t|k)−1
(
x − µi

t|k
)

pgi

∂2pgi

∂xxT
= −(Pi

t|k)−1

[
I +

(
x − µi

t|k
) ∂pgi

∂x

T
]

pgi

Now, at a given time instant, after propagating the mean,
µi

t|k and the covariance, Pi
t|k, of individual Gaussian elements

using (6) and (7), we seek to update weights by minimizing
the FPE equation error over some volume of interest V :

min
wi

t|k

1
2

∫
V

e2(t,x)dx +
N∑

i=1

(wi
t|k − wi

k|k)2 (29)

s.t
N∑

i=1

wi
t|k = 1

wi
t|k ≥ 0, i = 1, · · · , N

Here, the second term in the cost function is introduced to
penalize large variations in the weights between two time
steps. Since, FPKE error (25) is linear in Gaussian weights,
wi

t|k, hence, the aforementioned problem can be written as a
quadratic programming problem as shown in Table I. Where
1N×1 is a vector of ones, 0N×1 is a vector of zeros and L is
given by

L =
∫
V

L(x)LT (x)dx

=




∫
V

L1L1dx
∫
V

L2L1dx · · · ∫
V

LNL1dx∫
V

L1L2dx
∫
V

L2L2dx · · · ∫
V

LNL2dx

...
. . .

...∫
V

L1LN dx
∫
V

L2LN dx · · · ∫
V

LNLN dx




(30)

Notice, to carry out this minimization, we need to evaluate
integrals involving Gaussian pdfs over volume V which can be
computed exactly for polynomial nonlinearity and in general
can be approximated by the Gaussian quadrature method.

The minimization problem will substitute the Eq. (9) when-
ever an estimate has to be computed, even between measure-
ments.

The summary of the Gaussian Sum Filter with forecast
weight update for the continuous-time nonlinear dynamical
systems and discrete measurement model is presented in
Table I.

IV. UPDATE FORECAST WEIGHTS - DISCRETE-TIME

NONLINEAR DYNAMICAL SYSTEM

For discrete-time case, consider the following nonlinear
dynamic system with uncertain initial conditions given by the

Table I
GSF2 - FORECAST WEIGHTS UPDATE METHOD I - CONTINUOUS-TIME

DYNAMICAL SYSTEMS

Continuous-time nonlinear dynamics:

ẋ(t) = f(t,x(t)) + g(t,x(t))Γ(t)

Discrete-time measurement model:

zk = h(tk, xk) + vk

Propagation:

µ̇i
t|k = f(t, µi

t|k)

Ṗi
t|k = Ai

t|kP
i
t|k + Pi

t|k(Ai
t|k)T + g(t, µi

t|k)QgT (t, µi
t|k)

Ai
t|k =

∂f(t,x(t))
∂x(t)

∣∣∣∣
x(t)=µi

t|k

wt|k = arg min
wt|k

1
2
wT

t|kLwt|k + (wt|k − wk|k)T (wt|k − wk|k)

subject to 1T
N×1wt|k = 1

wt|k ≥ 0N×1

Measurement-Update:

µi
k+1|k+1

= µi
k+1|k + Ki

k

(
zk − h(t, µi

k+1|k)
)

Pi
k+1|k+1

=
(
I − Ki

kHi
k

)
Pi

k+1|k

Hi
k =

∂h(t,xk)
∂xk

∣∣∣∣
xk=µi

k+1|k

Ki
k = Pi

k+1|kHi
k

(
Hi

kPi
k+1|k(Hi

k)t + Rk

)−1

wi
k+1|k+1

=
wi

k+1|kβi
k∑N

i=1 wi
k+1|kβi

k

βi
k = N

(
zk − h(t, µi

k+1|k), Hi
kPi

k+1|k(Hi
k)t + Rk

)

Gaussian mixture pdf (3) and discrete measurement model:

xk+1 = f(tk,xk) + ηk (31)

zk = h(tk, xk) + vk (32)

and a set of k observations, Zk = {zi | i = 1 . . . k}. Here
ηk ∼ N (0,Qk) represents the process noise. The same
assumptions on process and measurement noise are made as
in the continuous-time case.

The Gaussian Sum Filter used to propagate the conditional
pdf, p̂(tk,xk|Zk) is very similar with the filter used in
continuous-time case, except the time-update step which is
given by:

µi
k+1|k = f(k,µi

k|k) (33)

Pi
k+1|k = Ai

kP
i
k|k(Ai

k)T + Qk (34)

where Ai
k =

∂f(k, xk)
∂xk

∣∣∣∣
xk=µi

k|k

(35)

wi
k+1|k = wi

k|k (36)

Since the measurement model is also discrete, the same
measurement update step as in the previous section, Eq.(11)-
(15), holds also for discrete-time dynamical systems.



The same argument is made here regarding the forecast
weights, Eq.(36), that are not changed during propagation. A
better approximation of the forecast pdf and a more accurate
estimate may be obtained by updating these weights.

The true conditional pdf, p(tk+1,xk+1|Zk) is given by the
Chapman-Kolmogorov equation:

p(tk+1,xk+1|Zk) =

∫
p(tk+1,xk+1|tk,xk)p(tk,xk|Zk)dxk (37)

The new weights may be obtained in the least square sense
to minimize the following integral square difference between
the true conditional density function and its approximation:

min
wi

k+1|k

1

2

∫ ∣∣p(tk+1, xk+1|Zk) − p̂(tk+1, xk+1|Zk)
∣∣2dxk+1 (38)

s.t.
N∑

i=1

wi
k+1|k = 1

wi
k+1|k ≥ 0, i = 1, · · · , N

Here, no a priori structure is used for the true conditional
density function p(tk+1, xk+1|Zk), it is completely unknown.

The final formulation of the optimization (38) may be posed
in the quadratic programming framework as shown in Table
II and solved using readily available solvers.

This optimization problem will replace Eq.(36). Here 1N×1

is a vector of ones and 0N×1 is a vector of zeros, wk+1|k =
[w1

k+1|k w2
k+1|k . . . wN

k+1|k]T is the vector of forecast weights,
wk|k = [w1

k|k w2
k|k . . . wN

k|k]T is the prior weight vector, and
MN×N is a symmetric matrix given by:

MN×N =
∫

M(xk+1)MT (xk+1)dxk+1 (39)

where M is a N × 1 vector that contains all the propagated
Gaussian components at time k + 1:

M(xk+1) =




N (xk+1 | µ1
k+1|k,P1

k+1|k)
N (xk+1 | µ2

k+1|k,P2
k+1|k)

. . .
N (xk+1 | µN

k+1|k,PN
k+1|k)


 (40)

Thus, the components of matrix M are easily given by the
product rule of two Gaussian density functions which yields
another Gaussian density function. By integrating the product
we are left only with the normalization constant:

mij =
∣∣∣2π(Pi

k+1|k + Pj
k+1|k)

∣∣∣−1/2

exp

[
−1

2
(µi

k+1|k − µj
k+1|k)T

×(Pi
k+1|k + Pj

k+1|k)−1(µi
k+1|k − µj

k+1|k)
]

(41)

mii =
∣∣∣4πPi

k+1|k
∣∣∣−1/2

(42)

Using Chapman-Kolmogorov equation (37), we are able to
derive the following expressions for the elements of matrix
NN×N :

nij =

∫
N (f(tk, xk) | µi

k+1|k,Pi
k+1|k + Qk)

×N (xk | µj
k|k,Pj

k|k) dxk (43)

=EN (xk|µj
k|k,P

j
k|k)

[
N (f(tk, xk)

∣∣µi
k+1|k,Pi

k+1|k + Qk)
]

(44)

Table II
GSF3 - FORECAST WEIGHTS UPDATE METHOD II - DISCRETE-TIME

DYNAMICAL SYSTEMS

Discrete-time nonlinear dynamics:

xk+1 = f(tk,xk) + ηk

Discrete-time measurement model:

zk = h(tk, xk) + vk

Propagation:

µi
k+1|k = f(k, µi

k|k)

Pi
k+1|k = Ai

kPi
k|k(Ai

k)T + Qk

Ai
k =

∂f(k,xk)
∂xk

∣∣∣∣
xk=µi

k|k

wk+1|k = arg min
wk+1|k

1
2

wT
k+1|kMwk+1|k − wT

k+1|kNwk|k

subject to 1T
N×1wk+1|k = 1

wk+1|k ≥ 0N×1

Measurement Update:

µi
k+1|k+1

= µi
k+1|k + Ki

k

(
zk − h(t, µi

k+1|k)
)

Pi
k+1|k+1

=
(
I − Ki

kHi
k

)
Pi

k+1|k

Hi
k =

∂h(t,xk)
∂xk

∣∣∣∣
xk=µi

k+1|k

Ki
k = Pi

k+1|kHi
k

(
Hi

kPi
k+1|k(Hi

k)t + Rk

)−1

wi
k+1|k+1

=
wi

k+1|kβi
k∑N

i=1 wi
k+1|kβi

k

βi
k = N

(
zk − h(t, µi

k+1|k), Hi
kPi

k+1|k(Hi
k)t + Rk

)

The expectations (44) may be computed using Gaussian
Quadrature, Monte Carlo integration or Unscented Trans-
formation [19]. Let the weighted sigma points

{W l
k,X l

k

}
,

where l = 1 . . . L, sample the a posteriori normal dis-
tribution N

(
xk|µj

k|k,Pj
k|k

)
. The transformed sigma points{W l

k,X l
k+1

}
are obtained by using the Unscented Transfor-

mation [19]. Thus we can numerically compute nij using the
following relation:

nij =
L∑

l=1

W l
kN (X l

k+1

∣∣µi
k+1|k,Pi

k+1|k) (45)

While in lower dimensions the unscented transformation is
mostly equivalent with Gaussian quadrature, in higher di-
mensions the unscented transformation is computational more
appealing in evaluating integrals since the number of points
grows only linearly with the number of dimensions. However,
this comes with a loss in accuracy [20], hence the need for a
larger number of points [21] to capture additional information.

In the case of linear transformation, f(tk, ·) = Fk, and by
manipulating Eq.(43), mij = nij , yielding M = N, hence
no change will occur to the weights. However, the numerical



approximations (45) made in computing the expectations (44)
may not give a perfect match between the two matrices,
thus deteriorating the overall results in this case. Hence, such
an update scheme may be recommended only for nonlinear
systems.

The summary of the Gaussian Sum Filter with forecast
weight update for the discrete-time nonlinear dynamical sys-
tems is presented in Table II.

V. NUMERICAL RESULTS

A. Example 1

To evaluate the performance of the forecast weight update
scheme we consider the following continuous-time dynamical
system with uncertain initial condition and discrete measure-
ment model given by (48):

ẋ = sin(x) + Γ(t) where Q = 1 (46)

zk = x2
k + vk where R = 1 (47)

x0 ∼ 0.1N (−0.2, 1) + 0.9N (0.2, 1) (48)

The moments of the two Gaussian components are propa-
gated for eight seconds using (6) and (7), using a sampling
time of ∆t = 0.25 sec and measurements available every
1 sec. Both methods have been applied for this example and
every time step the estimate (17) has been computed and
compared with the truth. The estimates of the two methods
have been compared with the classical Gaussian Sum Filter
using the root mean square error, RMSE - Eq.(49), averaged
over 100 runs. Every run a different truth and afferent mea-
surements have been generated.

RMSE(t) =

√√√√ 1
R

R∑
j=1

(xj
t − µj

t|k)2 (49)

Where xj
t is the true value of the state at time t for the

jth run and R is the total number of runs. In Fig. 2 we have
computed the RMSE for all three methods. It is clear from
this plot that we are able to better estimate the state with the
incorporation of the weight update schemes.

Due to the multimodal nature of the a posteriori pdf, the
RMSE is not an appropriate performance measure to compare
different filters. A Boostrap Particle Filter with 10, 000 parti-
cles, has also been implemented in order to have a proxy for
the true a posteriori pdf. In Fig.1 we can see that by updating
the weights of the Gaussian Sum during propagation we can
better capture the true a posteriori pdf. In addition to this,
log probability of the particles was computed according to the
following relationship:

L =
M∑

j=1

log
N∑

i=1

wiN (xj | µi,Pi) (50)

Here, M is the total number of particles used in the Boostrap
Particle Filter. The higher value of L represents a better pdf
approximation. Fig.3 shows the plot of log probability of
the particles with and without updating the weights of the
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Figure 2. Example 1: RMSE Comparison (avg. over 100 runs)
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Figure 3. Example 1: Log probability of the particles (avg. over 100 runs)

Gaussian mixture. As expected, updating the weights of the
Gaussian mixture leads to higher log probability of the par-
ticles. Hence, we conclude that the adaptation of the weights
during propagation leads to a more accurate a posteriori pdf
approximation than without weight update. Due to the squared
form of the measurement model, and bimodal nature of the
forecast pdf, our measurements are not able to offer sufficient
information to choose one mode of the conditional pdf,
maintaining is bimodal nature. In such situation an accurate
propagation makes the difference in providing better estimates
and a more accurate conditional pdf.

While updating the forecast weights we obtain more accu-
rate estimate of the state, it can be shown [17] that we also
obtain a better conditional density function that agrees with
the bimodal nature of the underlying true pdf, which can be
used in applications that require more than just estimates as
in Eq. (17).
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Figure 1. Example 1: A posteriori pdf comparison for one particular run

B. Example 2

We have also consider the following continuous-time dy-
namical system with uncertain initial condition and discrete
measurement model given by (53):

ẋ = 5x(1 − x2) + Γ(t) where Q = 0.25 (51)

zk = x2
k + vk where R = 0.01 (52)

x0 ∼ 0.1N (−0.5, 2) + 0.9N (0.5, 2) (53)

The moments of the two Gaussian components are prop-
agated for 1 sec using (6) and (7), with a sampling time of
∆t = 0.01 sec and measurements available every 0.1 sec. Both
methods have been applied for this example and every time
step the estimate (17) has been computed and compared with
the truth.

In Fig.4 and Fig.5 we compare the three methods using the
RMSE (49) and log probability of the particles (50) averaged
over 100 runs. As in the previous example, a reduction in the
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Figure 4. Example 2: RMSE Comparison (avg. over 100 runs)
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Figure 5. Example 2: Log probability of the particles (avg. over 100 runs)

error between the estimates and the truth is obtained and we
better capture the a posteriori pdf when the forecast weights
are updated during propagation.

VI. CONCLUSION

Two update schemes for the forecast weights are presented
in order to obtain a better Gaussian sum approximation to the
conditional pdf and a more accurate estimate. The difference
between the two methods comes from the particularities of
their derivations.

The first method updates the forecast weights such that
the approximate conditional pdf, represented by a Gaussian
sum, satisfies the Fokker-Planck equation. Since it deals with
Fokker-Planck equation, the method is used with continuous-
time nonlinear dynamical systems. The second method updates
the weights such that they minimize the integral square differ-
ence between the true conditional probability density function
and its approximation. The method is intended for discrete-
time nonlinear dynamical systems but may be used also for
continuous-time systems using their discrete representation.
Both approaches are applied sequentially and the integrals
used in the convex optimization have compact support and
can be numerically approximated.

Two benchmark problems have been provided to compare
the two methods with the usual procedure of not updating
the weights in the propagation step. The results presented in
this paper serve to illustrate the usefulness of adaptation of
weights corresponding to different components of Gaussian
sum model, providing compelling evidence and a basis for
optimism. A detailed analysis of the convergence of the two
methods is set as future work.

By updating the forecast weights, not only we obtain a
more accurate estimate but also a better approximation to the
conditional probability density function. The update methods
presented are very useful when the measurement model offer
limited or no information in updating the states of the system.
Such situation arise when we are doing pure forecast, the

frequency of the measurements is low, the uncertainty in the
measurements is large or the measurement model is ambigu-
ous, hence incapable of selecting one mode from the condi-
tional probability density function. In these situations, when
the measurements give little or no information in updating our
uncertainty, a more accurate propagation of the conditional pdf
is required.
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