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Abstract – A simple three-dimensional Gaussian puff-based
dispersion model is designed to study the effect of uncertainties
in the model parameters on the solution. A polynomial chaos
approach to solve stochastic systems with parametric and
initial uncertainties is described. The solution of the disper-
sion model is investigated numerically using this approach.
The polynomial chaos solution is found to be an accurate
approximation to ground truth, established by Monte Carlo
simulation, while offering an efficient computational approach
for large nonlinear systems with a relatively small number of
uncertainties.
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I. Introduction
Real-time detection, tracking, backcasting and prediction

of chemical, biological and radiological (CBR) releases is
important for fast response to CBR leakages and attacks.
Atmospheric dispersion models are used to track the evolution
of the releases and assess the impact of the exposure to
potentially harmful contaminants over space and time. They
enable acquisition of useful knowledge about the hazardous
releases due to chemical incidents like the Bhopal gas disaster
in 1984 and radiological incidents like the Chernobyl nuclear
accident in 1986 [1]. These are also used to estimate or predict
the downwind concentration of air pollutants emitted from
sources such as industrial plants and vehicular traffic.

Dispersion involves transport (advection) and diffusion of
the target species released into the atmosphere. Dispersion
modeling uses mathematical formulations to characterize the
atmospheric processes that disperse a pollutant emitted bya
source. Dispersion is a complex nonlinear physical process
with numerous uncertainties in model parameters, inputs,
source parameters, initial and boundary conditions. Accurate
propagation of these uncertainties through the model is crucial
for an robust prediction of the probability distribution of
the states and assessment of risk. Uncertainty analysis is
recommended as an integral part of any risk assessment to
quantify the degree of confidence in the estimate of risk and

is particularly significant in CBR applications [2], [3].
Uncertainty propagation in various kinds of dynamical

models has been studied extensively in various fields. Most
of the methods incorporate linear approximations to nonlinear
system response, or involve propagating only a few moments
(often, just the mean and the covariance) of the distribution.
Adjoint models [4] and parametric differentiation belong to
this class and are widely used in sensitivity analysis of the
models. These work well if there is adequate local linearity.
Another class of methods, often used with models involving
nonlinearities, are the various sampling techniques [5]. The
uncertainty distributions are taken into account by sampling
values from known or approximated distributions and the
model is run repeatedly for those values to obtain a distribution
of the outputs. A Gaussian mixture based approach is proposed
in [6] for accurate uncertainty propagation through nonlinear
dynamical systems due to uncertain initial conditions. A
survey of the various methods used for uncertainty analysis
in dispersion and transport models can be found in [3], [7].

The present work applies generalized polynomial chaos
theory [8] to efficiently approximate the solution of a nonlinear
dynamical model with parametric uncertainties. Polynomial
chaos is a term originated by Norbert Wiener in1938 [9],
to describe the members of the span of Hermite polynomial
functionals of a Gaussian process. According to the Cameron-
Martin Theorm [10], the Fourier-Hermite polynomial chaos
expansion converges, in theL2 sense, to any arbitrary process
with finite variance (which applies to most physical processes).
This approach is combined with the finite element method
to model uncertainty in [11]. This has been generalized in
[8] to efficiently use the orthogonal polynomials from the
Askey-scheme to model various probability distributions.This
approach has been to applied in modeling uncertainties in
multibody dynamical systems [12], structural mechanics [13]
and computational fluid dynamics [14], [15]. The present work
involves the propagation of parametric uncertainty through a
nonlinear puff-based Lagrangian dispersion model. Gaussian
puff-based models [16], [17] of this sort are often used to
make fast release concentration prediction, in which a series
of Gaussian shaped puffs (pollutant atmospheric parcels with a
Gaussian distribution of the concentration field for each puff)



are released at the sources and propagated in the atmosphere.
In this work, a representative three-dimensional nonlinear

Gaussian puff based dispersion model is designed to study the
effects of diffusion parametric uncertainties on the solution.
The model is introduced and its dynamics are described in
Section II. The polynomial chaos approach is described in
Section III. Then, the uncertainty propagation is considered for
uncertainties in diffusion parameters for two cases important
in the target applications: normal and uniform distributions.
The results of numerical trials are discussed in Section IV.
The conclusions and further work are presented in Section V.

II. Dispersion Model
The atmospheric dispersion model used is based on the

RIMPUFF [17] (Riso Mesoscale PUFF) model which was
designed to calculate the concentration and doses resulting
from the dispersion of airborne particles. It is a Lagrangian
mesoscale atmospheric dispersion puff model, which applies
both to homogeneous and inhomogeneous terrain with mod-
erate topography on a horizontal scale of up to 50 km, and
responds to changing (non-stationary) meteorological condi-
tions. The model simulates the time varying release (emission)
of airborne materials by sequentially releasing a series of
Gaussian shaped puffs at a fixed rate on a specified grid.
The amount of airborne materials allocated to individual
puffs equals the release rate multiplied by the time elapsed
between puff releases. At each time step, the model advects,
diffuses and deposits the individual puffs according to local
meteorological and physico-chemical parameter values. This
model is used as a basis to design the present simple dispersion
model to study the effects of parametric uncertainty on the
solution.

A. Gaussian Puff Characteristics
The concentration distribution in each puff is Gaussian in

three-dimensional location space. Its mean represents thelo-
cation of the puff center, and the standard deviations scales the
size of the puff in the three spatial directions. For convenience,
the standard deviationσx in the downwind direction is made
equal to the standard deviationσy in the crosswind direction
and is denoted byσxy. The massQ of the puff is assumed to
be constant, that is, deposition and species conversion arenot
modeled.

Each Gaussian puff has five scalar parameters which vary
with time: [X,Y,Z, σxy, σz], where

X = [X,Y,Z]T , Centroid of the Gaussian puff

σxy = Puff size in x and y directions (std. deviation)

σz = Puff size in z direction

The concentrationc at a grid pointxg = [xg, yg, zg]
T , at

each time step, is calculated by summing the contributions of
all the puffs at that instant.

c(xg) =
N

∑

j=1

Qj
√

(2π)3 |Σj |
e

[

−

(Xj−xg)T Σj
−1(Xj−xg)

2

]

(1)

whereN is the number of puffs and

Σj =





σxy
2

j 0 0

0 σxy
2

j 0
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2
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B. Puff Dynamics
The advection and diffusion of each puff takes place accord-

ing to local meteorological parameter values. In this model, the
advection of each puff is calculated according to the surface
wind vector,u at the puff center and the time step,∆T used to
determine the next position of the puff center. Wind shear will
cause the puff height to increase when the vertical diffusion
σz increases. Plume rise due to heat content, buoyancy, release
momentum and other effects is ignored for the present simple
model.

Xk+1 = Xk + uX∆T

Yk+1 = Yk + uY ∆T

Zk+1 =

√

Z2
k +

σz
2
k+1

− σz
2
k

2π
(2)

where,u = [uX , uY ]T at [Xk, Yk]T

Expansion with time of a single puff is fundamentally
related to the relative diffusion process. It is computed from si-
multaneous measurements or specifications of the atmospheric
turbulence intensity and/or stability in the dispersion area. For
the current model, standard plume dispersion information is
used. Pasquill parameterization, using a modified Karlsruhe-
Jülich system [17], is employed. These parameters can be used
to describe puff growth in a constant wind field scenario [18]
which we consider in the present work. This parameterization
is valid for limited cases of near ground level releases and
dispersion over flat terrains. The growth of each puff is
described by

σxyk+1
= pys

qy

k+1

σzk+1 = pzs
qz

k+1
(3)

where,s = downwind distance given by,

sk+1 = sk +
√

u2
X + u2

Y ∆T

=

(

σxyk

py

)1/qy

+
√

u2
X + u2

Y ∆T

py, qy, pz, qz = stability dependent parameters

(Karlsruhe-J̈ulich diffusion coefficients)

Deposition and target species chemical reactivity are ne-
glected for the present model and hence the mass of each puff
remains constant during the dispersion process.



III. Polynomial Chaos
The polynomial chaos theory is applied to the solution of

a system of stochastic differential equations. A dynamical
system with uncertainties represented by a set of stochastic
differential equations can be transformed into a deterministic
system of equations in the coefficients of a series expan-
sion using this approach. The development in this section
largely follows [11] and [8]. The basic goal of the approach
is to approximate the stochastic system states in terms of
finite-dimensional series expansion in the infinite-dimensional
stochastic space. The completeness of the space allows for the
accurate representation of any random variable, with a given
probability density function (pdf), by a suitable projection on
a carefully selected basis. The bases can be chosen based
on the givenpdf, to represent the random variable with the
fewest number of terms. For example, the Hermite polynomial
basis can be used to represent random variables with Gaussian
distribution using only two terms. For dynamical systems
described by mathematical equations, the unknown coefficients
are determined by minimizing an appropriate norm of the
residual.

Let us consider a dynamical system of the form:

ẋ(t;p) = f(x,u;p) (4)

where, x(t;p) ∈ R
n represents the stochastic system state

vector, u represents the deterministic input andp ∈ R
m

represents the uncertain system parameters each of which is
a function of random variableξ with a known pdf g(ξ).
Now, each of the uncertain states and parameters can be
expanded approximately by the finite dimensional Wiener-
Askey polynomial chaos as:

xi(t,p) =
∑P

r=0
xir(t)φr(ξ) = xT

i (t)Φ(ξ) (5)

pj(ξ) =
∑P

r=0
pjrφr(ξ) = pT

j Φ(ξ) (6)

The total number of terms in the expansion isP + 1 and is
determined by the chosen highest order (l) of the polynomials
{φr} and the dimension (m) of uncertain variablesp.

P + 1 =
(l + m)!

l!m!
(7)

A. Example
For a dynamical system with two uncertain parameters, each

of which is a GaussianN (µj , σ
2
j ) for j = 1, 2, Hermite

polynomials are chosen as the random orthogonal basis for
expansion. The Hermite polynomials up to orderl = 2 can
be written as (see [8], [12] for details on how to select and
construct the basis functions):

φ0(ξ1, ξ2) = 1

φ1(ξ1, ξ2) = ξ1

φ2(ξ1, ξ2) = ξ2

φ3(ξ1, ξ2) = ξ2
1 − 1

φ4(ξ1, ξ2) = ξ1ξ2

φ5(ξ1, ξ2) = ξ2
2 − 1

where eachξi is N (0, 1). Note that there are six terms in
the expansion as given by Eq. (7). The system states can be
written as:

xi(t; ξ1, ξ2) =

5
∑

r=0

xir(t)φr(ξ1, ξ2), for i = 1, . . . , n(8)

The two uncertain parameters can be expanded as:

pj(ξ1, ξ2) = µj + σjξj , for j = 1, 2 (9)

Note that the coefficients for the other terms are all zero.

B. Solution

Substitution of the expressions forx andp in Eq. (5) and
Eq. (6) in Eq. (4) leads to:

ei(ξ) = ẋT
i (t)Φ(ξ) − fi(x1, . . . ,xn,u,p1, . . . ,pm; Φ(ξ))

for i = 1, 2, . . . , n (10)

The n(P + 1) time-varying unknown coefficientsxir can be
obtained using the Galerkin projection method. Projectingthe
error onto the space of basis functions{φr} leads ton(P +1)
deterministic ordinary differential equations (ODEs):

〈ei(ξ), φr(ξ)〉 = 0 (11)

for i = 1, 2, . . . , n andr = 0, 1, . . . , P

where〈u(ξ), v(ξ)〉 =
∫

Rm u(ξ)v(ξ)g(ξ)dξ represents the in-
ner product introduced bypdf g(ξ). For linear and polynomial
functions, these integrals can be easily evaluated analytically
[11] to obtain the differential equations. For non-polynomial
nonlinearities, these integrals represent a challenge. Numerical
quadrature methods are used to evaluate the multi-dimensional
integrals in the present work. For instance, Gauss-Hermite
quadrature formulae are used to evaluate the integrals for
a Hermite polynomial basis. These quadrature methods fall
under the broader sampling-based Non-Intrusive Spectral Pro-
jection (NISP) methods discussed in [19]. The differential
equations can then be solved to obtain the time-history of the
time-varying coefficientsxir. The solution of the stochastic
system in Eq. (4) can thus be obtained in terms of Hermite
functionals of Gaussian random variablesξi:

xi(t,p) =
P

∑

r=0

xir(t)φr(ξ), i = 1, . . . , n

This expression can be used to plot thepdf of the solution
by Monte Carlo sampling of the random variables. Further,
the first coefficientxi0(t) represents the mean of the solution
xi(t,p) when φ0(ξ) = 1. The other coefficients similarly
represent the combinations of various moments of thepdf:

xir(t) =
〈xi(t,p), φr(ξ)〉

〈φr(ξ), φr(ξ)〉

=

∫

Rm xi(t, ξ)φr(ξ)g(ξ)dξ
∫

Rm φ2
r(ξ)g(ξ)dξ

(12)



IV. Results and Discussion
In the present work, the effects of uncertainties in diffusion

parameterspy, qy, pz andqz on the solution of the dispersion
model are studied in a simulated CBR dispersion scenario.
The simulation experiments are performed for a single puff
release whose target species mass is5e5. The release occurs
at the origin. The wind blows horizontally across the domain
at 5m/s at an angle of30◦ from the x-axis. The evolution of
the 5 states of the puff is shown in Fig. 1, for the following
diffusion parameters to determine the growth of a puff:

py = 0.640, qy = 0.784

pz = 0.215, qz = 0.885 (13)
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Figure 1. Evolution of puff states

The evolution of the surface concentration (concentration
at [x, y, 0]) due to the release is shown in Fig. 2, where the
concentration surface and contour plots are shown for two time
instantst = 10 and t = 20.

The effects of parametric uncertainty are discussed for the
cases of normal and uniform distribution of the four diffusion
parameterspy, qy, pz and qz. Since these parameters do not
effect the evolution ofXk andYk, they are deterministic.

A. Normal distribution
The diffusion parameters are assumed to be normally dis-

tributed around the values chosen in Eq. (13), with a standard
deviation of 0.05. The three uncertain puff states are expanded,
as described in Eq. (8), in terms of Hermite polynomial
functionals of ξ ∈ R

4, each ξm being a random variable
with distribution N (0, 1). The series expansion is done up
to a maximum order4. The diffusion parameters are similarly
expanded, as described in Eq. (9). These polynomial chaos
expansions are substituted in Eq. (2) and Eq. (3). Using
Galerkin approximation as in Eq. (10), a set of deterministic
ODEs are obtained which can be solved to obtain the solution
of the stochastic system.
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Figure 2. Evolution of concentration

The resultingpdfs of the states are plotted for each of the
uncertain states in Fig. 3. These are compared with thepdfs
obtained by the Monte Carlo solution, which involves solving
the stochastic system several times, each time with a sampleof
the diffusion parameters drawn from their uncertainty distribu-
tions.10000 sample draws are chosen in the current example.
The polynomial chaos approach involves fewer computations
than the standard Monte Carlo approach while it can be seen
that the approach captures the distribution of all the states as
well as the Monte Carlo approach.
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Figure 3. pdf of uncertain states for normally distributed uncertainties

The concentration can be obtained by substituting the solu-
tion in Eq. (1). The uncertain concentration at a grid point at
various time instants can be obtained using a Hermite poly-
nomial chaos expansion of the concentration. The coefficients
can be similarly calculated using the Galerkin projection.The
resultingpdf is compared with that obtained from Monte Carlo
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Figure 4. pdf of concentration for normally distributed uncertainties

pj aj bj

py 0.64 0.84
qy 0.75 0.85
pz 0.16 0.26
pz 0.75 1

Table I
UNIFORM DISTRIBUTION BOUNDS OFDIFFUSION PARAMETERS

solutions of the system in Fig. 4. It can be seen from the
figure that the result agrees with the Monte Carlo solution.
In the same Fig. 4, thepdf of the concentration, obtained
using the mean and variance information propagated using
a linearized error model of the system, is also plotted (see
the green dashed line). Since this method propagates only
the mean and covariance, the true distribution is approximated
with a Gaussian. It can be seen that the nonlinearities in the
model and concentration equation cause the truepdf to be very
different from this result. For instance, it can be seen fromthe
magnified section of Fig. 4, that this approximation gives a
negligible probability for concentrations above25, while the
pdf obtained from Monte Carlo/polynomial chaos approach
gives a significant probability to influence the risk assessment
of a decision-maker. In a CBR scenario, a decision-maker
might order an evacuation based on the more accurate risk
assessment, while not doing so given the less accurate method
propagating only low order moments. Or take other protective
measures such as requiring first responders to wear protective
coverings. This illustrates the limitations of the linearization
approach.

B. Uniform distribution
The diffusion parameters are assumed to be uniformly

distributed in this case. The bounds[aj , bj ] of the distribution
of each of the parameters are as shown in Table I.

The three uncertain puff states are expanded, in terms

of Legendre polynomial functionals ofξ ∈ R
4, each ξm

being a random variable with distributionU(−1, 1). The series
expansion is done up to a maximum order4. The diffusion
parameters are similarly expanded as follows:

pj(ξ) =
bj − aj

2
+

bj + aj

2
ξj , for j = 1, . . . , 4

where,pj ∈ U(aj , bj)

These polynomial chaos expansions are substituted in
Eq. (2) and Eq. (3). Using Galerkin approximation as in
Eq. (10), a set of deterministic ODEs are obtained which can
be solved to obtain the solution of the stochastic system. The
resultingpdfs of the states are plotted for each of the uncertain
states in Fig. 5, and compared with thepdf of the Monte Carlo
solutions. It can be seen that the polynomial chaos approach
captures the distribution of all states as well as the Monte
Carlo approach. The highly non-Gaussian nature of thepdfs
is well captured. In addition to the mean and variance, the
higher moments are also well captured.
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Figure 5. pdf of uncertain states for uniformly distributed uncertainties

The uncertain concentration at a grid point at various time
instants can be similarly obtained using a Legendre polynomial
chaos expansion of the concentration. The coefficients are
calculated using the Galerkin projection. The resultingpdf is
compared with that obtained from Monte Carlo solutions of
the system in Fig. 6.

The results show the ability of the method to correctly
propagate thepdf of the uncertain states through nonlinear
dynamics, for a wide variety of uncertainty distributions in
the model parameters. The same approach is similarly valid
for the propagation of initial uncertainties in the states.

V. Conclusion
A three-dimensional puff-based model has been tested for

the purpose of accurately estimating the uncertainty distribu-
tion of the solution, caused by the uncertainty in the diffusion
parameters of the model. The polynomial chaos method has
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Figure 6. pdf of concentration for uniformly distributed uncertainties

been discussed in the context of uncertainty propagation and
applied to the puff model. The approximate solution to the
stochastic system is obtained as a linear combination of the
selected orthogonal basis functionals, whose coefficientsare
functions of time.

Using the polynomial chaos approach, the solution to a
stochastic nonlinear dynamical system is obtained in terms
of functionals of random variables, using which the true
distribution of the solution can be approximated. The solution
is shown to compare well with the true Monte Carlo solution.
The polynomial chaos approach involves fewer computations
than the standard Monte Carlo solution approach which re-
quires solving the dynamical model many times for many
realizations of the uncertain parameters. When measurements
are available, this information about the distribution of the
solution can be used to make accurate predictions using data
assimilation. This suggests an extension of this approach
to filtering problems with dynamical models having known
parametric uncertainty distributions, a task currently under
investigation.
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