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Abstract—A computationally efficient, grid-based estimation
method is presented for multiple source identification from
distributed sensors. Under the assumption that the sourceare
located on a grid over the region of interest, the solution to
the multiple source identification problem, that is, the nunber,
locations, and intensities of the sources, is represented a large
sparse vector (whose size is greater than that of the obserian
vector) and is obtained by solving a convex optimization prblem
using the ¢; minimization method. The method can exactly and
efficiently recover the true source parameters in the absergc
of source representation error and measurement noise and ca
efficiently identify the areas of the true sources with the alsters
of grid points in the more realistic scenarios when the soure
locations do not coincide with the grid points and the sensor
data are contaminated by noise.

Keywords: source identification, convex optimization, ¢,
minimization.

I. INTRODUCTION

Detection and tracking of sources of material release
emission is an important problem in a range of applicatitms
order to determine the locations and intensities of thecaayr
typically, mathematical models about the source-senser
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estimation problems under th€ hypotheses, and then chooses
the best hypothesis and the best estimate under it. Hereglmod
complexity is given by the number of independent parameters
in the model, proportional to the number of sources. Fordarg
K, the source identification problem is hard.

From the Bayes perspective, all the information about the
source parameters is contained in the posterior probabil-
ity distribution of the parameters conditional on the senso
data. However, obtaining the posterior distribution ididifit
and sometimes impossible. Most source parameter estimatio
methods solve for a point estimate instead. Choosing a point
estimate as the solution of the source identification prokke
satisfactory when there exists a single point in the paramet
space that is representative of the posterior distribution
the likelihood function. The condition is valid when the
parameters are well observable. The optimal point estimate
may be the maximum likelihood estimate, the maximam
posteriori estimate, or the posterior mean conditional on the

.sensor data. These point estimates do not differ much in

information-rich applications.
re Many methods have been used to solve the parameter

lation (and about the source/sensor motion) are presumestimation problem in source identification or source ctigra
data from an array of distributed sensors are collected aiadtion, including the least-squares estimator [2], thaetie
processed, and a set of (constant or time-varying) souralgorithm [3], [4], and the particle filter [5], among others
parameters are inferred by fusing the models and the datadrawback of the least-squares estimation methods or other
Both centralized and decentralized configurations can bd ugradient-based methods is that they often only converdesto t

for data processing and fusion.

local minimum close to the initial guess. The random sample-

The source characteristics parameters include the lowsatidbased methods are more likely to find the globally optimal

and intensities (as well as the release times in certaimgsjt

solution. Some source identification problems involve darg

of the sources. When multiple sources are to be identifiexbale dynamical models. Source identification methods for
the number of sources needs to be determined unless pdomplex atmospheric dispersion models are reviewed in [6],
information about the number is available. Determining thacluding forward and backward modeling methods. Forward
appropriate number of sources usually involves exhausgtivenodeling methods include stochastic Monte Carlo or Markov
comparing the models of all possible numbers of sources a@Hain Monte Carlo sampling techniques; backward or inverse
then choosing the best match under a certain model selectinadeling methods include adjoint and tangent linear models

criterion, for example, the Bayes Information Criterionaivy

Kalman filters, and variational data assimilation [6]. Most

model selection criteria exist [1], and the best choice @f thexisting methods assume the number of the sources is known
model depends on the criterion used. All model selecti@mr small.

criteria are a compromise between model complexity andThis paper is concerned with multiple source identification
model accuracy. Suppose there dtepossible numbers of where the number of sources is unknown and possibly large. A
sources (sources that are too close to each other are tieEsmtegeneral grid-based formulation for multiple source idécsi

a single source). A source identification method based on éjon and an estimation method using convex optimization are
haustive comparison solves tigindividual source parameterpresented; a specific two-dimensional, multiple point seur



identification problem is then studied. The background ef thhe environment. Given the observation model and the sensor
problem is stationary and mobile radioactive source idientidata, the ultimate objective of the point source term egtona
cation using stationary or mobile sensor networks, which hproblem is to estimate the source parametess xy, y;.) and
been studied in [2], [5], [7]-[9], among others. Our progbsethe numberK of sources (as well as the mean background
method is based on the observation that in many systems, tloése«,) fromb;, j =1,..., M. The mean background noise
contributions of multiple sources to a (noiseless) senbeser is observable for the above observation model. If either the
vation satisfies the linear superposition principle. Tiiiear number of sources or the set of all possible locations of the
structure is explicitly exploited in our problem formulati. By sources is known, the complexity of the estimation problem
discretizing a parameter subspace (in that specific problfemis greatly reduced.
point source estimation, the subspace of the source lejatio o
we formulate the multiple source identification problem as & Radiation Sensor Model
convex programming problem, which can be solved efficiently Now a specific radiation sensor model in [5] is briefly re-
using open-source or proprietary software even when thee sigewed with a focus on the measurement noise properties. The
of the problem is large [10]. The proposed method handlasodel in [5] is chosen in our study mainly for its simplicity.
model selection and parameter estimation at the same tithe émthis simplified modelga ;i (k. yx; z;, y;) is defined by
is efficient in identifying locations of significant releas@he
. . . 1

proposed method is not optimal in the Bayes sense, however,  a;i(zk, yi; 25, y;) = 5 5 (2
because of the discretization of the parameter space assvell (@ —a5)? + (ye — ;)
the cost function we choose to minimize, but many strategiggaptures the fall-off property that the instantaneoussoee-
exist to further improve the result. ment is inversely proportional to the square of the distance

The organization of the remainder of the article proceefi®m the point source to the sensor. More realistic models
as follows. First, a generic observation model and a spier radiation sensors are given in [2], [8], [9]. In practica
cific radiation sensor model are reviewed. Then, the sourapplications, additional factors are needed in the rigiteh
identification problem is formulated as a convex optimizati side of the equation to account for attenuation by intervegni
problem. Finally, the numerical results of the convex pamgr material and source-dependent efficiency of the sensor.
in four scenarios are presented, followed by the compasison In the presence of sensor noise, the measured quantisy
of the convex program with a gradient-based method andaa integer obeying the Poisson distribution [11], whosemmea
simulated annealing method. is determined by both the true source contributions and the
background. No possible nonlinear effect is considerethis t
study. The likelihood function of thg® sensor is

Il. PROBLEM FORMULATION
A. Generic Sensor Model :
J ,—bj
It is assumed thal/ sensors are distributed in a region and L. 2 P(Bj|bj) _ b Ne ’ ©)

K stationary point sources are to be identified in the region. ! b;!

In the absence of sensor noise and other errors, a generic . . - ) .
observation model at thgh sensor is given by where b;! is the factorial ofb;, e is the natural logarithm

base, andy; is defined by equations (1) and (2). The mean
and variance ob; are bothb;.

K

bﬂ':Zo‘k'ajk(zk,yk;arj,yj)+ao (1)
! C. Formulation of the Estimation Problem

where b, is the observation at thg" sensor, andr; and Our proposed method begins with the discretization of
y; are the known coordinates of th&" sensor;aq is the the x; — y; space. The motivation is that if the source
mean of the background noise, which, for sake of simplicitigcationsz; andy, can only take on a finite set of known
is assumed to be stationary in time and spake;is the values, because of the linear structure of the problem, it is
unknown number of point sources;, is the unknown intensity easier to obtain the solution to the source term estimation
of the k™ point source, andr; and y; are the unknown problem. Now let us suppose:y, i) take on a total ofV
coordinates of thek!" point source; andu;i.(zx,yx;z,y;) (K < NS andM < N9 in general) possible values, denoted
is a known function describing the contribution of th# by (z&,y&), i =1,..., N5. One choice of z¥, y¥) is a fine
source to the observation of thg" sensor. For non-point grid over the region of interest. Prior knowledge about the
sources, additional source parameters, for example, #ee source distribution, if available, greatly reduces the ham
and shape of the source, may be needed;inas well. The of grid points. With the introduction of the grid, the sousce
observation model is linear in; and g, and this fact will can now be fully represented by ai® x 1 vector x°, of

be used in our problem formulation and estimation methodhich the element? means that the intensity of a radiative
which can be applied to any observation model of the forfsource” at(z{,yS) is x7. By definition, z¥ > 0 and a lot

of equation (1). The actual sensor data, denoted%bwre of 27 are equal to zero. In other words; is a sparse vector.
contaminated by internal sensor noise and background.noiéée say that an actual source is locatedzt, &) only when
The noise properties depend on the sensor characteristics @ exceeds a certain threshold. The number of the elements



in x° exceeding the threshold is the number of point sourctfere is always measurement noise due to imperfectness of th

over the region. sensor response and the background and there is no guarantee
Equation (1) of the noiseless model is rewritten in terms dfiat the true sources are on the grid. Becaluke: N, we are
& andy¢ as faced with an under-determined estimation problem. Bezaus
e K << N, X must be a sparse vector, that is, only a fraction
of it is nonzero. In the next section, we will show how to
bj = af-ai(a,yli x5, u5) + ao (4)

formulate the optimization problems and solve for the large

o ) ~ sparseX in the four scenarios using th& minimization
Note that the summation is from 1 t§°. In matrix form, it method [12].

IS

=1

b= ASxS 1 1ag = (45 1] [XS] —AX (5) I1l. CONVEX OPTIMIZATION FOR SOURCE TERM
@o ESTIMATION

with obvious definition ofb, A%, x%, A, andX. The dimen- A. Solution in the Ideal Scenario

. . g -
sion of the unknown parameter vectsr is N = N + 1. The optimal estimat& is defined as the solution to tHe
The observation (or sensing) matrik is determined by the i imization problem for the noiseless case in [12];
sensors and the grid. For stationary sources and sensers, th R K
matrix only needs to be computed once. Note that the siZK = argmin||DX]|; subject toAX =b, 0 < X < XU5
of Ais M x N with M < N in general and that the linear X (9)
system is under-determined. whereD is a diagonal matrix with the diagonal elements given

When the true sources are not located at any grid poins; the 2-norms of the columns of, AX = A(DX) =
resulting from the use of a coarse grid or a small set @ﬁlp—l)(pf(), with A = AD~! a matrix of unit (2-norm)

random samples in the location space, the correspondingcolumn vectors. The 1-norm of a vector is defined by
matrix will be denoted byA and the error inA will be

called the source representation error. An upper boundeof th I1X 1 = XN: X (10)
representation error is determined by the resolution ofjtitk te — !
The observation model in this case is described by o
N The 2-norm of a vector is defined by
b=AX +e€ (6) N
wheree is due to the representation error and is unknown. (1X]l2 = Z | X, (11)
In the presence of measurement noise, the counterparts of i=1
equations (5) and (6) are This is called an/; minimization problem because the cost
b=AX +v @) is_d_efi_ned_ by the 1—n_orm of the vect_or._ln the origin@l
minimization problem in [12], the matri¥ in the constraint
and ~ B AX = b is assumed to be a matrix of unit column vectors.
b=AX+e+v (8) That is why we introduced the normalized version fas

. ks UB .

respectively, wherev is the unknown measurement noisdVell @sD- The constraind < X < X" requires that aIIEt}he
vector. There is no approximation in the linear form O?Ie_ments OD_( b_e nonr_1egat|ve gn_d upper bounded?ﬁy :
the observation models in equations (6), (7), and (8). TI:I-@'S constraint is not in thé, minimization problem in [12]
approximation lies in the assumed properties/cdinde. For but is impo_rtant in our source term estimation problem, dk wi
convenience, the mean and covariances shay be assumed be shown in the next section. ,
to be0 and R ~ diag(b), wherediag(b) denotes the diagonal The solution of minimum 1—no_rm is preferred to the well-
matrix whose major diagonal is given By known least-square solution, defined by

The multiple source term estimation problem is now stated  XLS _ aremin||X||, subject toAX~S = b (12)
as follows: GivenA and b, A andb, A and b, or 4 X

and b, determine the estimated parameter ve&orwhich ¢ only because the latter cannot guarantee nonnedéfive
provides a linear combination of the columns.for A that ¢t pecause we know the truth is represented by a sparse
is the most consistent with or b. There is no advantageector and the solution of minimum 1-norm is sparser than the
of this formulation if there is only one source. We have fouq tion of the minimum 2-norm. Were the tru¥not a sparse

scenarios: vector, there would be no reason to prefer a sparse solution
1) b= AX X of our problem. To see that the 1-norm is a better measure
2) b=AX +e¢ of sparsity than the 2-norm, consider td&-dimensional unit
3) b=AX+v vectors(1,0,...,0]" and [1/V/N,...,1/v/N|T. The former
4) b=AX+e+v is sparse while the latter is not. The 2-norms of the two

The first is the ideal case and the last is the realistic case. Wectors are identical and the 1-norms of them are 1 i,
second and the third are also unrealistic because in peactiespectively.



It should also be noted that although the solution of min- IV. NUMERICAL RESULTS
imum 1-norm is sparser than that of minimum 2-norm, thg gmulation Setup
solution of minimum 1-norm is not necessarily the sparsest.

For example, if there are only two vectds 1, 1,0,...,0]" 20 x 20 grid is generated over the region. S¥,° = 400

T gsatisfvi —
and 10,0, ..., 0" satisfying AX = b, the former, because and N = N° + 1 = 401. The numbers of the sensors that

its 1-ln(_)rr_n |§ smaller, will be chosen as_the solution of thceover the region arél — 100, M — 144, and M — 196.
£; minimization problem, but the latter is actually sparsel

The region of interest is a rectangle of 3030. A uniform

However, finding out the sparsest solution is NP-hard [13 he sensors provide reasonably good coverage over theregio

An iterative reweighting scheme in [13] helps improve the ood coverage may also be achieved by much fewer mobile

. . . Sensors with known position and movement. Three patterns of
sparsity of the solution, but there is no absolute guarantee . ; . i

. . : thé sensor locations are used in the numerical tests: random
that the sparsest solution can be found by using the IteratlL\J/niform rid, and concentric circles. The interesting dioes
reweighting scheme. The basic idea of iterative reweighin gne, ' 9

2 . . out the different patterns is whether one is significantly
to minimize a cost in favor of a sparser solution than that . ;
. oo etter than the other two. No sensor is located at a grid
minimum 1-norm. Formally, the new cost is given by

point in order to avoid the singularity problem of the sensor
N _ model given by equation (2). No optimization of the sensor
X = arg min||[diag(X)]'X|, = argminZ—Z configuration is done. The matrid is determined by the
X S | X sensor locations and the grid. Its sizelisx V, i.e., 100 x 401,
144 x 401, or 196 x 401.
10 Two sensor noise levels are used. Suppose the true concen-
tration isb;. The two sensor noise variances usedlaté; and

with 0/0 £ 0 in the summation. The new cost corresponds
the 0-norm ofX or the total number of nonzero elementof

To avoid the “divide by zero” problem in practic&;; /| X[ is ,_"For the smaller variance, the noise distribution is chosen
replaced byX;/(|X;|+ ), wheree is a small positive number. y, o ;6r0-mean Gaussian. For the larger variance, thé- distr
The minimization problem is solved iteratively using the 1 tion of the sensor measurement is the Poisson distributio
minimization method, with the cost given by with mean and variandg. The maximum number of the point
N sources in the region is 8, i.el, < K < 8. The maximum
X +1) argmmZ# number of sources is not limited by th§ minimization
X = |Xi(l)| + € method, but the observability of the source parameters. In
R scenario 1 and 3, in which there is no representation error,
whereX (1) is the optimal estimate in th@ + 1)™ iteration  the true source locations are randomly selected from tht gri
and X" is the ™ element of the optimal estimate from thepoints. In the other two scenarios, the true source locatiwa

1™ iteration. randomly chosen in the region and are not necessarily ldcate
at any grid points. The maximum source representation error
B. Solutions in Non-ldeal Scenarios is half the grid resolution, 0.79 in each direction. The msiéy

Only the formulations for the last scenario are given belo! @ source is randomly chosen between 50 and 100. The upper

The formulations for the other two scenarios are differeriyo bound, 100, is available to the source term estimation ntetho

in the data matrices. The normalized version/ofs used in The background noise is set to 1. -
the problem definition, given bA = AD~!, whereD is the We use CVX for MATLAB, a package for specifying

diagonal matrix of the 2-norms of the columns &f and solving convex programs [14], [15], to solve the con-
vex optimization problems. The exit conditions of twX

X = argminHDXHl solver include “Solved,” “Inaccurate/Solved,” “Unbourntje
) N X UB (13) “Inaccurate/Unbounded,” “Infeasible,” “Inaccurate#asible,”’
subject to| W(AX — b)[l2 < A2, 0 <X <X “Failed,” and “Overdetermined.” We accept the solution whe

where ), is a control parameter. A lower bound of is the condition is either “Solved” or “Inaccurate/Solved.

obtained by solving B. Result of Scenario 1 (b = AX)

N e ~ . A In the ideal scenario, the simulation results show that no
_ : _ UB ,

X = argmin||[W(AX —b)[l subject to0 < X < X pattern is better than the others. For all the three sender pa

_ _ _ _ (1_4) terns and all the three numbers of sensors, the optimal &stim

The tuning parameten, is determined by S'm.U|at.'0”5-X as the solution to the problem defined by equation (9) is
When the control parameters are too small, no feasibleisalutigentical to the truttiX within the solver precision. We believe
exists. When they are too large, the optimal solution may Bat the constraind < X < XUZ plays a role in the exact
nothing but the null vector. We have used 1.1 times the lowgscovery of the sources. The same result cannot be obtained
bound in the second formulation. For the weighting matriyithout the constraind < X < XUB. In fact, for any of the
W, we have usedV = II\IXM because of its Slmp|ICIty The three sensor patternsy the solution to

optimal weighting matrixi¥' requires knowledge about the . ) i .
noise as well as the error. X = argmin|| DX, subjecttoAX =b  (15)
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X = arg min||X|;  subject toAX = b (16)

400

or

can sometimes be totally different from the truth in both the
number of the sources and the values of the source parameters
It is also observed that the equality constraiiX = b can

be replaced by

300

200

Source Estimate
=
1]
3

JAX — bl < A, an o T
with \. a small positive number, for example, in the order
of 10712 or below. The resulting change X due to this o
replacement is negligible. 300
C. Result Of S:enario 2 (b — AX _|_ 6) _4000 5‘0 150 1&0 2(;0 2‘50 3(;0 35‘,0 400

The source representation error is unique to the grid-baseglre 2. Source Estimation Solution Vector without Noratag Source
method. Because of the source representation error, everffstraint
this noiseless scenario, the grid-based method cannoteeco
the true sources exactly, while a non-grid-based methdid sti
can. 0 < X < XUB, the minimum magnitude of the residual

There is no limitation in the distance between a sensor apdapproximately 297, which is the lower bound &% in
a source in the simulations. As a result, a sensor may be vegyuation (13). The large residual results from the sendose ¢
close to a source and the corresponding observajiomay be to the sources. Th& minimization solution corresponding to
extremely largeb; > 100 max; A;;, where 100 is the upper \, = min||AX — b||y ~ 297 is given in Figures 3 and 4.
bound of the source intensity in the simulations. That means
no source on the grid can compensate for the large residual 100
at that sensor. When this happens, in the preprocessing of ou of
methods); is set to100 max; A;; or a comparable value.

Now the result is presented of a hard case with 144 sensors
on concentric circles and four sources. The sensors and the
sources are shown in Figure 1. Note that two sources are
close to the sensors. The resolution of the grid around the
two sources are inadequate. This is the main problem due to
source representation errors.

Source Estimate
a
3

20 T T —

. . O Sources 10k |
151 . . . . . . . - . ‘ ‘ ‘ ‘ ‘ j 4
. . * M . . 0 50 100 150 200 250 300 350 400
10r
. . . 08;083 . Figure 3.  Source Estimation Solution Vector with NonnegatSource
T, . ; RELLL 0% .. . oo Constraint
> 0 * . .
N T It can be seen that with the constraint, all the elements are
5} . o “cecer . . B . .
. . . ) nonnegative but there are many more than four sources. It is
1o} . . T ot . : generally true that more sources are needed to accounteor th

perturbation inA and minimize the residual error. Increasing

. . Ao by ten percent and applying the iterative reweighting

S S S S| scheme leads to much fewer sources, as shown in Figure 5.

X From Figure 5, it can been seen that although owing to the

significant source representation error, the true souraesat

be exactly recovered, the clusters are informative abeutrtie

source locations. A gradient-based search in the locabnagi
The ¢, minimization solution can satisfdX = b exactly covered by the clusters (assuming one or two sources in each

only when the constraind < X < XUYB is not imposed. local region) can significantly improve the accuracy of the

The ¢; minimization solution vector without the constraintresult. Using a finer grid for that region can also improve the

is shown in Figure 2. This is a sparse solution that satisfiegsult.

AX = b exactly, but some elements & are negative. The estimated source intensity is inaccurate in this exampl

The exact solution is thus meaningless. With the constraifdr instance, the intensity of the leftmost source is 94 evhil

151

Figure 1. Sensors and Sources



20 T T %

. ] to the boundary of the rectangular region are not covered
) . .. . | adequately.
o T , When the sensor noise variance(isb; and the source
al Tt et e e - | locations can be well approximated by the grid points (itee,
o ol * Ty | source representation error is not so severe as in the ezampl
) ; T o LT of the last section), the estimation result remains aceurat
) o0 T comparable to the results when the source representation er
e TS ] is the only error source. When the sensor noise variance
) - o ) increases td;, it is common to have an estimate of more
sources than the maximum number of true sources. That is

—10F

sl T 1 because more sources are needed to interpret the fluctsiation
: . . ) and deviations of the measurements. That statement isdrue f
o a5 a0 s ; s w15 w other optimization methods as well. A typical example oheig
i sources and 196 sensors is given. The iterative reweighting
Figure 4. Estimated Sources (source threshold = 1) method has been used to reduce the number of sources. The

true sources are given in Figure 6. The estimated sources are

plotted in Figures 7 and 8. In the former, all sources with

. . intensities greater than one are plotted; in the lattery tm

s . e e . 1 sources with intensities greater than 20 are plotted. Marglls

) ’ ) ) | false sources are introduced by the large measurement noise

. . . 'u%m° . As in the source representation error only case, the source

st . RRILTeTS . . intensities are not accurately estimated. In addition, tihe
oo ] leftmost sources become one. However, the estimationtsesul

asz %, S0 are informative about the source locations.

20 T T —

10r

. . . .
. . . . 20 Ty e Te e T e s T e s T e e T .
. ° . . * . *  Sensors
-10 M ¢ ° q O Sources
. . e e e s e e o e s e s e
. . e s e & s e s e s e e s e e
o . e

—15F

.

94
20 L L M L] L . L ?
-20 -15 -10 -5 0 5 10 15 20

056
% .
Figure 5. Estimated Sources (source threshold = 1, withtiter reweighting)

the intensity of the estimated source there is only 52. This Tt o
discrepancy is mainly due to the fact that a sensor is close to asf T T T T Tt T
both the true and the estimated sources. The distance betwee e e
the sensor and the leftmost true source is approximateB; 0.5 I T ° s w0 v
while the distance between the sensor and the estimatecesour ”

is 0.39. The square of the ratio is approximately 0.55, indyoo Figure 6. True Sources in Scenario 4
agreement with the ratio of 94 to 52. As a general rule, when

there is a sensor that is very close to a source but is not as clo

Fo the_neighboring grid points, large d?screpgn.cy ir_1 thesdu E. Comparison with Other Methods

intensity between the truth and the estimate is inevitableen o )
the sensor is moved away from the source, the source ingensit 1€ proposed convex optimization-based source term esti-

estimate becomes less sensitive to the variation in theiteca Mation method is compared with a gradient-based, constiain
of the source. local optimization method in the MATLAB Optimization Tool-

- - box,f m ncon, and a simple simulated annealing method. The

D. Result of Scenarios3and 4 (b = AX +v andb = AX+  |arge-scale algorithm of i ncon is a subspace trust-region
€+v) method and is based on an interior-reflective Newton method;

In the presence of sensor noise, no estimation or optimizhe medium-scale algorithm dfm ncon uses a sequential
tion method can exactly recover the truth. One hundred sensquadratic programming method. The simulated annealing al-
are not sufficient to provide accurate estimates in certam h gorithm directly searches the parameter space by a sequence
cases. Of the three sensor patterns, the pattern of comcendf random walk. All the methods are iterative.
circles is overall worse than the other two because it pewid The design space as well as the complexity of the proposed
a less uniform coverage of the whole region. The area closenvex method is determined mainly by the grid si¥e not




20

: three scenarios mainly depends on how severe the effectof th
L | source representation error is. The gradient-based melhesl
o not always converge to the global minimum. It can exactly
- recover the truth in the first and second scenarios only when
S the local minimum it arrives at happens to be the global
car Do e e e me omoe e e minimum, for which the probability is not high. Because of
e L TN . L S this local minima problem, the accuracy of the gradienteblas
B T T method is the worst; the result of the gradient-based method
R B T T of very limited use without good initial guess. The simuthte
e e e e e e e emR e et annealing method can exactly recover the truth within its
Y T L precision in the first and second scenarios. It also yields th
et most accurate estimation results in the other scenaricaulsec
B X D T N R its accuracy is not limited by the resolution of the grid and i

principle it can converge to the global minimum when there

Figure 7. Estimated Sources in Scenario 4 (source threshald with IS NO limitation in the maximum number of iterations.
iterative reweighting)

Table |
EXECUTION TIME FOR FMI NCON (SEC)
20 T e
. M =100 || M =144 | M =196
wr 1 K=1 0.02 0.05 0.29
L K=2 0.06 0.40 0.61
32
" K=4 0.25 2.78 3.42
o 1 K=6 0.52 5.37 6.70
s ‘o ¢ . | K=8 1.09 17.40 25.30
. g
sl p2 . ]
- Table Il
o - 0% 1 EXECUTION TIME FOR SIMULATED ANNEALING (SEC)
il ] M =100 || M =144 || M =196
gt ie e . : TR - K=1 116.80 147.69 241.26
x K=2 423.49 588.04 865.11
K=4 1746 2289 3205
Figure 8. Estimated Sources in Scenario 4 (source threshd@, with
iterative reweighting) K=6 3562 5096 6951
K=38 64421 11302 16167
the numberK of sources. In the previous numerical study, the Table NIl
dimension of the design space of the proposed method is 401. EXECUTION TIMES FOR{1 MINIMIZATION (SEC)
The solution of the proposed method determines the number
of sources and the values of the source parameters at the same M =100 || M =144 || M =196
time. N =401 32.50 37.30 41.40
The design space of the other two methods is determined by N =901 57.23 80.87 114.50
the possible number of sources (8 in the previous numerical N = 1601 82.46 122.37 209.14

study) and the number of independent parameters per model,
given by3K + 1, where K is the assumed number of sources The execution times of the three methods are compared in
in the model. In the previous numerical study, the maximuthe MATLAB environment under Windows XP Professional
number of sources is eight. Since the number of sourcesois a DELL desktop computer of dual Intel Pentium CPU with
unknown, in the worst case, eight solutions need to be solviée: processing rate of 2.4 GHz and of 4 GB RAM. The most
for by f m ncon and the simulated annealing method, witlinteresting question is how well the methods scale with the
each solution vector being of the size3df +1, K = 1,...,8. size of the problem. The same data sets are processed by the
The proposed method takes advantage of the linear structtimee methods. The MATLAB timing functio@PUTI ME is
of the source term estimation problems. The other two dmsed to get the average execution times of the methods. It
not. The accuracy of the proposed method depends on #muld be pointed out that the execution time of a method
scenarios as well as the resolution of the grid. It can p#dyfecdepends on the termination criterion and parameter tuning o
recover the truth in the first scenario. Its accuracy in tithe method, the shape of the cost and the constraints, the
number, locations, and intensities of the sources in therothifficulty of the test problem for the method, the efficiency



of the MATLAB code, and whether pre-compiled functiongrids in the identified areas of sources. The accuracy can als
are used in the code (the pre-compiled functions are exécube improved by a local search using a gradient-based method.
much faster than the script functions), and so on. The ei@tutThe complexity of the proposed method is mainly determined
times of the simulated annealing method drmd ncon also by the size of the grid, but not the number of sources. The
heavily depend on the initial guess. maximum number of sources that can be identified is not
The timing results are given in Table I, I, and Ill. Thelimited by the proposed method, but the amount of informmatio
execution time of the/; minimization method is mainly contained in the sensors. Finally, we note that this sowea t
determined by the grid size. Hence, the execution timesef tastimation method can be extended to the case of multiple
method (with the computation of the lower bound)af and moving sources with modest modification when perfect or
five iterations of iterative reweighting) are given for @ifént accurate knowledge about the source movement is available.
M and N. The simulated annealing method ahdi ncon
are not based on grid; therefore, the timing results for them
are presented for differedt/ and &. Note that the execution ~This work was supported by the Defense Threat Reduction
time forf ni ncon or the simulated annealing algorithm for gAgency (DTRA) under Contract No. W911NF-06-C-0162.
specificK in the tables is the time used to solve the parametéhe authors gratefully acknowledge the support and constru
estimation problem under a single hypothesis that the numi&e suggestions of Dr. John Hannan of DTRA. The authors
of sources isk. The times for the two methods in the tablegre also grateful to Dr. Zane W. Bell of Oak Ridge National
are less than the times they take to solve a complete probleaporatory for helpful suggestions.
with unknown number of sources.
It can be seen that the execution time fom ncon is ) o
the shortest. However, that is only the execution time e ‘;élsdi;i,‘,jiﬁn;”; - :@gﬁ‘gﬁ;ﬁ?&&égf?ﬁ_ ;%r’ rr{do?d
one initial guess, which may not lead to any accurate or 465, pp. 279-290, 2004.
meaningful estimate. ff m ncon is used to search the whole [2] J. W. Howse, L. O. Ticknor, and K. R. Muske, “Least squagstmation
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