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Abstract— This paper applies an optimal control approach
to an hydraulic system. An approach is proposed to use an
open-loop control on the model of a real hydraulic system.
The approach uses a feedback control, to create a closed-loop
control. The results of this approach are tested against different
linear controls applied to the hydraulic system. The paper shows
that the proposed approach can be used on oscillatory and also
on systems, where the system dynamics are not exactly known.

I. INTRODUCTION

In the past different algorithms have been developed to de-
sign optimal control inputs for nonlinear systems. The COPS
3.0 paper [6] from the Argonne National Laboratory gives an
overview over some of these algorithms. Singh and Singla
[10] have introduced an algorithm using a Sequential Linear
Programming (SLP) approach to calculate optimal control
profiles. Singh et al. [9] and Verlohren [11] have introduced
an extension to this approach. All those algorithms only have
been tested on theoretic systems. This paper will extend the
prior test and apply the SLP approach to a verified model
of a nonlinear-hydraulic system. Since the SLP Algorithm
creates an open-loop control, an adjustment is going to be
applied to create a closed-loop control. This will allow to
apply the open-loop control even if the system specifications
have been changed. These results will be compared with a
linear control design discussed and applied in the thesis of
Janda [3].

II. BASICS

The following chapter will give an introduction into the
hydraulic system and its properties. The control design done
by Janda [3] will be shortly discussed. Furthermore this
section will give a brief introduction into the Time Optimal
Control design using the SLP algorithm discussed in [10],
[9] and [11]. In the end of this chapter the idea behind the
transformation from a feed-forward control to a closed-loop
control will be introduced. In sections II-B and II-C the
control designs will be discussed shortly.

A. Hydraulic System

Hydraulic systems are widely used in the industry. Their
advantage is that they can be used to apply large forces. As
examples industrial robots or presses can be named. The here
observed system will be used as an example for such system.
This section will use the dissertation from Münchhof [7] as
basis to describe the analyzed hydraulic system.

A swash plate axial piston pump is used to suck the
hydraulic oil out of the storage tank. The oil is then pumped
through supply lines and connected to a proportional valve
and a differential cylinder which act as a servo axis. As a
mechanical load a spring supported by a carriage is used.
The valve spool position of the proportional valve is used
as the input and the position of the mechanical load is the
measured output.

Figure 1 shows a more mathematical scheme of the
hydraulic system. In the top left of Fig. 1 the numerical
control input yCom is shown. The mechanical load is shown
on the right side of Fig. 1. Münchhof [7] determined and
verified the model given in equations (1)-(3).

(V0A +AAy(t))
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. . .
(
V̇A(pA,pP ,T ,yv)− V̇AB(pA,pB,T )

)
(1)

V̇AB(pA,pB,T ) = αDA

√
2

p(p,T )
· . . .

. . . ·
√
|pA(t)− pB(t)|sign(pA(t)− pB(t)) (2)

V̇AB(pA,pB,T ) = GAB(T )(pA(t)− pB(t)) (3)

B. Linear Control

The standard controls in practical applications are typically
linear controls, such as P-,PI- or PID-controls. This section
will give a brief overview of the work done by Janda [3].
One goal of this thesis was to create optimal linear P- and
PI-controls for the nonlinear hydraulic system. To determine
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Fig. 1. Scheme of the hydraulic system [7]

TABLE I

PERFORMANCE INDICES [1]

Name Definition Overshoot Transient Time

IAE
∫ |e(t)|dt medium medium

ITAE
∫ |e(t)|tdt small large

ISE
∫
e2(t)dt large small

the optimality, different performance indices, listed in Table
I were being used.

As an approach to establish optimal P- and PI-controls a
series of simulations based on the nonlinear system were
carried out with varying control parameters. Based on a
performance index, here the IAE was chosen, the control
parameters were determined. For a P-control this is a 1-D
search. For a PI-control this is, because of the two control
parameters, a 2-D search. In section III-A this approach will
be used to determine the required control parameters.

C. Optimal Control

Optimal control has the objective to find a control profile
which causes a system to satisfy certain constraints and
maximize or minimize a certain performance index. For
example one might want to find an optimal control to move a
nonlinear two mass spring system from one state into another
as fast as possible.[8]

This paper only deals with time optimal control problems.
The considered performance index is given by

J =

∫ tf

t0

dt = tf − t0. (4)

A way to solve this problem using SLP will be shown in
section II-D.

D. Time Optimal control using SLP

The SLP algorithm uses a bisection approach combined
with an LP formulation to create an optimal control profile.

The system model which is consulted in this work is

ẋ(t) = f(x(t),u(t)) (5)

y(t) = g(x(t),u(t)) (6)

which represents the dynamic behavior of linear or nonlinear
dynamic systems. The form of the linear programming
problem (7) - (9) suggests that the system equations have
to be transformed in such a way that they fit the required
form. To do so the system has to be approximated as a
linear discrete-time system, which will be done by using a
stepwise linearization approach. The following section is a
short summary of the paper from Singh and Singla [10],
which introduces sequential linear programming (SLP) to
solve optimal control problems for nonlinear systems.

1) Linear Programming: Linear programming (LP) is
used to maximize (minimize) a given linear equation (7)
under certain constraints. An LP is for example used to
maximize production in a factory. In those cases the LP is
used to maximize (minimize) the objective function, which
represents costs and revenue of products subject to certain
restrictions.

The general form of a LP problem can be written as

max cT x (7)

s.t. A x ≤ B (8)

Aeq x = Beq. (9)

2) The Bisection Algorithm: The proposed algorithm only
checks for feasibility of the LP problem. The actual optimiza-
tion is done by the Bisection Algorithm. A lower bound tLf
and an upper bound tUf for the cost function are guessed.
The Bisection Algorithm will find the smallest value tf for
the cost function which yields a feasible solution for the LP
problem, which fulfills the required tolerance.

3) Time Optimal Control: For the time optimal control
the Bisection Algorithm follows the outline of Fig. 2. The
starting value for tf is guessed as the middle between the
lower and the upper bound

tf =
tLf + tLf

2
.

If the difference between the lower bound tLf and the upper
bound tUf is smaller than a specified tolerance ε the system
will be discretized with N samples over the time interval
[0 tf ]. Based on the new discrete system, the LP problem
is stated. This process is described in [10]. This new LP
problem will be solved under the given constraints. If the
resulting LP problem is feasible, the upper bound is changed
to

tUf = tf . (10)

If the problem is infeasible the lower bound will be changed
to

tLf = tf . (11)
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Fig. 2. Time optimal bisection algorithm [10]
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Fig. 3. Block diagram of feedback control transition

This process continues until either the tolerances are fulfilled,
the maximum number of iterations are exceeded or the LP
solver doesn’t find a feasible solution. The papers by Singh
et al. [9], [10] explain how the actual LP problem is stated.

E. From Open-Loop to Closed-Loop Control

An Optimal Control designed using the SLP algorithm
results in an feedforward control. Because of the open-loop
character of the control the actual behavior of the system
is not taken into consideration. Especially if the model of
the system is not exact or the parameters of the system
have changed or vary an open-loop control will not take this
into account. Therefore a transformation into a closed-loop
control has been developed. The resulting block diagram is
shown in Fig. 3. As an input signal the input profile designed
with the SLP algorithm is used. This input signal is used to
actuate the real system as well as a Simulink model, based
on the assumed system dynamics and parameters. Because
of the probable difference between the model and the real
system a control is introduced which will compensate this
difference.

This approach will be tested and discussed in section IV.

TABLE II

P-CONTROL: KP,opt NUMERICAL OPTIMIZED CONTROL PARAMETER [3]

m [kg] KP,opt

[
1
m

]

53 100
100 90
225 75
500 50
750 45
1000 40

TABLE III

PI-CONTROL: Kx NUMERICAL OPTIMIZED CONTROL PARAMETERS [3]

m [kg] KP,opt

[
1
m

]
KI,opt

[
1

ms

]

53 170 2900
100 160 2800
225 120 2200
500 55 700
750 45 500
1000 40 400

Different simulations will be run with varying parameters.
These results will then be compared to a standard linear
control approach.

III. APPLIED CONTROL DESIGN

The following section will give a short overview over the
design process of the different used controls. First it starts
off by stating the results of the linear control. Then a more
detailed description of the process of finding a time optimal
control profile will be given and in the end of the chapter
the process of designing the feedback control will be stated.

A. Applied Linear Control

As described in section II-B a P- and a PI-control will be
designed for the nonlinear hydraulic system. To determine
the control parameters a series of simulations has been done
by Janda [3]. A brief overview over the results will be given
at this point.

For the P-control a 1-D search has been used to determine
the optimal control parameter, based on the IAE performance
index. This search has been done for different mass loads.
The resulting control parameters are given in Table II.

To determine the optimal control parameters for the PI-
control a 2-D search has to be done. Again the search
has been done with different mass loads. The 2-D search
process is shown in Fig. 4. The figure displays the IAE
performance index for a mass load of 53kg. The minimum
of this functions determines the optimal control parameters
for the PI-control. For different mass the resulting control
parameters are displayed in Table III.

B. Applied Time Optimal Control

In contrast to the section above, the SLP algorithm does
not only provide contoller parameters, but designs an actual
input profile. This input profile can be used to transform
the discussed system from one state into another. The paper
assumes the initial state

x0 =
[
0, 0, 0, 0.15, 0, 20 · 105, 20 · 105] , (12)
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Fig. 4. Meshgrid of the PI-control parameters for m = 53 kg [3]
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where

x = [yv, ẏv, ÿv, yk, ẏk, pA, pB] .

For the final state only the position yk and the velocity ẏk
is important, with xf = [yk,f , ẏk,f ].

xf = [0.15, 0] (13)

As a mass for the hydraulic system m = 500kg is chosen.
After running the SLP algorithm with N = 601. N being

the number of samples and the number of points of the input
profile. As an upper bound for the optimal time 0.5sec is
chosen. The algorithm returns the input profile shown in
Figure 5.

Since the SLP algorithm is a numerical approach, the
typical problems associated with numerical algorithms have
occurred during the calculation. It was especially hard to find
the right combination of an upper bound for the optimal time
and a good starting profile as well as the scaling factor α.
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Fig. 6. Modified feedback block diagram

This problem has already been discussed in the thesis by
Verlohren [11]. In contrast to earlier calculations this time a
numerical model is solved by using a fixed step integration.
The fixed step integration requires a large number of samples
and the algorithm to calculate the equality matrices in
the SLP can only be used with a fairly small number of
samples, because otherwise the calculation time increases
exponentially. Therefore to be able to use this model two
different time scales were used in the SLP algorithm: A
rougher timescale is used to calculate the equality matrices,
while a more detailed timescale is used to calculate the states
using the Simulink model.

As usual for numerical calculation the exact required
position will not be reached. The error tolerance was set
to 10−3. For the calculation it seemed to be more important
to get a higher accuracy on the position than on the velocity.
Since the final state vector consisted of a position and a
velocity, a scaling factor [100; 0.1] was used to increase the
sensitivity. In this case the error on the position is increased
and the error on the velocity is decreased. To compensate
any possible differences in the position, an adjustment will
be made to the feedback control scheme shown in Fig. 3.

C. Applied Feedback Control

Just using the input profile calculated above would create
an open-loop control. The problem of an open-loop control
is, that if the system changes its behavior or different initial
and final states are used, it might not be usable because the
behavior of the system is different. One way to adjust to
this problem is to create a feedback control. This feedback
control was introduced in sect. II-E.

Since the input profile created in section III-B doesn’t
exactly reach the desired final state xf a modification is done
on the block diagram from Fig. 3 which is shown in Fig. 6.
This block diagram includes a switch logic in the lower right
hand corner which forces the real system to reach the exact
final position yk,f .

The feedback control had to be designed. Since nor-
mal control theory approaches from standard control theory
books like [4], [5] do not work, a different approach has
to be taken. Similar to the optimal search done for the
optimal linear control. The control parameters were chosen
to minimize the MSE. In this process a PI-control with the
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Fig. 7. Position of the load of the hydraulic system

following parameters have been established.

KP = 40 KI = 2000 (14)

IV. COMPARING THE TWO CONTROL DESIGNS

This section compares the results between the different
control designs. It will start off by comparing the results for
the system earlier defined in sect. II-A. After this compar-
ison the controls will be tested on a system with different
parameters.

A. Comparing with the defined system

The controls have been designed in section II-A for the
described hydraulic system with a mass load of 500kg.
Hydraulic systems are normally used to actuate high masses
[2]. Another reason for this relatively high load is, that the
system reacts highly oscillatory and the advantage of the
optimal control input profile comes more into effect.

The P- and the PI-controls are simulated using a standard
feedback control. For the time optimal input profile the
modified feedback control block diagram, shown in Fig. 6 is
used.

Figure 7 shows the position of the load using the different
controls. It can be observed, that the PI-control shows a
high overshoot, while the P-control oscillates around the
final position. The time optimal input profile reaches the
final position and then only shows a very small overshoot of
less than 0.1%. Figure 8 shows the position, the difference
e between the model and the actual system and the input
profile of the hydraulic system for the optimal control. The
difference e plot shows, that at approximately 0.21sec the
time optimal control profile ends and the feedback control
compensates the difference between the position reached
with the optimal control profile and the desired final position
yk,f . The peak in the difference e plot shows, that the state
reached by the optimal control input profile is 10−4 off from
the desired final position.
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Fig. 8. Position, difference e and input using the time optimal control
profile

Observing the results shown in Figure 7 the time optimal
control combined with the feedback control seems to be the
better control for the observed system. Before this conclusion
can be truly made, a more detailed analysis has to be done.
Since one of the major problems with time optimal control
is, that it has specified assumptions for the system in terms
of parameters, but also initial and final position needs to
be assumed, it has to be analyzed how changes on those
assumptions effect the quality of the control. These effects
will be studied in section IV-B.

In comparison to an Optimal Control designed using an
LQR approach, no choice for the weight matrix is needed.
Also the limitation of the control input can only be incorpo-
rated with the R-matrix. Therefore the LQR approach is not
analysed.

B. Comparing with varying systems

To get a feeling of the robustness of the time optimal
control, this section will analyze how the system reacts if
the specified assumptions of the system are changed. First
the mass will be varied and after that the initial and final
position will be altered.

1) Varying the mass: To analyze how the hydraulic system
reacts on a change of the mass. The mass will vary between
250kg − 750kg. To be able to compare the controls the
performance index ITAE shown in Table I is being used.
The results are shown in Fig. 9. These results show, that
even for a varying mass the optimal control produces the
best results.

2) Varying the initial position: As a further test the initial
and final position will be altered. To be able to compare the
results the step size between the initial and the final state will
be kept constant with the original step size of 0.01. Figure 10
compares the result for an initial position yk,0 = 0.1 and a
final position yk,f = 0.11 and Fig. 11 for an initial position
yk,0 = 0.2 and a final position yk,f = 0.21. Both figures
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Fig. 9. Performance index for the three control designs for varying mass
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Fig. 10. Position for yk,0 = 0.1 and yk,f = 0.11 using different controls

show that even the initial positions have been changed the
time optimal control still shows less overshoot compared to
the PI-control and less oscillation compared to the P-control.

V. CONCLUSION

It can be said, that the proposed approach to use an optimal
control design using an SLP approach with a feedback trans-
formation can be used on systems, if the system dynamics
and parameters are not exact. Even if the mass of the systems
is varied by ±50% the designed optimal control input profile
still was usable. One of the goals of this paper was to
test the approach on a real system. The existing hydraulic
system is currently not able to handle such high masses as
500kg. Testing the approach using a smaller mass such as the
existing 53kg will not give the desired results, because the
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Fig. 11. Position for yk,0 = 0.2 and yk,f = 0.21 using different controls

system is not oscillating and therefore the advantage of the
optimal control profile will not come that much into effect.

To further extend the SLP algorithm and make it more
practicable some recoding can be done to transform the code
to a more efficient programming language such as C. Also
some tests on real system will give further insight in the
advantages but also possible disadvantages for the optimal
control.
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