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Abstract — A simple three-dimensional Gaussian puff-basdd particularly significant in CBR applications [2], [3].
dispersion model is designed to study the effect of unceitai Uncertainty propagation in various kinds of dynamical
in the model parameters on the solution. A polynomial chaosodels has been studied extensively in various fields. Most
approach to solve stochastic systems with parametric anfithe methods incorporate linear approximations to nealin
initial uncertainties is described. The solution of thepdis system response, or involve propagating only a few moments
sion model is investigated numerically using this approackoften, just the mean and the covariance) of the distributio
The polynomial chaos solution is found to be an accurafedjoint models [4] and parametric differentiation belory t
approximation to ground truth, established by Monte Carlthis class and are widely used in sensitivity analysis of the
simulation, while offering an efficient computational appch models. These work well if there is adequate local linearity
for large nonlinear systems with a relatively small numbér dAnother class of methods, often used with models involving
uncertainties. nonlinearities, are the various sampling techniques [Ble T

Keywords: Atmospheric dispersion, polynomial chaos, ununcertainty distributions are taken into account by sangpli
certainty propagation, sensitivity analysis, nonlineagn- values.from known or approximated dlstr|bu_t|ons.an_d the
Gaussian distributions model is run repeatedly for those values to obtain a digidhu

of the outputs. A Gaussian mixture based approach is prdpose
. in [6] for accurate uncertainty propagation through nogdin
. Introduction dynamical systems due to uncertain initial conditions. A
Real-time detection, tracking, backcasting and predictigurvey of the various methods used for uncertainty analysis
of chemical, biological and radiological (CBR) releases i# dispersion and transport models can be found in [3], [7].
important for fast response to CBR leakages and attacksThe present work applies generalized polynomial chaos
Atmospheric dispersion models are used to track the ewwlutitheory [8] to efficiently approximate the solution of a nowlar
of the releases and assess the impact of the exposuredynamical model with parametric uncertainties. Polyndmia
potentially harmful contaminants over space and time. Thejaos is a term originated by Norbert Wiener 1938 [9],
enable acquisition of useful knowledge about the hazardawsdescribe the members of the span of Hermite polynomial
releases due to chemical incidents like the Bhopal gastdisasunctionals of a Gaussian process. According to the Cameron
in 1984 and radiological incidents like the Chernobyl nacle Martin Theorm [10], the Fourier-Hermite polynomial chaos
accident in 1986 [1]. These are also used to estimate orgtredixpansion converges, in tH& sense, to any arbitrary process
the downwind concentration of air pollutants emitted frorwith finite variance (which applies to most physical proesss
sources such as industrial plants and vehicular traffic. This approach is combined with the finite element method
Dispersion involves transport (advection) and diffusidn do model uncertainty in [11]. This has been generalized in
the target species released into the atmosphere. Disperg] to efficiently use the orthogonal polynomials from the
modeling uses mathematical formulations to charactetiee tAskey-scheme to model various probability distributioniis
atmospheric processes that disperse a pollutant emitteal bgpproach has been to applied in modeling uncertainties in
source. Dispersion is a complex nonlinear physical processiltibody dynamical systems [12], structural mechanic¥ [1
with numerous uncertainties in model parameters, inputsd computational fluid dynamics [14], [15]. The presentkvor
source parameters, initial and boundary conditions. Aateur involves the propagation of parametric uncertainty thioag
propagation of these uncertainties through the model isi@ru nonlinear puff-based Lagrangian dispersion model. Gauassi
for an robust prediction of the probability distribution ofpuff-based models [16], [17] of this sort are often used to
the states and assessment of risk. Uncertainty analysismake fast release concentration prediction, in which aeseri
recommended as an integral part of any risk assessmenbt@&aussian shaped puffs (pollutant atmospheric parcefsavi
quantify the degree of confidence in the estimate of risk a@hussian distribution of the concentration field for eacff)pu



are released at the sources and propagated in the atmasphere

In this work, a representative three-dimensional nonlinea N Q; Cx—xg)TE X —xg)
Gaussian puff based dispersion model is designed to stedy th c(xg) = Z Jg ? Q)
effects of diffusion parametric uncertainties on the sohut j=1 (2m) %3]

The model is introduced and its dynamics are described \ifhere N is the number of puffs and
Section Il. The polynomial chaos approach is described in

. . . . . 2
Section Ill. Then, the uncertainty propagation is congddor Oy 0 ) 0
uncertainties in diffusion parameters for two cases ingurt Yi=| 0 og; O
in the target applications: normal and uniform distriboto 0 0 az?

The results of numerical trials are discussed in Section | .
The conclusions and further work are presented in Sectioné: Puff Dynamics
The advection and diffusion of each puff takes place accord-
ing to local meteorological parameter values. In this moithel
Il. Dispersion Model advection of each puff is calculated according to the serfac

o , , wind vector,u at the puff center and the time step]" used to
The atmospheric dispersion model used is based on fige mine the next position of the puff center. Wind shedir wi

RIMPUFF [17] (Riso Mesoscale PUFF) model which wagy s the puff height to increase when the vertical diffusio

designed to calculate the concentration and doses repultn jncreases. Plume rise due to heat content, buoyancy, eeleas

from the dispersion of airborne particles. It is a Lagrangigyomentum and other effects is ignored for the present simple
mesoscale atmospheric dispersion puff model, which a@p“ﬁ]odel.

both to homogeneous and inhomogeneous terrain with mod-
erate topography on a horizontal scale of up to 50 km, and

responds to changing (non-stationary) meteorologicallieon Xpr1 = Xp+uxAT

tions. The model simulates the time varying release (eonijsi Vier = Yi+uyAT

of airborne materials by sequentially releasing a series of

Gaussian shaped puffs at a fixed rate on a specified grid. 7 _ 724 Uzﬁﬂ — 0.} )
The amount of airborne materials allocated to individual h k 2w

puffs equals the release rate multiplied by the time elapsed whereu = [uy,uy]” at [X, Vi|”

between puff releases. At each time step, the model advects,

diffuses and deposits the individual puffs according toaloc Expansion with time of a single puff is fundamentally

meteorological and physico-chemical parameter valuess Thelated to the relative diffusion process. It is computedisi-

model is used as a basis to design the present simple dispersiultaneous measurements or specifications of the atmaspher

model to study the effects of parametric uncertainty on tierbulence intensity and/or stability in the dispersioaaarFor

solution. the current model, standard plume dispersion informat&n i
used. Pasquill parameterization, using a modified Karksruh
Julich system [17], is employed. These parameters can be used

A. Gaussian Puff Characteristics to describe puff growth in a constant wind field scenario [18]

The concentration distribution in each puff is Gaussian ?/r\]/h|ch we consider in the present work. This parameteriratio

) . . Is valid for limited cases of near ground level releases and
three-dimensional location space. Its mean representthe

cation of the puff center, and the standard deviations s¢hke dlspersmn over flat terrains. The growth of each puff is
. . C . described by

size of the puff in the three spatial directions. For coneane,

the standard deviatioa, in the downwind direction is made

equal to the standard deviatien, in the crosswind direction Ooypsr = pySZil
and is denoted by,,. The mass) of the puff is assumed to ) . s
. . . . Ozk+1 = P28 (3)
be constant, that is, deposition and species conversionare ) ) )
modeled. where,s = downwind distance given by,
Each Gaussian puff has five scalar parameters which vary Sk+1 = Sk + Ay uk FuiAT
with time: [X,Y, Z, 04, 0], Where 1/q
_ [ %=yg ! 2 2
X = [X,Y,Z]T, Centroid of the Gaussian puff = < Py ) +fux +uy AT
oy = Puff size in x and y directions (std. deviation) p,,q,,p.,q. = stability dependent parameters
o, = Puff size in z direction (Karlsruhe-dllich diffusion coefficients)

The concentratior at a grid pointxg = [z4,y,, 24]7, at Deposition and target species chemical reactivity are ne-
each time step, is calculated by summing the contributidns glected for the present model and hence the mass of each puff
all the puffs at that instant. remains constant during the dispersion process.



[ll. Polynomial Chaos where eacht; is AV(0,1). Note that there are six terms in

The polynomial chaos theory is applied to the solution df€ expan.sion as given by Eq. (7). The system states can be
a system of stochastic differential equations. A dynamicf'tten as:

system with uncertainties represented by a set of stochasti 5 )
differential equations can be transformed into a detestimi ~ i(£:€1,82) = Z$i7*(t)¢r(§1a€2)a fori=1,...,n(8)
system of equations in the coefficients of a series expan- r=0

sion using this approach. The development in this sectidiie two uncertain parameters can be expanded as:
largely follows [11] and [8]. The basic goal of the approach B .

is to approximate the stochastic system states in terms of pi(€n&) = pyt o forj=1,2 ©)
finite-dimensional series expansion in the infinite-dinienal Note that the coefficients for the other terms are all zero.
stochastic space. The completeness of the space allowsefor t

accurate representation of any random variable, with angive

probability density functiongdf), by a suitable projection on ]

a carefully selected basis. The bases can be chosen bdgedSolution

on the givenpdf, to represent the random variable with the ghstitution of the expressions farandp in Eq. (5) and
fewest number of terms. For example, the Hermite polynomiéh. (6) in Eq. (4) leads to:

basis can be used to represent random variables with Gaussia

distribution using only two terms. For dynamical systems:(§) =] (£)®(&) — fi(x1,...,Xn, W, P1,-- ., Pm; P(£))

described by mathematical equations, the unknown coeffiie fori=1,2,...,n (10)
are determined by minimizing an appropriate norm of the ) _ o
residual. The n(P + 1) time-varying unknown coefficients;,. can be

obtained using the Galerkin projection method. Projectirgy

Let us consider a dynamical system of the form: . i
error onto the space of basis functiofis.} leads ton(P+1)

x(t;p) = f(x,u;p) (4) deterministic ordinary differential equations (ODESs):
where, x(t; p) € R™ represents the stochastic system state (€i(€),9-(£)) =0 (11)
vector, u represents the deterministic input apd € R™ fori—=1.2.... . nandr=0.1 J2)

represents the uncertain system parameters each of which is
a function of random variablg with a known pdf g(¢). where(u(§),v(§)) = [z.. u(§)v(§)g(€)d represents the in-
Now, each of the uncertain states and parameters can ne& product introduced bydf g(£). For linear and polynomial
expanded approximately by the finite dimensional Wienefunctions, these integrals can be easily evaluated anallyti
Askey polynomial chaos as: [11] to obtain the differential equations. For non-polynam
P . nonlinearities, these integrals represent a challengmexigal
zi(t,p) =2, Tir(W)or(§) = x; () () quadrature methods are used to evaluate the multi-dimesisio
pi(§) = Zfzopjrgbr(g) = pjT<I>(§) (6) integrals in the present work. For instance, Gauss-Hermite
guadrature formulae are used to evaluate the integrals for
a Hermite polynomial basis. These quadrature methods fall
under the broader sampling-based Non-Intrusive Specteal P
jection (NISP) methods discussed in [19]. The differential
equations can then be solved to obtain the time-history ®f th
time-varying coefficientse;,.. The solution of the stochastic
system in Eq. (4) can thus be obtained in terms of Hermite

A. Example _ ) ;
P ) ) ] functionals of Gaussian random variablgs
For a dynamical system with two uncertain parameters, each

of which is a GaussianV(yu;,07) for j = 1,2, Hermite
polynomials are chosen as the random orthogonal basis for

expansion. The Hermite polynomials up to order 2 can

be written as (see [8], [12] for details on how to select anif!iS €xpression can be used to plot fef of the solution
construct the basis functions): by Monte Carlo sampling of the random variables. Further,

the first coefficientr;(t) represents the mean of the solution

The total number of terms in the expansionAs+ 1 and is
determined by the chosen highest ordgrof the polynomials
{#.} and the dimensionn() of uncertain variablegp.

(I +m)!

P+l Il

O

P
2(tp) = Y w e (€ i=1,....n
r=0

Po(61,62) = 1 z;(t,p) when ¢o(¢) = 1. The other coefficients similarly
#1(6,&) = & represent the combinations of various moments offpitiie
$2(61,62) = & zin(t) (zi(t,p), ¢r(£))

¢3(61,6) = -1 " (¢r(€), 0r(€))

$4(61,62) = && _ Jem 7i(t, §)0r(§)9(§)dE (12)
b5(61,6) = €&-1 Jem 92(€)g(€)d€



IV Results and DlSCUSS'On conc surf at time t = 10 conc surf at time t = 20

In the present work, the effects of uncertainties in diffnsi < 50 30 50 6
parameterg,, g,,p. andg. on the solution of the dispersion & o &
. . . . . < € 4
model are studied in a simulated CBR dispersion scenar g g
The simulation experiments are performed for a single pL 8 ol A B S - 2
release whose target species masSeis The release occurs 100 00 2L, 100 w0 L,
at the origin. The wind blows horizontally across the domai y 00 x y 00 x
at5m/s at an angle oB0° from the x-axis. The evolution of conc contours at time t = 10 conc contours at time t = 20
. . . . 200 30 200
the 5 states of the puff is shown in Fig. 1, for the following 6
diffusion parameters to determine the growth of a puff: 150 , 10
4
py = 0.640, ¢, = 0.784 ~ 100 W 100
p, = 0215, ¢, = 0.885 (13) 50 O 50 z
0 0 0 0
0 100 200 0 100 200
X X
400
20 : ‘ ‘ Figure 2. Evolution of concentration
00 10 20 30 40 50
200 T T T T
> 100 4?/ .
o ‘ ‘ ‘ The resultingpdfs of the states are plotted for each of the
107 P 2 i 290 >0 uncertain states in Fig. 3. These are compared withptlfe
N BF . obtained by the Monte Carlo solution, which involves sodvin
h m > - m o the stochastic system several times, each time with a sasfiple
% ‘ ‘ ‘ ‘ the diffusion parameters drawn from their uncertaintyrdist
o tions. 10000 sample draws are chosen in the current example.
430 10 20 30 40 50 The polynomial chaos approach involves fewer computations
=20 ‘ ‘ ‘ ‘ than the standard Monte Carlo approach while it can be seen
0 : - ‘ ‘ that the approach captures the distribution of all the state
0 10 o 0% 40 50 well as the Monte Carlo approach.
. . pdfofzatT =15 pdf Ofcxy atT=15
Figure 1. Evolution of puff states 0.4 0.1

0.3
The evolution of the surface concentration (concentratic

. . . 0.2 0.05
at [z,y,0]) due to the release is shown in Fig. 2, where th
concentration surface and contour plots are shown for twe ti ot
instantst = 10 and¢ = 20. %% 5 1 1 % 20 20 50
The effects of parametric uncertainty are discussed for ti z %y
cases of normal and uniform distribution of the four diffusi pdfofo, atT=15
parameters,, ¢,,p. and g,. Since these parameters do no 02
effect the evolution ofX; andY, they are deterministic. 0.15 poly chaos
01 = = monte carlo
A. Normal distribution 0.05
The diffusion parameters are assumed to be normally d o - > 0
tributed around the values chosen in Eq. (13), with a stahdz o,

deviation of 0.05. The three uncertain puff states are edg@an

as described in Eqg. (8), in terms of Hermite polynomial

functionals of¢ € R4, each &n being a random variable Figure 3. pdf of uncertain states for normally distributecemainties

with distribution A(0,1). The series expansion is done up

to a maximum orde#. The diffusion parameters are similarly The concentration can be obtained by substituting the solu-
expanded, as described in Eqg. (9). These polynomial chams in Eqg. (1). The uncertain concentration at a grid point a
expansions are substituted in Eq. (2) and Eq. (3). Usimgrious time instants can be obtained using a Hermite poly-
Galerkin approximation as in Eq. (10), a set of determiaisthnomial chaos expansion of the concentration. The coeffigien
ODEs are obtained which can be solved to obtain the solutioan be similarly calculated using the Galerkin projectidhe

of the stochastic system. resultingpdf is compared with that obtained from Monte Carlo



pdfofconcat T =15at Xg = [60 40 0] of Legendre polynomial functionals of < R?*, each¢,,

| | | = —LnEnpop being a random variable with distributiéfn(—1,1). The series

. T Pow chaos expansion is done up to a maximum orderThe diffusion
| parameters are similarly expanded as follows:

p;(§) =

0.12

0.1

0.081

bi—a; b +a
A ];ajgj,forj:1,...,4

2

0.06f where,p; € U(a;,b;)

These polynomial chaos expansions are substituted in
Eq. (2) and Eq. (3). Using Galerkin approximation as in
Eqg. (10), a set of deterministic ODEs are obtained which can
be solved to obtain the solution of the stochastic systers. Th
J resultingpdfs of the states are plotted for each of the uncertain

0 > N ~ 1 states in Fig. 5, and compared with thef of the Monte Carlo
20 0 08 801020 solutions. It can be seen that the polynomial chaos approach
captures the distribution of all states as well as the Monte
Carlo approach. The highly non-Gaussian nature ofpitiies
Figure 4. pdf of concentration for normally distributed uriaities is well captured. In addition to the mean and variance, the
higher moments are also well captured.

0.04

0.02

pi | aj | b
py | 0.64 | 0.84 pifof 261 T = 15 pdf of o, at T =15
qy | 0.75 | 0.85 0.4 0.2
p. | 0.16 | 0.26 03 o5
7 1
p= | 0.75 0.2 0.1
Table |
0.1 0.05
UNIFORM DISTRIBUTION BOUNDS OFDIFFUSION PARAMETERS
00 5 10 010 20 30 40

z [}
xy

pdf of g,atT=15

solutions of the system in Fig. 4. It can be seen from tF 0.2
figure that the result agrees with the Monte Carlo solutiol 0.15
In the same Fig. 4, thedf of the concentration, obtained 01
using the mean and variance information propagated usi 0.05
a linearized error model of the system, is also plotted (si
the green dashed line). Since this method propagates o 0 10 20 30

the mean and covariance, the true distribution is appraetha :

with a Gaussian. It can be seen that the nonlinearities in the

model and concentration equation cause thetifeo be very Figure 5. pdf of uncertain states for uniformly distributettcertainties
different from this result. For instance, it can be seen fthem

magnified section of Fig. 4, that this approximation gives a The uncertain concentration at a grid point at various time
negligible probability for concentrations abo8, while the jnstants can be similarly obtained using a Legendre polyaom
pdf obtained from Monte Carlo/polynomial chaos approacghaos expansion of the concentration. The coefficients are
gives a significant probability to influence the risk asses=®m calculated using the Galerkin projection. The resultitj is

of a decision-maker. In a CBR scenario, a decision-makgsmpared with that obtained from Monte Carlo solutions of
might order an evacuation based on the more accurate figk system in Fig. 6.

assessment, while not doing so given the less accurate thethoThe results show the ability of the method to correctly
propagating only low order moments. Or take other protectiyropagate thepdf of the uncertain states through nonlinear
measures such as requiring first responders to wear pr@ectynamics, for a wide variety of uncertainty distributions i
Coverings. This illustrates the limitations of the lineation the model parameters_ The same approach is Sim”ar]y valid
approach. for the propagation of initial uncertainties in the states.

poly chaos
== monte carlo

B. Uniform distribution V. Conclusion

The diffusion parameters are assumed to be uniformly A three-dimensional puff-based model has been tested for
distributed in this case. The bounfis, b;] of the distribution the purpose of accurately estimating the uncertainty itlistr
of each of the parameters are as shown in Table I. tion of the solution, caused by the uncertainty in the difins
The three uncertain puff states are expanded, in termparameters of the model. The polynomial chaos method has



pdf of conc at T = 15 at Xg = [60 40 0] [5]
0.18 T T T T
poly chaos
0.16 == monte carlo||
0.14} 1
(6]
0.12 q
0.1 q
(7]
0.08 4
0.06} 1 [8l
0.04+ —
0.02 q [9]
o ‘ ‘ ‘ ‘ [10]
0 5 10 15 20 25 30
concentration
(11]
Figure 6. pdf of concentration for uniformly distributed en@inties [12]

[13]
been discussed in the context of uncertainty propagatioh an
applied to the puff model. The approximate solution to the
stochastic system is obtained as a linear combination of the
selected orthogonal basis functionals, whose coefficiargs [14]
functions of time.

Using the polynomial chaos approach, the solution to a
stochastic nonlinear dynamical system is obtained in terrd$!
of functionals of random variables, using which the true
distribution of the solution can be approximated. The sofut [16]
is shown to compare well with the true Monte Carlo solution.
The polynomial chaos approach involves fewer computations
than the standard Monte Carlo solution approach which ra7]
quires solving the dynamical model many times for many
realizations of the uncertain parameters. When measurement
are available, this information about the distribution bé&t [18]
solution can be used to make accurate predictions using data
assimilation. This suggests an extension of this approaﬁg]
to filtering problems with dynamical models having known
parametric uncertainty distributions, a task currentiydem
investigation.

Acknowledgment

This work is supported under contract no. HM1582-08-1-
0012 from ONR.

References
[1] National Research Council (U.S.). Committee on the Atmesigch
Dispersion of Hazardous Material ReleasEsicking and predicting the
atmospheric dispersion of hazardous material releasepli@ations for
homeland security National Academies Press, 2003.

Evaluating the Reliability of Predictions Made using Eovimental
Transfer Modelsintern. Atomic Energy Agency Std. Safety series, 100,
1989.

K. S. Rao, “Uncertainty Analysis in Atmospheric DispensiModeling,”
Pure and Applied Geophysicgol. 162, pp. 1893-1917, Oct. 2005.

R. M. Errico, “What Is an Adjoint Model?.Bulletin of the American
Meteorological Societyvol. 78, pp. 2577-2591, Nov. 1997.

(2]

(3]
(4]

J. Helton, J. Johnson, C. Sallaberry, and C. Storlie, rv8u of
sampling-based methods for uncertainty and sensitivity yarsl
Reliability Engineering & System Safewol. 91, no. 10-11, pp. 1175 —
1209, 2006. [Online]. Available: http://www.sciencediteom/science/
article/B6VAT-4J2KTBT-4/2/5e0fbf6alb5a3fff884e903ebebfc

G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uraiety propa-
gation for nonlinear dynamic systems using gaussian mixtureefagd
Journal of Guidance, Control and Dynamjogol. 31, no.6, pp. 1623—
1633, 2008.

S. S. Isukapalli, “Uncertainty analysis of transpagrtsformation mod-
els,” Ph.D. dissertation, Rutgers, The State UniversityNefv Jersey,
1999.

D. Xiu and G. E. Karniadakis, “The wiener—askey polynohaiaaos for
stochastic differential equations3IAM J. Sci. Computvol. 24, no. 2,
pp. 619-644, 2002.

N. Wiener, “The homogeneous chaoéfnerican Journal of Mathemat-
ics, vol. 60, no. 4, pp. 897-936, Oct. 1938.

R. Cameron and W.T.Martin, “The orthogonal developmehtnon-
linear functionals in series of fourier-hermite functiosialThe Annals
of Mathematicsvol. 48(2), pp. 385-392, 1947.

R. G. Ghanem and P. D. Span&pchastic Finite Elements: A Spectral
Approach New York, NY: Springer-Verlag, 1991.

A. Sandu, C. Sandu, and M. Ahmadian, “Modeling multibogyamic
systems with uncertainties. Part I: Theoretical and comjmutal as-
pects,”Multibody System Dynamicsol. 15, no. 4, pp. 369-391, 2006.
R. Ghanem and J. Red-Horse, “Propagation of probabilisicertainty
in complex physical systems using a stochastic finite elemeubaph,”
Physica D: Nonlinear Phenomepa&ol. 133, no. 1-4, pp. 137 — 144,
1999. [Online]. Available: http://www.sciencedirectmfscience/article/
B6TVK-3XG1SXG-9/2/af72bbcf8fb11699a84637faf314ele7

H. N. Najm, “Uncertainty quantification and polynomial ads
techniques in computational fluid dynamicsAnnual Review of
Fluid Mechanics vol. 41, no. 1, 2009. [Online]. Available: http:
//dx.doi.org/10.1146/annurev.fluid.010908.165248

O. M. Knio and O. P. Le Mtre, “Uncertainty propagation in CFD using
polynomial chaos decompositionfPluid Dynamics Researchvol. 38,
pp. 616-640, Sep. 2006.

N. Holmes and L. Morawska, “A review of dispersion modsdliand
its application to the dispersion of particles: An overviefvdifferent
dispersion models availableAtmospheric Environmentvol. 40, pp.
5902-5928, 2006.

S. Thykier-Nielsen, S.Deme, and T. Mikkelsen, “Destidp of the
Atmospheric Dispersion Module RIMPUFF,” Riso National Ladiory,
P.0.Box 49, DK-4000 Roskilde, Denmark, Tech. Rep. RODOS(WG2)
TN(98)-02, 1999.

P. Zannetti,Air Pollution Modeling: Theories, Computational Methods
and Available Software New York, NY: Van Nostrand Reinhold, 1990,
p. 167.

M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio, “Unaiety
guantification in reacting-flow simulations through norriisive spectral
projection,” Combustion and Flamevol. 132, no. 3, pp. 545 — 555,
2003. [Online]. Available: http://www.sciencedirectrafscience/article/
B6V2B-48KVGJID-S/2/621e15615f4355ced8abb35¢1d10969d



