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Abstract: Given a decision process based on the approximatgention recently.
probability density function returned by a data assinovlati Due to the uncertainty accumulation in integrating the
algorithm, an interaction level between the decision mgkimodel, the forecasts of the system become less and lesd usefu
level and the data assimilation level is designed to incajeo for the decision maker. Data Assimilation (DA) offers a way t
the information held by the decision maker into the dateduce the uncertainty by combining measurements provided
assimilation process. Here the information held by thesieai by sensors with model prediction in a Bayesian way [14]. This
maker is a loss function at a decision time which maps the stgives an improved situation assessment for the hindcast and
space onto real numbers which represent the threat asstciabwcast. Unfortunately the forecast, used to evaluaterthe i
with different possible outcomes or states. The new prditabi pact assessment, is still affected by the accuracy of pitityab
density function obtained will address the region of ing&re density function evolution. Even in the hindcast and nowcas
the area in the state space with the highest threat, and wébkes if the sensors provide ambiguous measurements such a
provide overall a better approximation to the true condgio quadratic measurement model, the improvement brought by
probability density function within it. The approximatieised DA may be marginal.
for the probability density function is a Gaussian mixtunel @ For nonlinear systems, the exact description of the transi-
numerical example is presented to illustrate the concept.  tion pdf is provided by a linear partial differential equati
(pde) known as the Fokker Planck Kolmogorov Equation
Keywords: Adaptive Gaussian Sum, Decision Making, Un(FPKE) [12]. Analytical solutions exist only for statioryar
certainty Propagation, Expected Loss, Improved Forecast. pdf and are restricted to a limited class of dynamical sys-
tems [12]. Thus researchers are looking actively at nurakric
: approximations to solve the FPKE [8], [10], generally using
| Introduction the variational formulation of the problem. For discrated
Chemical, Biological, Radiological, and Nuclear (CBRNylynamical systems, solving for the exact solution, which is
incidents are rare events but very consequential, which-mafiven by the Chapman-Kolmogorov Equation (CKE), yields
dates extensive research and operational efforts in rtiitiga the same problems as in the continuous-time case. Several
their outcomes. For such critical applications the acaguiac other techniques exist in the literature to approximateptie
predicting the future evolution of toxic plumes in a timelyevolution, the most popular being Monte Carlo (MC) meth-
fashion represents an important part in the Decision Makeds [5], Gaussian closure [7] (or higher order moment clesur
(DM) toolbox. Based on these forecasts, decisions can be m&djuivalent Linearization [13], Stochastic Averaging [Glaus-
on evacuating cities, sheltering or medical gear deploymesian mixture approximations [1], [6], [16]. Furthermordl a
Such decisions are taken based on a loss function or regiont@fse approaches provide only an approximate descripfion o
interest such as the population density in a given area.  the uncertainty propagation problem by restricting theisoh
Many research projects try to model the atmospheric trarig-a small number of parameters.
port and diffusion of toxic plumes. While inherently stostia All these assumptions employed make the problem tractable
and highly nonlinear, these mathematical models are ableatod computational efficient, which satisfies the requirdmen
capture just a part of the dynamics of the real phenomenaihminimizing decision latency. But the approximation give
and the forward integration yields an uncertain predictidme may be of little use when computing the expected loss, since
decision maker takes actions based on expected loss cainpthie method is not sensitive to the region of interest. Such
using both the predicted uncertainty and the loss functicam example may be given using Monte Carlo approximations
which here maps a region of interest in the state space ioto Gaussian Sum approximations, when the propagated un-
a threat level, such as the population density in a city. Thasrtainty offers no or very little probabilistic support the
the ability to propagate the uncertainty and errors through region of interest. In other words, no particles or Gaussian
the dynamic system is of great importance, and the evolutioomponents are centered in the region of interest, and even
of the probability density function (pdf) has received muctihough the probabilistic support may be infinite, the expéct



loss computed might be underestimated. ﬁad ﬁa;
Methods to deal with such situations have been develope

from risk sensitive filters [3] to risk sensitive particletdits Decision Maker (DM) Decision Maker (DM) L(x4,aq)
[17]. The risk sensitive filters minimize the expected expo L(x4, aq) L(x4, aq) J]
nential of estimation error, controlling this way how much
to weigh the higher-order moments versus the lower-ord ﬁ pta,Xa | Zi) ﬁf’ (taxa | Zy) | OMDA
moments. While weighting more the higher-order moment: o o

. . . Data Assimilation (DA) Data Assimilation (DA)
these methods are not designed to be selectively sensit

to particular regions of interest in the state space. The ris ﬂ ﬂ ﬁ ﬂ ﬁ ﬂ

sensitive particle filter is able to generate more samplélen

region of interest, but at the expense of biasing the prdpos %+  Parems  p(to,Xo) Zg  params p(to, X0)
distribution, thus the particles obtained are biased tde/éne

region of interest. While this method is appropriate forlfauFigure 1. Left figure represents the classic approach tsidecmaking in
detection, it provides a limited output for the decision makthe data assimilation context. The right figure shows theo@sed model.
who is interested in querying the probability density fuoict

for different numerical quantities used in the decisioncess . .
such as the expected loss, the mean or the mode of the pa'he random vectoy; denotes the measurement noise, which
' grtemporally uncorrelated, zero-mean random sequende wit

The present paper is concerned with providing a betllk ianceR. Th . dth t
approximation to the probability density function by inpor NOWN covarancey. 1he process noise and e measuremen
hoise are uncorrelated with each other and with the initial

rating contextual loss information held by the decision ara diti
into the DA process. In this work we use a Gaussian mixtufgnaMton- o » .
We are interested in finding the conditional probability

approximation to the probability density function. We posp _ .
a “non-intrusive” way in computing an approximate pdf tha&iensity functionp(t, x(¢) | Zx). Fort > t;, we get the forecast

addresses the region of interest and it is closer to the tulfie def by igte_zgre?]ting only Eq.lfllforwg\rd,dfit :d ﬁtc]: we are
Non-intrusive refers here to the fact the we do not require%eres'[e in the nowcast or filtered pdf an Kt we

new DA method when incorporating the loss function into th ta_m the hindcast or the- smoqthed pdf. ) o
derivation. Given a state space region of interest at a particular decisi

A progressive selection method is designed to add ndf€: fa, which may be represented adass functionby the
Gaussian components to the initial Gaussian mixture, in &Z&Cision makerL(xq, aq), the expected loss of an actian

suring that probabilistic support is reaching the region &t 9\ven by:

interest at the decision time. The initial weights of the new

Gaussian components are set to zero and they are modified L(aq) = /L(dead)l)(tdvxd|zk)dxd ®3)
when propagated throughout the nonlinear dynamical system

to minimize the error in the FPKE [16]. Therefore if there is Here we will consider only the cases whege> t. Given
any probability density mass in the region of interest itl wippproximate computational methods for the conditional, pdf
be represented by the non-zero weight of the new Gausshitu,Xa|Zx), we are able to obtain an estimate of the expected
components at the decision time. loss and also find the optimal Bayesian decision, if a set of

The problem is stated in Section Il and the Gaussian Sificisions exists.

approximation to the conditional pdf is presented in Sectio .

Ill. The progressive selection of Gaussian components is L(ad) = /L(dead)ﬁ(tdvxﬂzk)dxd (4)
derived in Section IV. An example to illustrate the concept

is given in Section V and the conclusions and future work are ag = arg H;in/L(Xd, ad)p(ta, XalZk)dXa  (5)

discussed in Section VI.
The decision making process in the data assimilation frame-
Il. Problem Statement work is presented in Fig.1(left). Obviously if we have a
. . . . . . egood approximation for the conditional pdf in the region of
Consider a generahk-dimensional continuous-time nois . .
. . . . .. .. . Interest the same can be said for the expected loss. This
driven nonlinear dynamic system with uncertain initial don .~ " . L .
tions and discrete measurement model. aiven by the eqsati sr%tuatlon becomes more dramatic when a large deviatiorisexis
9 y q etween the actual and the estimated conditional pdf in the
x(t) = f(t,x(t)) + 9(t,x(¢))T(t) (1) region of interest. In the case of evaluation of a single
) decision, the algorithm can underestimate the actual éegec
loss, L(aq) < L(aq), misguiding the decision maker with
and a set ok observationsZ, = {z; | i=1...k}. respect to the magnitude of the situation. In the case when a
We denotex;,, = x(tx), I'(t) represents a Gaussian whiteptimal decision has to be chosen, the large differencedssiw
noise process with the correlation functi@d(¢,+1 —t;), and conditional pdfs may result in picking not only a suboptimal
the initial state uncertainty is captured by the pdfo, xo). decision but a very consequential one.

z, = h(ty, Xi) + Vi



While one can derive a new method to approximate theln this paper we will consider only the forecast of the
conditional pdf by including the loss function in the detisa conditional pdf when no measurements are available between
and reduce the difference in the region of interest to bettiie current time and the decision time. A suggestion, on how
approximate the expected loss, it will accomplish this &t thhis can be used in the case when we have observations to
expense of worsening the approximation of the conditiodél passimilate between the current time and the decision time, i
in the rest of the state space. given in Section IV.

This will affect other estimates based on the conditional

pdf, but the expected loss, that may be required in guidieg t . . o
decision process, like the mean of the pdf, the modes of tnlel- ApprOX|mat|0n of the Conditional

pdf, etc. These will be biased towards the region of intere@robabi”ty Density Function

thus misleading the decision maker. . _ . .
In other words, if we call the computation of the expected The nonlinear filtering problem has been extensively stlidie

loss of a given lfjlction aimpact t and the com- and various methods are provided in literature. The Exténde

putation of the moments and other quantities based on mglman Filter (EKF) is historically the first, and still the

conditional pdf assituation assessment, one will require that mo§t W_idely adopted approach to solve the nor}Iinear state
both to be as accurate as possible. At the limit, if we caﬁ’?‘t'mat'on problem. It IS based on the assumption that the
compute exactly the conditional pdf we obtain bathpact nonlinear system dynamics can be accurately modeled by a

assessment and situation assessment since we can quantify first-order Taylor series expansion [4]. Since the EKF dlesi

exactly the probability of all the outcomes us only with a rough approximation to the a posteriori pdf and

Since the decision maker holds important information r&2

garding the use of the conditional pdf obtained from the da%pens_ive, researqhers_ have been looking for mathemigtical
convenient approximations.

assimilation method, we can incorporate this information | ) ) ) )
In Ref. [1], a weighted sum of Gaussian density functions

the data assimilation process in a non-intrusive mannenédo ) o
have to derive a new method), by supplementing the inputs ihias been proposed to approximate the conditional pdf. The

the data assimilation module. The proposed method is shoigPaPility density function of the initial condition isgin

in Fig.1(right), where a new interaction level is introddcePY the following Gaussian sum,

between the decision maker and the data assimilation, sest u N

the contextual information provided by the decision maker i i pi

to supplement the inputs oprA / Chan}g;e the environment in plto,%o) = ZwON(XO | 15, Po) ®

which DA is running. 1 1 o
Therefore we want to find an approximation to the condi- N(X|p, P) = [27P| / exp {—5 (x—p) P (x—p)

tional pdf,p*(t4, X4|Z1), that addresses the interest held by the

decision maker and provides both a better impact and siuati et us assume that the underlying conditional pdf can be

assessment thaitta, Xs|Zx). These objectives can be capturegpproximated by a finite sum of Gaussian pdfs
by the following two relations:

=1

N
/ [D(tas Xa|Zi) — P (tas XalZe)|*dxa < BEX() | Zi) = 3 wip NX() | i Pi) — (9)
=1
Pg;
/’p(td7xd|zk) _ﬁ(td7xd|zk)’2dxd (6)
.. . whereg;, andPj;, represent the conditional mean and covari-
L*(aq) = L(ad)‘ < |Llad) - L(ad)‘ () ance of theit component of the Gaussian pdf with respect
In the . : . . t(? the &k measurements, and;, denotes the amplitude of
present paper, we will design an interaction leve |

T, o ) e o
between the decision maker and the data assimilation module Gaussian in the mixture. The positivity and normalization

that approximates the conditional pdf using a Gaussian mp@nstraint on the mixture pdfi(t,x|Zy), leads to following
ture. The interaction level is adding new Gaussian compisnefionstraints on the amplitude vector:

to the initial uncertainty, such that they will be positicheear N

the region of interest at the decision time. Their initialigies sz =1 wi, >0, Vit (10)

will be set to zero, thus the initial uncertainty is not chadg p ! Ik =

but the evolution of the weights is dictated by the error in

the Fokker-Planck equation. Thus if any probability dgnsit A Gaussian Sum Filter [1] may be used to propagate and
mass is moving naturally towards the region of interest, thipdate the conditional pdf. Since all the components of the
weights of the new Gaussian components will become greateixture pdf (9) are Gaussian and thus, only estimates of
than zero. Therefore the method will just make sure thattlieir mean and covariance need to be propagated bettyeen
there is any probability density mass in the region of irdereand¢,; using the conventional Extended Kalman Filter time
it will be found by the data assimilation method. update equations:



positive, finite everywhere and it is able to distinguish the
v — important states from the unimportant ones. For simplittity
B = Tt pigr) (11) : L . )
PR i o loss function used in this work has the following form:
Pk = AtPie + Pyr(Ate)” + 9, pen)Q9” (, pyy)  (12)
Ai\k = M (13) L(Xd, ad) = N(Xd | K, EL) (16)
OX(t)  wy=ni,

In Ref. [16] an update method of adapting the weights of Observe that even with a better approximation of the
different Gaussian components during propagation is givé¢ights of different Gaussian components, these compsnent
based on minimizing the error in the Fokker-Planck equatidi@y drift away from the loss function due to first order Taylor
for continuous dynamical systems, and on minimizing trReries uncertainty propagation and limited informatiorttia
integral square difference between the true forecast peing Measurement update, situation which may be avoided if the
by the Chapman-Kolmogorov equations and its Gaussian s@@pditional pdf can be found in an exact way.
approximation in the discrete time dynamical systems. Due to the approximations used in propagating the con-

The new weights are given by the solution of the followingitional pdf it may happen that no or very little probability
quadratic programing problem: density mass exists in the region of interest at the decision

1, time, depicted here by the loss function. Thus the expected
W, =arg min §Wt‘k(L + Dwyp — Wakw,ﬂk (14) loss will be significantly underestimated, misguiding thisy

- T the decision maker.
subject to 1y, Wy, =1

Wik > Onx1 o o
wherew,;, € RY*1 is a vector of Gaussian weights, and thLV' DeCI.SIOI’l Maker - Data Assmilation
elements ol € RV*N are given by: Interaction L evel

L.— [ ¢¢dx (15) The iterative method proposed here, is adding a set of
E B Gaussian components to the initial pdf that are sensitive to
14

the loss function at the decision time. After propagatibese

Ay, T . non g ik Gaussian components will be located near the center of suppo
Li(t,x) = ol f(t, pyp) + Z Pt Py of the loss function at the decision time. Initially the wieig of
tlk j=lk=1""tk these components are set to zero, and they will be updated in
n Py, of;(t,x) the propagation step if any probability density mass is mgvi
+Z fi(t,%) oz; + Py or; in their direction. The weights at the decision time will giv
j=1

: their relative contributions in computing the expected laith
1 8d§1)(t,x)pgi 1 <& 82d§.i) (t,X)pg, respect to the entire conditional pdf.

+§ ox; 9 ; Ty An algorithm that bears similarity to the simulated annegli
- and the progressive correction used in particle filters,[isl]

dV (¢, x) = lm t, X proposed in selecting the initial Gaussian components.
(t,X) o Q9L X)
% x The main idea is to select a set of Gaussian components
d® (t,x) = ig(t,x)QgT(t,x) initially, propagate each one of them using the time update

equations in the Extended Kalman Filter until the decision
E?me is reached and based on their contributions to the ¢sgec
loss, select their means and variances in the initial Gistion

Notice, to carry out this minimization, we need to evalua
integrals involving Gaussian pdfs over voluiienvhich can be
computed exa(_:tly for polynomial nqnlmeanty and in geier uch that after propagation the expected loss is maximized.
can be approximated by the Gaussian quadrature method. - . _

The measurement update is done using Bayes rule, wh rl?et the initial pdf be given by)(to,xo)_ asa Ga“.ss'ar.‘ sum,
the state and the covariance matrix are updated using %8‘ Compute the mean and the variance of this mixture.
Extended Kalman Filter measurement update equations, and N
the weights are updated as it is shown in Ref. [2]. The _ i
equations can be found in Ref. [15]. Ho = ;wouo ()

By updating the forecast weights, not only can we obtain N
a more a_u;curate estimgte but glso a b_etter appro_ximation to Py = Zwé [Pé (= o) () — MO)T} (18)
the conditional probability density function [15]. This ight =1
update method during uncertainty propagation is very uisefu
when the measurement model offer limited or no information Assume that we want to add anoth&f new Gaussian
in updating the states of the system. components to the initial pdf with zero weights and sensitiv

The estimated conditional pdf is used to compute the the loss function. We sample the means of these Gaussian
expected loss. We require that the loss function provideddsmponents from the initial distribution such that theinally



weighted sum gives the mean in Eq.17. After a few mathematical manipulations, Eq.26 can be
written in the following format:

wi ~p(to,%g) fori=1...M—1 (29)
M-1 Tr|K 'S (al + P2 —USHKTIEL | =0 (27)
pur = Mpg — Z i (20) !
=1 DenoteA = K™'S, andB = al + P]"**=;" —Ux; .

The default covariance of the Gaussian componersWe Observe that forr > 0 the matrixA is symmetric and positive
want to find the new covariand®” such that the covariancedefinite.
of the new Gaussian components matches the covariance dfemma: If Tr[ABA] = 0 andA is symmetric and positive
the initial pdf. LetD* = vD. Thus we want to findy such definite thenTr[B] = 0.
that we minimize the following expression: Proof: Let A = VSV’ be a singular value decompo-
LM sition of matrixA, whereV is a unitary matrix ands is a
Jy=Tr [Po i Z; (WD + (i — po)(pi — HO)T)] (21) %&Eg%r&a}g\?&xf]?%r[zggfan now be writtenBsABA]
. - LM If Tr[S*B] = 0 the2n S’B is a commutator. Thus2 there is
- o T X andY such thatS'B = XY — YX. But B = S°XY —
"= {PO M ;(’“ #o) (ki = pro) ] 2 S2yx — X*Y — YX*, whereX* — § 2X. ThereforeB is
also a commutator, hencg[B] = 0.

Only solutionsy > 0 are accepted. Otherwise we repeat Applying the previous lemma to Eq.27 we get
the sampling of the means, Eq. 19. Once we have the initial

Gaussian sum components we propagate them using the time Tr[al 4 prazy—l UE_I} —0 (28)
update equations in the Extended Kalman Filter until we ta L L

reach the decision time. Let; andP; be their means and Therefore we accept solutions > 1 that satisfy the
covariances. The Gaussian components will then be Weighf@ﬁ’owing relation

based on their contribution to the expected loss. A larger

contribution means a more sensitive component to the loss o = lTr{(U _ Pmam)z—l] (29)
function, thus a larger weight. n e L

To be able to compute the weights of the Gaussian com+For o < 1 we stop the algorithm. Otherwise we continue

ponents, make sure that all of them are fairly weighted ag@tting the weights of the Gaussian components by solving
we are not running into numerical problems and also creaf following optimization problem:

an indicator to mark the end of the algorithm, we compute an 1
inflation coefficient for the loss function. L& = aX; be w=argmin -w'Mw —w’N (30)
the inflated covariance of the loss function. v 2 .

The inflation coefficienty is found such that the expected subject to 1j;,,w =1 (31)
loss computed using the most distant Gaussian component W > Onrx (32)
from the loss function is maximized. Let the mean and th

: ; wherew € RM*1 M ¢ RM*M gandN € RM*! and their
covariance of the most distant component be denotea;i* . € x ) < €

o . entries are given by:
andP; *" respectively.

mij = N{Nido

R I } 33
Jmaz = /N(Xd|NL,a2L)N(Xd|N;ZMaPgaz)dXd Hualo tal0 tal0 (33)

— Nlup | uer, a3, + Ppee) 23) =

ta

b Pt 22} (34)

An equivalent way to seek is by minimizing the negative  The new pdf used to sample the new means is given by:
log of the above expectation.

M
Jmin = log[det(aXp + P*")] + Pnew(to, Xo) = ZN(XO | i, D) (35)
-1 i=1
(r — pe)" (aEL + PQ’;‘”) (kr —p2*") (24)  Where3 < 1 is a coefficient that controls the decrease
of the initial variance. Ifa has decreased from the previous

Let us denoteK = aX; + P/** and U = (u; — iteration this means that the Gaussian components aregetti
o) (pp — pie*)’. We seeka > 0 such that closer to the loss function and therefore we can decrease the
variance of the initial distribution to finely tune the paait
0Jmin -0 (25) of the Gaussian components, otherwise= 1. We continue
dox to sample new means from the new pdf until< 1 or the
Tr [K—lzL _ K‘1UK‘12L] -0 (26) Maximum number of time steps has been reached. The entire
algorithm is presented in Table 1.



Algorithm 1 Progressive Selection of Gaussian Componenssimilated and the a posteriori pdf has been found. The

Require: t4 - decision time

p(to, Xo) - initial probability density function
M - number of extra Gaussian components
D - Gaussian component covariance

wyol - add only Gaussian components with weights greater|n the case of multiple loss functions, the algorithm is run
than this threshold

L(x) - loss functionN{x|ur, X}

1: po = p(to,Xo), @ =00, v = —1
2: while (o > 1) & maxiter do

3:  Compute the mean and the covariance of the initial pdf
N i,,0
Bo =24 Wo kg _ _
Po = >0 wh [Po + (ke — o) (kG — p10)" ]
4:  while (v < 0) do
5: Get the means of the Gaussian components
Draw p; ~ p(to,Xo) fori=1...M —1
Setpy = Mpo — Zi]\ifl i
M
6: v = Tr—tD]Tr[Po — 7 > (i — po)(pi — po)”
7 end while
8.  Get the covariance of the Gaussian components
0=1D
9: Propagate the moments from= 0 to ¢t = ¢4
/1;5|0 =f(t, N,Zg|o)
Pijo = AtjoPijo + Pijo(Ajjo)" +9Qg"
10. Get the most distant component
by computing the Mahanalobis distance
= (s~ o) (Phao +31) (= )
NZLTSE , P;Z%”_: argmax(di)_ _
11:  Compute optimak and the inflated matrix.;,
a= 1T L((u;:“;—um(ugfg—m)if— ?;?&”)Eﬁ}
122 ifa<1lthen a=1end if
¥ =a¥g
13:  Compute the elements /M € RM>*M gandN ¢ RM*1
M :N{“idm ’ Nid\o ) PidIO + P'Zd\o
ni =N 1235 Hidm ) Pid\o + 22}
14:  Compute the weights
W = arg min %WTI\/IW —w”N
w
subject to 1%, ,w=1
W Z 0M>.<1 )
15 Setpy = 310, wiN{X|ph, BP}
16: end while

17: Setpnew(to, Xo) = p(to, Xo) +

ZALU}]‘ >Wrol O % ,/\/{X“J,%, P‘é}

J=1

18: return pnew(to, Xo)

drawback of this procedure is that the number of Gaussian
components will increase linearly with the number of mea-
surements. Better ways to deal with the measurement updates
are set as future work.

once for each one of the loss functions, creating sets a&linit
Gaussian components sensitive to their loss function.

V. Numerical Results

To illustrate the concept of incorporating contextual mfo
mation into the uncertainty propagation algorithm, we od&is
the following continuous-time dynamical system with uncer
tain initial condition given by (36):

& = sin(z) + T'(¢)
20 ~ N(=0.3,0.3%)

where Q=1 (36)

The state space region of interest is depicted by the follow-
ing loss function, and the time of decision istgt= 8 sec.

L(z) = N(z | g . 0.12) (37)

First we compute an accurate numerical solution based on
the FPKE, and this will stand as the true probability density
function. The performance measures for this method will be
labeled as TRUTH. The evolution of the pdf using this method
can be seen in Fig.2a.

Three other approximations for the pdf are provided includ-
ing the method presented in this paper. The first approxamati
propagates the initial uncertainty using the first orderldiay
expansion, Eq.(11) and Eq.(12), also known as the Extended
Kalman Filter time update equations, labeled later as EKE. T
evolution of the pdf for this method is presented in Fig.2b.

For the next approximation method, we add another
Gaussian components to the initial one, creating this way
a Gaussian mixture witl6 components. The means of the
new components are just the result of back propagation (from
tq = 8 sec tot, = 0 sec) of5 equidistant samples taken in the
3 sigma bound of the loss function support. The variance of
the new components is set 101° and their initial weights
are set to zero. The label used for this method is BXXK
and the evolution of the pdf is shown in Fig.2c. While all the
means of the new Gaussian components are positioned in the
loss function support region, their variances are very gpein
difficult to see the probability density mass in that region.

We apply the method presented in this paper to generate at
most5 new Gaussian components to be added to the initial
condition. Their means and variances are returned by the
progressive selection algorithm, Alg.The initial weights of
the new Gaussian components have also been set to zero.

While not the scope of this paper, the above method c@ihe default value for the? coefficient is0.9 and Gaussian
also be applied when measurements are available betweencttraponents are included only if their weights are greatan th
current time and the decision time. The progressive selectiw,,; = 10~3. The label used for this method is G3EC and
algorithm will be applied every time a measurement has bes corresponding pdf is presented in Fig.2d.
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time (sec) 0 -10 time (sec) 0 -10

(a) TRUTH: Numerical approximation FPKE (b) EKEF: first order Taylor expansion approximation

time (sec) 0 -10 x time (sec) 0 -10 X
(c) GS BCK: back propagated means (d) GS DEC: progressive selection of Gaussian compo-
nents

Figure 2. Probability density function evolution

The evolution the Gaussian components for the last two

methods is also achieved using the first-order Taylor expan- 1.2} | GS_DEC k]

. . . . . 1
sion, but it is interrupted everAt = 0.5 sec to adjust the '='='TRUTH n
weights of different Gaussian components using the opéimiz 1 e TN
tion in Eq.(14). ~ — EKF "

The following performance measures have been computed 3 %8 "
for the methods used in the experiment: ﬁ 06 't
I Aeln ]
= !
Le = /L(x)ﬁ(td7fcd)dmd (38) * o4t o
: P
~ 1 ~ ]
Rery = - |La=La (39) 0.2 ' l-
1 \{\“‘ “
I1SD = / ‘p(td7icd) —ﬁ(td7icd)’2d$d (40) 0 o Ler ~5'
X
WISD = /L(x)\p(td,xd) — p(ta, za)|*dza  (42)

Figure 3. Probability density function &t = 8 sec
In Fig.3 it is plotted the forecast pdf at timg for all the
methods. Our method, GBEC, is able to better estimate the
probability density mass in the region of interest. Monte Carlo runs. The expected loss given by the BISC
In Table I, we present the performance measures aftér method is consistently better approximated over all the tdon
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Figure 4. The evolution of the pdf used to sample the meaniseoaussian
components

Carlo runs than the EKF and the GBCK method. We also

The progressive selection algorithm is run once at the be-
ginning of the simulation to supplement the initial uncertya
with new Gaussian components that are sensitive to the loss
function at the decision time. The weights of all the Gaussia
components are then updated during the propagation based on
the Fokker Planck Equation. This way we obtain not only a
better approximation of the probability density functionthe
region of interest but also a better approximation overall.

The cost of this overall improvement is an increase in the
number of Gaussian components. The principal benefit is not
the modest increase in accuracy overall, but the significant
enhanced accuracy within the decision maker's region of
interest.
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