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Abstract—A computationally efficient, grid-based estimation
method is presented for multiple source identification from
distributed sensors. Under the assumption that the sourcesare
located on a grid over the region of interest, the solution to
the multiple source identification problem, that is, the number,
locations, and intensities of the sources, is represented by a large
sparse vector (whose size is greater than that of the observation
vector) and is obtained by solving a convex optimization problem
using the ℓ1 minimization method. The method can exactly and
efficiently recover the true source parameters in the absence
of source representation error and measurement noise and can
efficiently identify the areas of the true sources with the clusters
of grid points in the more realistic scenarios when the source
locations do not coincide with the grid points and the sensor
data are contaminated by noise.
Keywords: source identification, convex optimization,ℓ1

minimization.

I. I NTRODUCTION

Detection and tracking of sources of material release or
emission is an important problem in a range of applications.In
order to determine the locations and intensities of the sources,
typically, mathematical models about the source-sensor re-
lation (and about the source/sensor motion) are presumed,
data from an array of distributed sensors are collected and
processed, and a set of (constant or time-varying) source
parameters are inferred by fusing the models and the data.
Both centralized and decentralized configurations can be used
for data processing and fusion.

The source characteristics parameters include the locations
and intensities (as well as the release times in certain settings)
of the sources. When multiple sources are to be identified,
the number of sources needs to be determined unless prior
information about the number is available. Determining the
appropriate number of sources usually involves exhaustively
comparing the models of all possible numbers of sources and
then choosing the best match under a certain model selection
criterion, for example, the Bayes Information Criterion. Many
model selection criteria exist [1], and the best choice of the
model depends on the criterion used. All model selection
criteria are a compromise between model complexity and
model accuracy. Suppose there areK possible numbers of
sources (sources that are too close to each other are treatedas
a single source). A source identification method based on ex-
haustive comparison solves theK individual source parameter

estimation problems under theK hypotheses, and then chooses
the best hypothesis and the best estimate under it. Here, model
complexity is given by the number of independent parameters
in the model, proportional to the number of sources. For large
K, the source identification problem is hard.

From the Bayes perspective, all the information about the
source parameters is contained in the posterior probabil-
ity distribution of the parameters conditional on the sensor
data. However, obtaining the posterior distribution is difficult
and sometimes impossible. Most source parameter estimation
methods solve for a point estimate instead. Choosing a point
estimate as the solution of the source identification problem is
satisfactory when there exists a single point in the parameter
space that is representative of the posterior distributionor
the likelihood function. The condition is valid when the
parameters are well observable. The optimal point estimate
may be the maximum likelihood estimate, the maximuma
posteriori estimate, or the posterior mean conditional on the
sensor data. These point estimates do not differ much in
information-rich applications.

Many methods have been used to solve the parameter
estimation problem in source identification or source character-
ization, including the least-squares estimator [2], the genetic
algorithm [3], [4], and the particle filter [5], among others.
A drawback of the least-squares estimation methods or other
gradient-based methods is that they often only converge to the
local minimum close to the initial guess. The random sample-
based methods are more likely to find the globally optimal
solution. Some source identification problems involve large-
scale dynamical models. Source identification methods for
complex atmospheric dispersion models are reviewed in [6],
including forward and backward modeling methods. Forward
modeling methods include stochastic Monte Carlo or Markov
Chain Monte Carlo sampling techniques; backward or inverse
modeling methods include adjoint and tangent linear models,
Kalman filters, and variational data assimilation [6]. Most
existing methods assume the number of the sources is known
or small.

This paper is concerned with multiple source identification
where the number of sources is unknown and possibly large. A
general grid-based formulation for multiple source identifica-
tion and an estimation method using convex optimization are
presented; a specific two-dimensional, multiple point source



identification problem is then studied. The background of the
problem is stationary and mobile radioactive source identifi-
cation using stationary or mobile sensor networks, which has
been studied in [2], [5], [7]–[9], among others. Our proposed
method is based on the observation that in many systems, the
contributions of multiple sources to a (noiseless) sensor obser-
vation satisfies the linear superposition principle. Thislinear
structure is explicitly exploited in our problem formulation. By
discretizing a parameter subspace (in that specific problemof
point source estimation, the subspace of the source location),
we formulate the multiple source identification problem as a
convex programming problem, which can be solved efficiently
using open-source or proprietary software even when the size
of the problem is large [10]. The proposed method handles
model selection and parameter estimation at the same time and
is efficient in identifying locations of significant releases. The
proposed method is not optimal in the Bayes sense, however,
because of the discretization of the parameter space as wellas
the cost function we choose to minimize, but many strategies
exist to further improve the result.

The organization of the remainder of the article proceeds
as follows. First, a generic observation model and a spe-
cific radiation sensor model are reviewed. Then, the source
identification problem is formulated as a convex optimization
problem. Finally, the numerical results of the convex program
in four scenarios are presented, followed by the comparisons
of the convex program with a gradient-based method and a
simulated annealing method.

II. PROBLEM FORMULATION

A. Generic Sensor Model

It is assumed thatM sensors are distributed in a region and
K stationary point sources are to be identified in the region.
In the absence of sensor noise and other errors, a generic
observation model at thejth sensor is given by

bj =
K

∑

k=1

αk · ajk(xk, yk; xj , yj) + α0 (1)

where bj is the observation at thejth sensor, andxj and
yj are the known coordinates of thejth sensor;α0 is the
mean of the background noise, which, for sake of simplicity,
is assumed to be stationary in time and space;K is the
unknown number of point sources,αk is the unknown intensity
of the kth point source, andxk and yk are the unknown
coordinates of thekth point source; andajk(xk, yk; xj , yj)
is a known function describing the contribution of thekth

source to the observation of thejth sensor. For non-point
sources, additional source parameters, for example, the size
and shape of the source, may be needed inajk as well. The
observation model is linear inαi and α0, and this fact will
be used in our problem formulation and estimation method,
which can be applied to any observation model of the form
of equation (1). The actual sensor data, denoted byb̃j , are
contaminated by internal sensor noise and background noise.
The noise properties depend on the sensor characteristics and

the environment. Given the observation model and the sensor
data, the ultimate objective of the point source term estimation
problem is to estimate the source parameters(αk, xk, yk) and
the numberK of sources (as well as the mean background
noiseα0) from bj , j = 1, . . . , M . The mean background noise
is observable for the above observation model. If either the
number of sources or the set of all possible locations of the
sources is known, the complexity of the estimation problem
is greatly reduced.

B. Radiation Sensor Model

Now a specific radiation sensor model in [5] is briefly re-
viewed with a focus on the measurement noise properties. The
model in [5] is chosen in our study mainly for its simplicity.
In this simplified model,ajk(xk, yk; xj , yj) is defined by

ajk(xk, yk; xj , yj) =
1

(xk − xj)2 + (yk − yj)2
(2)

It captures the fall-off property that the instantaneous measure-
ment is inversely proportional to the square of the distance
from the point source to the sensor. More realistic models
for radiation sensors are given in [2], [8], [9]. In practical
applications, additional factors are needed in the right-hand
side of the equation to account for attenuation by intervening
material and source-dependent efficiency of the sensor.

In the presence of sensor noise, the measured quantityb̃j is
an integer obeying the Poisson distribution [11], whose mean
is determined by both the true source contributions and the
background. No possible nonlinear effect is considered in this
study. The likelihood function of thejth sensor is

Lj , P (b̃j |bj) =
b
b̃j

j e−bj

b̃j !
(3)

where b̃j! is the factorial of b̃j, e is the natural logarithm
base, andbj is defined by equations (1) and (2). The mean
and variance of̃bj are bothbj.

C. Formulation of the Estimation Problem

Our proposed method begins with the discretization of
the xk − yk space. The motivation is that if the source
locationsxk and yk can only take on a finite set of known
values, because of the linear structure of the problem, it is
easier to obtain the solution to the source term estimation
problem. Now let us suppose(xk, yk) take on a total ofNS

(K ≪ NS andM < NS in general) possible values, denoted
by (xG

i , yG
i ), i = 1, . . . , NS . One choice of(xG

i , yG
i ) is a fine

grid over the region of interest. Prior knowledge about the
source distribution, if available, greatly reduces the number
of grid points. With the introduction of the grid, the sources
can now be fully represented by anNS × 1 vector xS , of
which the elementxS

i means that the intensity of a radiative
“source” at(xG

i , yG
i ) is xS

i . By definition,xS
i ≥ 0 and a lot

of xS
i are equal to zero. In other words,x

S is a sparse vector.
We say that an actual source is located at(xG

i , yG
i ) only when

xS
i exceeds a certain threshold. The number of the elements



in x
S exceeding the threshold is the number of point sources

over the region.
Equation (1) of the noiseless model is rewritten in terms of

xG
i andyG

i as

bj =
NS

∑

i=1

xS
i · aji(x

G
i , yG

i ; xj , yj) + α0 (4)

Note that the summation is from 1 toNS . In matrix form, it
is

b = AS
x

S + 1α0 =
[

AS
1
]

[

x
S

α0

]

= AX (5)

with obvious definition ofb, AS , x
S , A, andX. The dimen-

sion of the unknown parameter vectorX is N = NS + 1.
The observation (or sensing) matrixA is determined by the
sensors and the grid. For stationary sources and sensors, the
matrix only needs to be computed once. Note that the size
of A is M × N with M < N in general and that the linear
system is under-determined.

When the true sources are not located at any grid points,
resulting from the use of a coarse grid or a small set of
random samples in the location space, the correspondingA
matrix will be denoted byÃ and the error inA will be
called the source representation error. An upper bound of the
representation error is determined by the resolution of thegrid.
The observation model in this case is described by

b = ÃX + ǫǫǫ (6)

whereǫǫǫ is due to the representation error and is unknown.
In the presence of measurement noise, the counterparts of

equations (5) and (6) are

b̃ = AX + ννν (7)

and
b̃ = ÃX + ǫǫǫ + ννν (8)

respectively, whereννν is the unknown measurement noise
vector. There is no approximation in the linear form of
the observation models in equations (6), (7), and (8). The
approximation lies in the assumed properties ofννν andǫǫǫ. For
convenience, the mean and covariance ofννν may be assumed
to be0 andR̃ ≈ diag(b̃), wherediag(b̃) denotes the diagonal
matrix whose major diagonal is given bỹb.

The multiple source term estimation problem is now stated
as follows: GivenA and b, Ã and b, A and b̃, or Ã
and b̃, determine the estimated parameter vectorX̂, which
provides a linear combination of the columns ofA or Ã that
is the most consistent withb or b̃. There is no advantage
of this formulation if there is only one source. We have four
scenarios:

1) b = AX

2) b = ÃX + ǫǫǫ
3) b̃ = AX + ννν
4) b̃ = ÃX + ǫǫǫ + ννν

The first is the ideal case and the last is the realistic case. The
second and the third are also unrealistic because in practice

there is always measurement noise due to imperfectness of the
sensor response and the background and there is no guarantee
that the true sources are on the grid. BecauseM < N , we are
faced with an under-determined estimation problem. Because
K << N , X must be a sparse vector, that is, only a fraction
of it is nonzero. In the next section, we will show how to
formulate the optimization problems and solve for the large,
sparseX̂ in the four scenarios using theℓ1 minimization
method [12].

III. C ONVEX OPTIMIZATION FOR SOURCE TERM

ESTIMATION

A. Solution in the Ideal Scenario

The optimal estimatêX is defined as the solution to theℓ1

minimization problem for the noiseless case in [12]:

X̂ = argmin
X

‖DX‖1 subject toAX̂ = b, 0 ≤ X̂ ≤ X
UB

(9)
whereD is a diagonal matrix with the diagonal elements given
by the 2-norms of the columns ofA, AX = Â(DX̂) =
(AD−1)(DX̂), with Â = AD−1 a matrix of unit (2-norm)
column vectors. The 1-norm of a vector is defined by

‖X‖1 =

N
∑

i=1

|Xi| (10)

The 2-norm of a vector is defined by

‖X‖2 =

N
∑

i=1

|Xi|2 (11)

This is called anℓ1 minimization problem because the cost
is defined by the 1-norm of the vector. In the originalℓ1

minimization problem in [12], the matrixA in the constraint
AX = b is assumed to be a matrix of unit column vectors.
That is why we introduced the normalized version ofA as
well asD. The constraint0 ≤ X̂ ≤ X

UB requires that all the
elements ofX̂ be nonnegative and upper bounded byX

UB .
This constraint is not in theℓ1 minimization problem in [12]
but is important in our source term estimation problem, as will
be shown in the next section.

The solution of minimum 1-norm is preferred to the well-
known least-square solution, defined by

X̂
LS = argmin

X
‖X‖2 subject toAX̂

LS = b (12)

not only because the latter cannot guarantee nonnegativeX̂
LS

but because we know the truth is represented by a sparse
vector and the solution of minimum 1-norm is sparser than the
solution of the minimum 2-norm. Were the truthX not a sparse
vector, there would be no reason to prefer a sparse solution
X̂ of our problem. To see that the 1-norm is a better measure
of sparsity than the 2-norm, consider twoN -dimensional unit
vectors[1, 0, . . . , 0]T and [1/

√
N, . . . , 1/

√
N ]T . The former

is sparse while the latter is not. The 2-norms of the two
vectors are identical and the 1-norms of them are 1 and

√
N ,

respectively.



It should also be noted that although the solution of min-
imum 1-norm is sparser than that of minimum 2-norm, the
solution of minimum 1-norm is not necessarily the sparsest.
For example, if there are only two vectors[1, 1, 1, 0, . . . , 0]T

and [10, 0, . . . , 0]T satisfyingAX = b, the former, because
its 1-norm is smaller, will be chosen as the solution of the
ℓ1 minimization problem, but the latter is actually sparser.
However, finding out the sparsest solution is NP-hard [13].
An iterative reweighting scheme in [13] helps improve the
sparsity of the solution, but there is no absolute guarantee
that the sparsest solution can be found by using the iterative
reweighting scheme. The basic idea of iterative reweighting is
to minimize a cost in favor of a sparser solution than that of
minimum 1-norm. Formally, the new cost is given by

X̂ = arg min
X

‖[diag(X)]−1
X‖1 = argmin

X

N
∑

i=1

Xi

|Xi|

with 0/0 , 0 in the summation. The new cost corresponds to
the 0-norm ofX or the total number of nonzero elements ofX.
To avoid the “divide by zero” problem in practice,Xi/|Xi| is
replaced byXi/(|Xi|+ǫ), whereǫ is a small positive number.
The minimization problem is solved iteratively using theℓ1

minimization method, with the cost given by

X̂
(l+1) = arg min

X

N
∑

i=1

Xi

|X̂(l)
i | + ǫ

whereX̂
(l+1) is the optimal estimate in the(l + 1)th iteration

and X̂
(l)
i is the ith element of the optimal estimate from the

lth iteration.

B. Solutions in Non-Ideal Scenarios

Only the formulations for the last scenario are given below.
The formulations for the other two scenarios are different only
in the data matrices. The normalized version ofÃ is used in
the problem definition, given bŷ̃A = ÃD̃−1, whereD̃ is the
diagonal matrix of the 2-norms of the columns ofÃ.

X̂ = argmin
X

‖D̃X‖1

subject to‖W (ÃX̂− b̃)‖2 ≤ λ2, 0 ≤ X̂ ≤ X
UB

(13)

where λ2 is a control parameter. A lower bound ofλ2 is
obtained by solving

X̂ = argmin
X

‖W (ÃX− b̃)‖2 subject to0 ≤ X̂ ≤ X
UB

(14)
The tuning parameterλ2 is determined by simulations.

When the control parameters are too small, no feasible solution
exists. When they are too large, the optimal solution may be
nothing but the null vector. We have used 1.1 times the lower
bound in the second formulation. For the weighting matrix
W , we have usedW = IM×M because of its simplicity. The
optimal weighting matrixW requires knowledge about the
noise as well as the error.

IV. N UMERICAL RESULTS

A. Simulation Setup

The region of interest is a rectangle of 30× 30. A uniform
20 × 20 grid is generated over the region. So,NS = 400
and N = NS + 1 = 401. The numbers of the sensors that
cover the region areM = 100, M = 144, and M = 196.
The sensors provide reasonably good coverage over the region.
Good coverage may also be achieved by much fewer mobile
sensors with known position and movement. Three patterns of
the sensor locations are used in the numerical tests: random,
uniform grid, and concentric circles. The interesting question
about the different patterns is whether one is significantly
better than the other two. No sensor is located at a grid
point in order to avoid the singularity problem of the sensor
model given by equation (2). No optimization of the sensor
configuration is done. The matrixA is determined by the
sensor locations and the grid. Its size isM×N , i.e.,100×401,
144 × 401, or 196 × 401.

Two sensor noise levels are used. Suppose the true concen-
tration isbj . The two sensor noise variances used are0.1bj and
bj. For the smaller variance, the noise distribution is chosen
to be zero-mean Gaussian. For the larger variance, the distri-
bution of the sensor measurement is the Poisson distribution
with mean and variancebj. The maximum number of the point
sources in the region is 8, i.e.,1 ≤ K ≤ 8. The maximum
number of sources is not limited by theℓ1 minimization
method, but the observability of the source parameters. In
scenario 1 and 3, in which there is no representation error,
the true source locations are randomly selected from the grid
points. In the other two scenarios, the true source locations are
randomly chosen in the region and are not necessarily located
at any grid points. The maximum source representation error
is half the grid resolution, 0.79 in each direction. The intensity
of a source is randomly chosen between 50 and 100. The upper
bound, 100, is available to the source term estimation method.
The background noise is set to 1.

We use CVX for MATLAB, a package for specifying
and solving convex programs [14], [15], to solve the con-
vex optimization problems. The exit conditions of theCVX
solver include “Solved,” “Inaccurate/Solved,” “Unbounded,”
“Inaccurate/Unbounded,” “Infeasible,” “Inaccurate/Infeasible,”
“Failed,” and “Overdetermined.” We accept the solution when
the condition is either “Solved” or “Inaccurate/Solved.”

B. Result of Scenario 1 (b = AX)

In the ideal scenario, the simulation results show that no
pattern is better than the others. For all the three sensor pat-
terns and all the three numbers of sensors, the optimal estimate
X̂ as the solution to the problem defined by equation (9) is
identical to the truthX within the solver precision. We believe
that the constraint0 ≤ X̂ ≤ X

UB plays a role in the exact
recovery of the sources. The same result cannot be obtained
without the constraint0 ≤ X̂ ≤ X

UB . In fact, for any of the
three sensor patterns, the solution to

X̂ = argmin
X

‖DX‖1 subject toAX̂ = b (15)



or
X̂ = arg min

X
‖X‖1 subject toAX̂ = b (16)

can sometimes be totally different from the truth in both the
number of the sources and the values of the source parameters.
It is also observed that the equality constraintAX̂ = b can
be replaced by

‖AX̂− b‖2 ≤ λǫ (17)

with λǫ a small positive number, for example, in the order
of 10−12 or below. The resulting change in̂X due to this
replacement is negligible.

C. Result of Scenario 2 (b = ÃX + ǫǫǫ)

The source representation error is unique to the grid-based
method. Because of the source representation error, even in
this noiseless scenario, the grid-based method cannot recover
the true sources exactly, while a non-grid-based method still
can.

There is no limitation in the distance between a sensor and
a source in the simulations. As a result, a sensor may be very
close to a source and the corresponding observationbj may be
extremely large:bj ≫ 100 maxi Aji, where 100 is the upper
bound of the source intensity in the simulations. That means
no source on the grid can compensate for the large residual
at that sensor. When this happens, in the preprocessing of our
methods,bj is set to100 maxi Aji or a comparable value.

Now the result is presented of a hard case with 144 sensors
on concentric circles and four sources. The sensors and the
sources are shown in Figure 1. Note that two sources are
close to the sensors. The resolution of the grid around the
two sources are inadequate. This is the main problem due to
source representation errors.
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Figure 1. Sensors and Sources

The ℓ1 minimization solution can satisfỹAX̂ = b exactly
only when the constraint0 ≤ X̂ ≤ X

UB is not imposed.
The ℓ1 minimization solution vector without the constraint
is shown in Figure 2. This is a sparse solution that satisfies
ÃX̂ = b exactly, but some elements of̂X are negative.
The exact solution is thus meaningless. With the constraint
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Figure 2. Source Estimation Solution Vector without Nonnegative Source
Constraint

0 ≤ X̂ ≤ X
UB , the minimum magnitude of the residual

is approximately 297, which is the lower bound ofλ2 in
equation (13). The large residual results from the sensors close
to the sources. Theℓ1 minimization solution corresponding to
λ2 = min‖ÃX − b‖2 ≈ 297 is given in Figures 3 and 4.
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Figure 3. Source Estimation Solution Vector with Nonnegative Source
Constraint

It can be seen that with the constraint, all the elements are
nonnegative but there are many more than four sources. It is
generally true that more sources are needed to account for the
perturbation inÃ and minimize the residual error. Increasing
λ2 by ten percent and applying the iterative reweighting
scheme leads to much fewer sources, as shown in Figure 5.
From Figure 5, it can been seen that although owing to the
significant source representation error, the true sources cannot
be exactly recovered, the clusters are informative about the true
source locations. A gradient-based search in the local regions
covered by the clusters (assuming one or two sources in each
local region) can significantly improve the accuracy of the
result. Using a finer grid for that region can also improve the
result.

The estimated source intensity is inaccurate in this example.
For instance, the intensity of the leftmost source is 94 while
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Figure 4. Estimated Sources (source threshold = 1)
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Figure 5. Estimated Sources (source threshold = 1, with iterative reweighting)

the intensity of the estimated source there is only 52. This
discrepancy is mainly due to the fact that a sensor is close to
both the true and the estimated sources. The distance between
the sensor and the leftmost true source is approximately 0.52,
while the distance between the sensor and the estimated source
is 0.39. The square of the ratio is approximately 0.55, in good
agreement with the ratio of 94 to 52. As a general rule, when
there is a sensor that is very close to a source but is not as close
to the neighboring grid points, large discrepancy in the source
intensity between the truth and the estimate is inevitable.When
the sensor is moved away from the source, the source intensity
estimate becomes less sensitive to the variation in the location
of the source.

D. Result of Scenarios 3 and 4 (b̃ = AX+ννν and b̃ = ÃX+
ǫǫǫ + ννν)

In the presence of sensor noise, no estimation or optimiza-
tion method can exactly recover the truth. One hundred sensors
are not sufficient to provide accurate estimates in certain hard
cases. Of the three sensor patterns, the pattern of concentric
circles is overall worse than the other two because it provides
a less uniform coverage of the whole region. The area close

to the boundary of the rectangular region are not covered
adequately.

When the sensor noise variance is0.1bj and the source
locations can be well approximated by the grid points (i.e.,the
source representation error is not so severe as in the example
of the last section), the estimation result remains accurate,
comparable to the results when the source representation error
is the only error source. When the sensor noise variance
increases tobj , it is common to have an estimate of more
sources than the maximum number of true sources. That is
because more sources are needed to interpret the fluctuations
and deviations of the measurements. That statement is true for
other optimization methods as well. A typical example of eight
sources and 196 sensors is given. The iterative reweighting
method has been used to reduce the number of sources. The
true sources are given in Figure 6. The estimated sources are
plotted in Figures 7 and 8. In the former, all sources with
intensities greater than one are plotted; in the latter, only the
sources with intensities greater than 20 are plotted. Many small
false sources are introduced by the large measurement noise.
As in the source representation error only case, the source
intensities are not accurately estimated. In addition, thetwo
leftmost sources become one. However, the estimation results
are informative about the source locations.
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Figure 6. True Sources in Scenario 4

E. Comparison with Other Methods

The proposed convex optimization-based source term esti-
mation method is compared with a gradient-based, constrained
local optimization method in the MATLAB Optimization Tool-
box,fmincon, and a simple simulated annealing method. The
large-scale algorithm offmincon is a subspace trust-region
method and is based on an interior-reflective Newton method;
the medium-scale algorithm offmincon uses a sequential
quadratic programming method. The simulated annealing al-
gorithm directly searches the parameter space by a sequence
of random walk. All the methods are iterative.

The design space as well as the complexity of the proposed
convex method is determined mainly by the grid sizeN , not
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Figure 7. Estimated Sources in Scenario 4 (source threshold= 1, with
iterative reweighting)
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Figure 8. Estimated Sources in Scenario 4 (source threshold= 20, with
iterative reweighting)

the numberK of sources. In the previous numerical study, the
dimension of the design space of the proposed method is 401.
The solution of the proposed method determines the number
of sources and the values of the source parameters at the same
time.

The design space of the other two methods is determined by
the possible number of sources (8 in the previous numerical
study) and the number of independent parameters per model,
given by3K +1, whereK is the assumed number of sources
in the model. In the previous numerical study, the maximum
number of sources is eight. Since the number of sources is
unknown, in the worst case, eight solutions need to be solved
for by fmincon and the simulated annealing method, with
each solution vector being of the size of3K+1, K = 1, . . . , 8.

The proposed method takes advantage of the linear structure
of the source term estimation problems. The other two do
not. The accuracy of the proposed method depends on the
scenarios as well as the resolution of the grid. It can perfectly
recover the truth in the first scenario. Its accuracy in the
number, locations, and intensities of the sources in the other

three scenarios mainly depends on how severe the effect of the
source representation error is. The gradient-based methoddoes
not always converge to the global minimum. It can exactly
recover the truth in the first and second scenarios only when
the local minimum it arrives at happens to be the global
minimum, for which the probability is not high. Because of
this local minima problem, the accuracy of the gradient-based
method is the worst; the result of the gradient-based methodis
of very limited use without good initial guess. The simulated
annealing method can exactly recover the truth within its
precision in the first and second scenarios. It also yields the
most accurate estimation results in the other scenarios because
its accuracy is not limited by the resolution of the grid and in
principle it can converge to the global minimum when there
is no limitation in the maximum number of iterations.

Table I
EXECUTION T IME FOR FMINCON (SEC)

M = 100 M = 144 M = 196

K = 1 0.02 0.05 0.29

K = 2 0.06 0.40 0.61

K = 4 0.25 2.78 3.42

K = 6 0.52 5.37 6.70

K = 8 1.09 17.40 25.30

Table II
EXECUTION T IME FOR SIMULATED ANNEALING (SEC)

M = 100 M = 144 M = 196

K = 1 116.80 147.69 241.26

K = 2 423.49 588.04 865.11

K = 4 1746 2289 3205

K = 6 3562 5096 6951

K = 8 64421 11302 16167

Table III
EXECUTION T IMES FORℓ1 M INIMIZATION (SEC)

M = 100 M = 144 M = 196

N = 401 32.50 37.30 41.40

N = 901 57.23 80.87 114.50

N = 1601 82.46 122.37 209.14

The execution times of the three methods are compared in
the MATLAB environment under Windows XP Professional
on a DELL desktop computer of dual Intel Pentium CPU with
the processing rate of 2.4 GHz and of 4 GB RAM. The most
interesting question is how well the methods scale with the
size of the problem. The same data sets are processed by the
three methods. The MATLAB timing functionCPUTIME is
used to get the average execution times of the methods. It
should be pointed out that the execution time of a method
depends on the termination criterion and parameter tuning of
the method, the shape of the cost and the constraints, the
difficulty of the test problem for the method, the efficiency



of the MATLAB code, and whether pre-compiled functions
are used in the code (the pre-compiled functions are executed
much faster than the script functions), and so on. The execution
times of the simulated annealing method andfmincon also
heavily depend on the initial guess.

The timing results are given in Table I, II, and III. The
execution time of theℓ1 minimization method is mainly
determined by the grid size. Hence, the execution times of the
method (with the computation of the lower bound ofλ2 and
five iterations of iterative reweighting) are given for different
M and N . The simulated annealing method andfmincon
are not based on grid; therefore, the timing results for them
are presented for differentM andK. Note that the execution
time for fmincon or the simulated annealing algorithm for a
specificK in the tables is the time used to solve the parameter
estimation problem under a single hypothesis that the number
of sources isK. The times for the two methods in the tables
are less than the times they take to solve a complete problem
with unknown number of sources.

It can be seen that the execution time forfmincon is
the shortest. However, that is only the execution time for
one initial guess, which may not lead to any accurate or
meaningful estimate. Iffmincon is used to search the whole
region with tens or hundreds of initial guesses, the total
execution time offmincon will easily exceed that of the
ℓ1 minimization method. The simulated annealing method
is much slower than the other two. To solve a parameter
estimation problem of 24 parameters (eight sources), the
simulated annealing method we used takes more than four
hours on average. The execution times offmincon and the
simulated annealing method increase dramatically with the
number of sources, probably because the difficulty associated
with high-dimensional space. The execution time of theℓ1

minimization method is below four minutes and does not scale
fast with the grid size. Compared with the simulated annealing
method andfmincon, the ℓ1 minimization method has nice
balance between accuracy and complexity for multiple source
term estimation problems.

V. CONCLUSIONS

Multiple source term estimation is complex when the num-
ber and locations of sources is unknown. A grid-based method
is presented that determines the number of sources and the
source characteristics simultaneously and efficiently. The high
efficiency comes from the fact that the observation model can
be made formally linear by a discretization procedure and
that the optimization problem so formulated is convex and the
solution vector is sparse. Using the computationally efficientℓ1

minimization method, we can exactly recover the true source
characteristics from the distributed sensors in the regionin
ideal scenarios. In the presence of source representation error
due to discretization and the measurement noise, the local
areas of the sources can still be identified with the clusters
of grid points. The accuracy is limited by the resolution of
the grid. The accuracy of the solution of the proposed method
can be further improved by re-solving the problem with finer

grids in the identified areas of sources. The accuracy can also
be improved by a local search using a gradient-based method.
The complexity of the proposed method is mainly determined
by the size of the grid, but not the number of sources. The
maximum number of sources that can be identified is not
limited by the proposed method, but the amount of information
contained in the sensors. Finally, we note that this source term
estimation method can be extended to the case of multiple
moving sources with modest modification when perfect or
accurate knowledge about the source movement is available.
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