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Abstract - The design of an effective data assimilation

environment for dispersion models is studied. These models

are usually described by partial differential equations which

lead to large scale state space models. The linear Kalman

filter theory fails to meet the requirements of this applica-

tion due to high dimensionality, strong non-linearities, non-

Gaussian driving disturbances and model parameter uncer-

tainties. Application of Kalman filter to these large scale

models is computationally expensive and real time estima-

tion is not possible with the present resources. Various

Monte Carlo filtering techniques are studied for implemen-

tation in the case of dispersion models, with a particular

focus on Ensemble filtering approaches and particle filtering

approaches. The filters are compared with the full Kalman

filter estimates on a one dimensional spherical diffusion

model.

Keywords: Chem-Bio Dispersion, Data Assimilation,

Ensemble Kalman filter, Ensemble Square Root filter, Par-

ticle Filter.

1 Introduction

Chem-Bio dispersion is a complex nonlinear physical
(and chemical) process with numerous uncertainties in
model order, model parameters, meteorological inputs,
and initial and boundary conditions. The application
of various empirical or mathematical models is limited
by the lack of complete knowledge about the physi-
cal process and the various uncertainties. Even the
best models are of limited forecast capabilities without
measurements to correct the forecast errors as they ac-
cumulate over time. Simple interpolation of measure-
ments also fails to describe the process to the satisfac-
tory extent, because the measurements are often asyn-
chronous, incomplete, imperfect, unevenly distributed,
and spatially and temporally sparse. Dynamic data
assimilation improves the knowledge of the process by
combining the measurements with the model.

When a stochastic description of the process is avail-
able, the measurements may be incorporated into the

model in an optimal way, using the sequential Bayesian
data assimilation methods. The ultimate objective of
Bayesian estimation is to reconstruct the posterior dis-
tribution of the states. For linear stochastic models
whose uncertainty is modeled as Gaussian noise, the
posterior distribution is also Gaussian, which is fully
parameterized by its mean and covariance (the first
two moments), and the optimal Bayesian estimator
for this case is the well-known Kalman filter [1]. The
Kalman filter may also be derived as an optimal lin-
ear least-squares estimator, without introducing prob-
ability distributions. Most data assimilation problems
involve nonlinear models, however. In general, exact
solution for the state posterior distribution of a non-
linear model is intractable, even if the nonlinear model
is small and simple. Various approximate nonlinear
filtering approaches are resorted in practice, many of
which aim to recursively estimate the mean and covari-
ance of the states instead of the much more complex
posterior distribution.

The extended Kalman filter[1] is one of the simplest
nonlinear filters. Of the infinite moments that describe
the posterior distribution only the mean and the er-
ror covariance are computed. The model is linearized
around the most recent estimate; the first derivatives
associated with the linear error model have to be com-
puted. The extended Kalman filter is sufficient for
many applications. However, when the state esti-
mates are poorly initialized, the time between measure-
ments increases, the noise is large, and/or the model
is highly nonlinear, the method may fail. In these
cases it may be worthwhile to use filters with higher
order truncations, which require second or higher or-
der derivatives[1]. The Unscented Filter[2] avoids com-
putation of any derivatives while still attaining sec-
ond order accuracy in mean and covariance estimates,
but is also computationally more expensive than the
extended Kalman filter. The particle filters[3] ap-
proximate the posterior distribution of the states with
weighted particles, being able to provide higher mo-
ment estimates and not requiring the posterior distri-
bution to be Gaussian. The particle filters are most



suitable for highly nonlinear non-Gaussian models, but
are among the computationally most expensive nonlin-
ear filters. The computational complexity of a parti-
cle filter is closely related to the importance function
employed. Daum recently showed that a carefully de-
signed particle filter should mitigate the curse of di-
mensionality for certain filtering problems, but the par-
ticle filter does not avoid the curse of dimensionality
in general[4].

A common characteristic of numerical atmospheric
dispersion models is high dimensionality and high com-
plexity, directly resulting from discretization of the
governing partial differential equations. For grid-based
models, the size n of the state vector of an opera-
tional model can be of the order of millions or even
larger. In the extended Kalman filter, the computa-
tional complexity of the update of the error covariance
alone is of the order of O(n3)[5]. Given the excessive
or prohibitively large computational requirements, the
extended Kalman filter and the more advanced meth-
ods cannot be applied directly[5].

Reduced-rank filters, which employ reduced-rank
approximation to the full-rank covariance matrix, are
becoming popular for large-scale data assimilation in
atmospheric dispersion, weather forecast, and so on[5].
The ensemble Kalman filters[6, 7] are a typical exam-
ple, with the error covariance matrix approximated by
the ensemble covariance around the ensemble mean.
The main operations of the ensemble Kalman filters are
the dynamical propagation and transformation of the
ensemble members. The transformation at measure-
ment times may be preformed stochastically by treat-
ing observations as random variables, or deterministi-
cally by requiring that the updated analysis perturba-
tions satisfy the Kalman filter analysis error covariance
equation[8]. Compared with the extended Kalman fil-
ter, these methods are easy to implement and compu-
tationally inexpensive. Besides, the ensemble Kalman
filters need no linearization or computation of the Jaco-
bian matrices. Since the ensemble members are prop-
agated with the fully nonlinear forecast model, the en-
semble Kalman filter may do better in forecast than
the extended Kalman filter[9].

It is not unusual to find in the data assimilation lit-
erature that 100 ensemble members are sufficient for
data assimilation on systems of thousands of or more
state variables[7], which is in sharp contrast with the
typical nonlinear particle filtering applications in which
hundreds of or thousands of particles are used with
as low as one- or three-dimensional nonlinear systems.
However, that should not be interpreted as that the
ensemble Kalman filters are able to beat the curse of
dimensionality. The justification for using such a lim-
ited number of ensemble members lies not in the magic
of the ensemble Kalman filters, which are inferior to the
full extended Kalman filter in estimation performance
in many cases, but in the fact that the degrees of free-
dom of the sophisticated, elaborate dynamical models
for atmospheric dispersion are much smaller than the
dimensionality of the system. As a result, working in
a subspace of much lower dimension does not cause

severe performance degradation.
In this paper, the efficacy of the ensemble filtering

and particle filtering schemes is studied using the ex-
ample of a one-dimensional diffusion model. Both fil-
tering methods are based on Monte Carlo simulations
of an ensemble. For the moment, we are focused on
the dimensionality issue. The paper is organized as
follows: In section 2, the diffusion model is introduced
as a partial differential equation which is solved using
the finite-difference approach. In section 3, the various
filtering schemes including the full Kalman filter are
described in detail. These methods are implemented
on the diffusion model and the results are compared
in section 4. The conclusions and further research are
discussed in section 5.

2 Diffusion Model

The model used is a one dimensional spherical diffusion
model to simulate the diffusion of a species expelled at
a radial velocity uR from a spherical source of radius
R.

The equation for conservation of a diffusing species
for any control volume can be written as

mass accumulation rate = (mass in − mass out)advection

+(mass in − mass out)diffusion

+generation rate (1)

Consider a thin spherical shell of thickness dr as the
control volume. Assuming the generation rate in this
volume to be zero, equation 1 reduces to the following
partial differential equation,

∂

∂t
(ρf) +

1

r2

∂

∂r
(r2ρurf) =

1

r2

∂

∂r
(r2Dm

∂(ρf)

∂r
)(2)

where f represents the mass fraction of the species and
Dm is Diffusivity (from Fick’s law). If ρ is constant,
then it can easily be seen that ρr2ur is a constant and
is given by ṁ

4π . The equation for conservation of species
is now given by,

ρ
∂f

∂t
+

ṁ

4πr2

∂f

∂r
=

1

r2

∂

∂r
(ρr2Dm

∂f

∂r
) (3)

Initially, f = 0 everywhere. The boundary condi-
tions are stated below. At r = R (surface of emission),
we have

ṁ

4πR2
=

ṁ

4πR2
fs − ρDm

∂f

∂r r=R
(4)

where, fs is the value of f at the surface r = R. This
equation can be rewritten as follows:

ṁ

4πR2ρDm
=

1

fs − 1

∂f

∂r r=R
(5)

Also, as r → ∞, f → 0.
Note that equation 2 is singular as r → 0. This

causes singularity problems when solving numerically.



To avoid this, the following variable transformations
and standard notation are introduced.

η =
( r

R

)3

and t∗ = t/

(

R

uR

)

(6)

Sc =
ν

Dm
and Re =

uRR

ν
(7)

This simplifies the PDE 2 to the following:

∂f

∂t
+ 3

∂f

∂η
=

9

Sc · Re

∂

∂η
(η4/3 ∂f

∂η
) (8)

which can be further rewritten as follows, which is use-
ful for developing numerical solutions.

∂f

∂t
+ 3

∂f

∂η

[

1 − 4

Sc · Re
η1/3

]

=
9

Sc · Re
η4/3 ∂2f

∂η2
(9)

The boundary conditions in terms of the new vari-
ables are as follows.

As η → ∞, f → 0 (10)

At η = 1,
∂f

∂η η=1

=
Sc · Re

3
(fs − 1) (11)

2.1 Numerical Solution

The Crank-Nicholson method is used for developing
the numerical solution. Introducing the notation β =
3
[

1 − 4
Sc·Reη1/3

]

and α = 9
Sc·Reη4/3, the finite differ-

ence approximation of the model is given below:
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m
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(12)

The above system of equations can be solved by LU
decomposition, i.e. by forming a tridiagonal system of
equations which is solved using the Thomas algorithm.

3 Filtering Algorithms

A general nonlinear stochastic description of the dis-
crete time model and the measurements can be shown
as below:

xk+1 = f (xk,uk,wk) (13)

yk = g (xk,vk) (14)

When a stochastic description of model and mea-
surements of the form

xk+1 = Akxk + Bkuk + Fkwk (15)

yk = Ckxk + vk (16)

is available, it is possible to incorporate the measure-
ments into the model to obtain an optimal estimate of
the system. For this linear model with the assumption

of Gaussian noise, the Kalman filter provides the op-
timal estimate. The main advantage of using a linear
model driven by Gaussian noise is that the state and
output will also be Gaussian. Furthermore, a Gaussian
distribution is characterized by its mean and covari-
ance only. The Kalman filter therefore has only first
moment (mean) and second moment (error covariance)
equations. The Kalman filter equations are given by:

x̂k+1|k = Akx̂k|k + Bkuk (17)

Pk+1|k = AkPk|kA
T
k + FkQkF

T
k (18)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − Ck+1x̂k+1|k) (19)

Kk+1 = Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 + Rk+1)

−1

(20)

Pk+1|k+1 = Pk+1|k − Kk+1Ck+1Pk+1|k (21)

x̂0|0 = x0 (22)

P0|0 = P0 (23)

An equivalent but more numerically stable substitute
for covariance update is as follows:

Pk+1|k+1 = [I − Kk+1Ck+1]Pk+1|k [I − Kk+1Ck+1]
T

+ Kk+1Rk+1K
T
k+1 (24)

Although these Kalman filter equations can in prin-
ciple be used to solve many data assimilation problems
the actual implementation for real life problems is far
from easy.

3.1 Ensemble Kalman Filter

The ensemble Kalman filter [6] is a data assimilation
method that approximates the conditional density with
a Monte Carlo method. The data is assimilated using
the analysis step of the Kalman filter, whereas the er-
ror covariance matrix is replaced by the sample error
covariance.

In this filter, the forecast error covariance is com-
puted by integrating an ensemble of randomly per-
turbed initial analysis states in time with random per-
turbations added to the forcing. This Monte Carlo
type approach based on the full nonlinear model al-
lows for consistent statistics in the case of nonlinear
dynamics. The analysis of the perturbed states, known
as ensemble members, is carried out with perturbed
observations.

The propagation equations are given by:

ξik+1|k = f
(

ξik|k,uk,wik

)

(25)

x̂k+1|k =
1

N

N
∑

i=1

ξik+1|k (26)

Let X be the matrix holding the ensemble members
ξik+1|k ∈ ℜn×N ,

Xk+1|k = (ξ1k+1|k, ξ2k+1|k, . . . , ξN k+1|k) (27)

where N is the number of ensemble members and n is
the size of the model state vector. The ensemble mean
x̂k+1|k is stored in each column of Xk+1|k , which is



of size n × N . The ensemble covariance matrix Pe ∈
ℜn×n is defined as

Pe =
X′X′T

N − 1
(28)

where, X′ = Xk+1|k − Xk+1|k (29)

Given a vector of measurements d ∈ ℜm at the
(k + 1)th time step, with m being the number of mea-
surements, we can define the N vectors of perturbed
observations as

d j = d + ǫj , j = 1, . . . , N, (30)

where d is the actual measurement vector and ǫj is the
measurement error vector that is randomly generated
from a predefined distribution with zero mean and co-
variance matrix R. These perturbed observations can
be stored in the columns of a matrix

D = (d1,d2, . . . ,dN ) ∈ ℜm×N , (31)

while the ensemble of perturbations, with ensemble
mean equal to zero, can be stored in the matrix

Υ = (ǫ1, ǫ2, . . . , ǫN ) ∈ ℜm×N , (32)

from which we can construct the ensemble representa-
tion of the measurement error covariance matrix

Re =
ΥΥT

N − 1
(33)

The ensemble of innovations vectors defined as:

D′ = D − Yk+1 (34)

where, Yk+1 = g
(

Xk+1|k,vk

)

(35)

and the mean yk+1 is stored in each column of Yk+1 ,
which is of size m × N .

Y′ = Yk+1 − Yk+1 (36)

Using the above notations, the standard analysis equa-
tion can be expressed as:

Xk+1|k+1 = Xk+1|k + X′Y′T (Y′Y′T + ΥΥT )−1D′

(37)
The potential singularity of the inverse computation

requires the use of a pseudoinverse.

3.2 Ensemble Square Root Kalman Fil-

ter

The Ensemble Kalman Filter (EnKF) as described
above uses pure Monte Carlo sampling when gener-
ating the initial ensemble, the model noise and the
measurement perturbations. By selecting the initial
ensemble, the model noise and the measurement per-
turbations wisely, it is possible to achieve a significant
improvement in the EnKF results, using the same num-
ber of ensemble members. The measurement pertur-
bations introduce sampling errors which can be fully
eliminated when the square root analysis algorithm is
used. Potential loss of rank may occur in the case when

random measurement perturbations are used to repre-
sent the measurement error covariance matrix. This
can be avoided by a proper sampling of measurement
perturbations or avoiding the perturbations as such.
The algorithm described here solves for the analysis
avoiding the perturbation of measurements, and with-
out imposing any additional approximations, such as
the assumption of uncorrelated measurement errors.
This is discussed in detail in Evensen[7].

The algorithm is used to update the ensemble per-
turbations and is derived starting from the traditional
analysis equation for the covariance update 21 in the
Kalman Filter. When using the ensemble representa-
tion 28 this can be rewritten as

Xa′

Xa′T = X′(I − Y′T G−1Y′)X′T (38)

where, Xa′

= Xk+1|k+1 − Xk+1|k+1 (39)

G = Y′Y′T + ΥΥT (40)

The analyzed ensemble mean is computed from the
standard analysis 37, as follows:

x̂k+1|k+1 = x̂k+1|k + X′Y′T G−1(d − ȳk+1) (41)

The equation for the ensemble analysis is derived by
defining a factorization of the covariance 38, where G

is rewritten as

G = Y′Y′T + (N − 1)R (42)

so that no reference is made to the measurements or
measurement perturbations.

Assume that G is of full rank such that G−1 exists.
Compute the eigenvalue decomposition and obtain

G−1 = ZΛ−1ZT (43)

Substituting this in 38, we obtain

X
a′

X
a′T = X

′(I − Y
′T

ZΛ−1
Z

T
Y

′)X′T

= X
′
h

I − (Λ− 1
2 Z

T
Y

′)T (Λ− 1
2 Z

T
Y

′)
i

X
′T

= X
′
“

I − X
T
1 X1

”

X
′T (44)

where, X1 = Λ− 1
2 Z

T
Y

′ (45)

Compute the singular value decomposition (SVD) of
X1 and obtain

X1 = U1Σ1V
T
1 (46)

Substituting back, we get

X
a′

X
a′T = X

′

„

I −
h

U1Σ1V
T
1

iT h

U1Σ1V
T
1

i

«

X
′T

= X
′
“

I − V1Σ
T
1 Σ1V

T
1

”

X
′T

= X
′
V1

“

I − ΣT
1 Σ1

”

V
T
1 X

′T

=
“

X
′
V1

√

I − ΣT
1 Σ1

” “

X
′
V1

√

I − ΣT
1 Σ1

”T

(47)

Thus, a solution for the analysis ensemble perturba-
tions is given by,

Xa′

= X′V1
√

I − ΣT
1 Σ1Θ

T (48)



This is added to the updated ensemble mean to get the
ensemble update X(k + 1|k + 1) (39).

The additional multiplication with a random or-
thogonal matrix ΘT also results in a valid solution.
Such a random redistribution of the variance reduction
among the ensemble members is in some cases neces-
sary and is used by default. The matrix ΘT is easily
constructed, e.g., by using the right singular vectors
from an SVD of a random N × N matrix. However,

note that by definition X′ · 1 = Xa′ · 1 = 0 with 1 a
column vector of 1’s. In this sense, the choice of ΘT

should not be arbitrary.

3.3 Particle Filters

In particle filters, the posterior distribution
p(xk|Yk) is approximated with N weighted par-

ticles {x(i)
k , w

(i)
k }N

i=1, given by

PN (dxk|Yk) ≈
N

∑

i=1

w
(i)
k δ

x
(i)
k

(dxk) (49)

where x
(i)
k are the particles drawn from the importance

function or proposal distribution, w
(i)
k are the nor-

malized importance weights, satisfying
∑N

i=1 w
(i)
k = 1,

and δ
x

(i)
k

(dxk) denotes the Dirac-delta mass located

in x
(i)
k . We use Xk and Yk to denote the state tra-

jectory {xj}k
j=0 and measurement history {yj}k

j=1, re-
spectively. The expectation of a known function f(xk)
with respect to p(xk|Yk) is then approximated by

∫

f(xk)p(xk)dxk ≈
N

∑

i=1

w
(i)
k f(x

(i)
k ) (50)

For example, the approximation to the arithmetic
mean of xk is

∑N
i=1 w(i)x(i).

A particle filter updates the particle representation

{x(i)
k , w

(i)
k }N

i=1 in a recursive manner. A cycle of a
generic particle filter includes[3]

• Sequential Importance Sampling

– For i = 1, . . . N , sample x
(i)
k+1 from the im-

portance function q(xk+1|X(i)
k ,Yk+1)

– For i = 1, . . . N , evaluate and normalize the
importance weights

w
(i)
k+1 ∝ w

(i)
k

p(yk+1|x(i)
k+1)p(x

(i)
k+1|x

(i)
k )

q(x
(i)
k+1|X

(i)
k ,Yk+1)

(51)

• Reampling: Multiple/Discard particles {x(i)
k+1}N

i=1

with respect to high/low importance weights w
(i)
k+1

to obtain N new particles {x(i)
k+1}N

i=1 with equal
weights.

It should be noted that the computation of the mean
and covariance is not required for the process of the
particle filter.

The importance function plays a significant role
in the particle filter. One of the simplest im-

portance function is given by q(xk+1|X(i)
k ,Yk+1) =

p(xk+1|x(i)
k ). The corresponding importance weights

are w
(i)
k+1 ∝ w

(i)
k p(yk+1|x(i)

k+1). Sampling x
(i)
k+1 from

p(xk+1|x(i)
k ) is equivalent to the dynamic propaga-

tion of x
(i)
k to time tk+1. The optimal importance

function that minimizes the variance of the impor-

tance weight w
(i)
k+1 conditional upon x

(i)
k and yk+1

is given by q(xk+1|X(i)
k ,Yk) = p(xk+1|x(i)

k ,yk+1).

The corresponding importance weights are w
(i)
k+1 ∝

w
(i)
k p(yk+1|x(i)

k ). The optimal particle filter gives the
limiting performance of particle filters.

When the state model is linear Gaussian as given
in the previous section, all the above-mentioned prob-
ability density functions are Gaussian. In the simple

particle filter, the mean and covariance of p(xk+1|x(i)
k )

are given by x̂k+1|k = Akx
(i)
k + Bkuk and Pk+1|k =

FkQkF
T
k respectively; the mean and covariance of

p(yk+1|x(i)
k+1) are given by Ck+1x

(i)
k+1 and Rk+1 re-

spectively. In the optimal particle filter, the mean and

covariance of p(xk+1|x(i)
k ,yk+1) are given by x̂k+1|k +

Kk+1(yk+1−Ck+1x̂k+1|k) and (I−Kk+1Ck+1)Pk+1|k

respectively; the mean and covariance of p(yk+1|x(i)
k )

are given by Ck+1x̂k+1|k and Ck+1Pk+1|kC
T
k+1+Rk+1

respectively.
It is well known that the simple particle filter with

the prior p(xk+1|x(i)
k ) as the importance function does

not work well when the overlap between the prior and
the likelihood is small, for example, when the measure-
ment is very accurate[10]. A simple trick is applied
in the simple particle filter. Basically, the measure-
ment update of the particle weights are done twice
per filter cycle. First, a large measurement noise
variance 25R is used to calculate the Gaussian like-
lihood and update the weights. Then, the particles
are resampled. Finally, 25/24R is used to do the
same update again. That is based on the factorization
e−1/R = e−1/25/R · e−24/25/R. The procedure will not
change the weight associated with a particle but will
have more particles be selected in the resampling steps.
The more systematic, adpative treatment is known as
“progressive corrections[10].”

4 Comparison of Various Filters

For the purpose of data assimilation using the various
filtering schemes, the numerical model 12 is formulated
as a state-space model. The state variables are the
mass fractions f of the species at all grid points, the
number of grid points n being the number of states.
A grid with n = 31 is used for the model used for
testing the various filtering schemes. A finer grid (n =
301) is used to simulate the measurements at sensor
locations. The uncertainties in the process model and
the measurement model are modeled as Gaussian white
noise processes.

In the simulations, the distance from the source and



the simulation time are given by the non-dimensional
variables η and t∗ respectively, as described in equation
6. The value of η varies from 1 to 100 in these simula-
tions, while the simulation time t∗ is 20. The model is
simulated for the fine grid (n = 301) and the values of
f are taken as the truth at each time-step. The values
of the measurement at the simulated sensor locations
η = [20 40 60] is obtained by linear interpolation of
the values of f at each grid point of the fine grid, and
adding measurement noise with a covariance R.

The coarse model (n = 31) is taken as an approxi-
mate model to simulate the above true model and the
filtering schemes are applied to estimate the states us-
ing the measurements obtained as described before.
The ensemble Kalman filter, the ensemble square root
filter and the simple particle filter are applied to the
spherical diffusion problem, and the plots are com-
pared with the truth and the full Kalman estimates.
Note that the number of states in this model is n = 31.
The measurement noise standard deviation at all the
three sensor locations is 0.1. The number of ensem-
ble members used is 20 in both the ensemble filtering
schemes and the number of particles used is also 20 in
the particle filter. Since Monte Carlo filtering schemes
are used for estimation, the results plotted are the val-
ues averaged over 50 Monte Carlo simulations.
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Figure 1: RMS error in all states

In figure 1, the root mean square error in all the
states is calculated and is plotted vs. time, for the
ensemble filters and the particle filter. These are com-
pared against the error calculated using just the model
propagation and using the full kalman filter. It can
be observed that the full Kalman filter gives the best
results as expected, while the ensemble square root fil-
ter has a significant advantage over the ensemble filter.
The simple particle filter gives results similar to the full
Kalman filter. Also the model error grows in time (to
a steady state) as the error keeps propagating through
the coarse model, while the estimates in all the schemes
improve with time as the filters acquire more informa-
tion. In figure 2, the results of the simple particle filter
are compared with that of the optimal particle filter.
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Figure 2: RMS error in all states for PF schemes
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Figure 3: Estimates of the Mass fraction

It can be noticed that in our case, both the results are
comparable in terms of accuracy while the optimal fil-
ter takes a very long time (7519.6s) compared to the
simple particle filter (445.3s).

In figure 3, the estimates of the mass fraction of the
species at two-thirds (η = 66.67) of the diffusion do-
main are plotted for various schemes, for the purpose
of illustration. These estimates are compared with the
truth as obtained from the simulation of the fine grid
model, the full Kalman filter estimates and the values
as predicted by coarse model. It can be observed that
the model propagated state differs considerably from
the truth, which is corrected using the various filtering
techniques. Also, the particle filter estimate is as good
as the Kalman estimate. The square root filter esti-
mate is comparable to the Kalman estimate and shows
a very good improvement over the standard ensemble
filter. In figure 4 and figure 5, the one standard devi-
ation bands are plotted for both the ensemble filtering
methods. The same is plotted for the simple particle
filtering scheme in figure 6.
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Figure 4: 1σ band of the Ensemble estimate

0 5 10 15 20 25
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

M
as

s 
F

ra
ct

io
n 

f

Nens = 20; Senloc = [20  40  60]; location = 67.6667; runs = 50

1σ band
enSQRT
Truth
Model

Figure 5: 1σ band of the SQRT estimate

For the same number of representations of the states
(N = 20), it has been shown that the simple particle
filter gives better results in terms of accuracy than the
two ensemble filters, for the model considered. How-
ever, it has been noticed that the computational time
required for the simple particle filter is also the highest
among the three sub-optimal filters considered. The
CPU time required for the simple particle filter for 50
Monte Carlo runs is 445.2813s whereas the same for
the ensemble and the square root filters are 342.4688s
and 364.3125s respectively. Note that the full Kalman
filter takes 713.1563s for the same. Thus, it can be
observed that the sub-optimal filters considered, offer
significant improvement over the full Kalman filter in
terms of computational time, while giving comparable
estimates.

5 Conclusion

Various filtering schemes are implemented on the dif-
fusion model and the results are compared with the
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Figure 6: 1σ band of the PF estimate

full Kalman estimates. The ensemble and particle fil-
ters offer much advantage in terms of estimation time
and computational power used, as they avoid the stor-
age and propagation of the state covariance matrix.
The Ensemble Square root filter offers significant im-
provement over the standard Ensemble Kalman filter
in terms of the estimation error. While the simple par-
ticle filter gives the best results in terms of accuracy,
it is also computationally expensive and takes longer
than the two ensemble filters.
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