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A circular prediction algorithm is proposed, which integrates

the measured data into the filter and constrains the prediction to

lie on a smooth curve modeled by an arc of a circle. The circular

prediction is entirely defined in relation to three measurements in

three-dimensional space. It is therefore not necessary to calculate

the center and the radius of the circle. To obtain the statistics

of the circular prediction, the unscented transformation has

been utilized. The proposed hybrid filter combines the circular

prediction and a constant velocity prediction by utilizing the

covariance intersection (CI). This combined prediction can

be updated with the subsequent measurement using a linear

estimator. The proposed technique is compared with standard

filters and the interacting multiple model (IMM) approach on

a benchmark trajectory which includes coordinated turns and

straight line maneuvers.
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I. INTRODUCTION

The estimation and prediction of the kinematics
of a dynamic object requires the use of a dynamic
model and discrete time data. A majority of target
trackers are based on a straight line maneuver
such as ®-¯ [1—3], ®-¯-° [4, 5] and linear Kalman
filters [6—8]. The model uncertainties and the
pilot-induced maneuvers are accounted for as
stochastic acceleration [9, 10]. Farooq et al. [11, 12]
present various maneuver compensation techniques.
The ambiguousness of the maneuver models has been
compensated by designing algorithms consisting of
multiple models [13—18]. On the contrary, complex
nonlinear models have been developed to capture
the real object dynamics [19—21]. These models are
applied to special maneuvers such as the coordinated
turn [22, 23]. In general the coordinated turn
models are a set of nonlinear, coupled equations,
which are difficult to solve. The focus of the work
presented here is on the development of an algorithm
constraining the predicted state to a circular path.
The unscented transformation developed by Julier

and Uhlmann [24] is used in conjunction with the
circular target motion model derived here. The key
feature of the unscented transformation is that it
approximates the probability distribution rather than
approximating the nonlinear function by a Taylor
series. A review of the development and modifications
of the original unscented transformation is presented
in [25]. In addition, the proposed hybrid filter utilizes
the covariance intersection (CI) algorithm developed
by Uhlmann [26], [27] to combine the maneuvering
and nonmaneuvering modes. The CI is a conservative
fusion technique if the cross-correlation is unknown.
Uhlmann arrived at the CI algorithm by showing
that the solution of a conservative fusion yielding a
positive definite error covariance, is a function of a
scalar weight w only.
A geometric approach of implementing a

circular turn has been introduced by Roecker and
McGillem [28]. It has been observed that aircrafts
normally maneuver on circular paths and a new polar
coordinate system has been implemented at the center
of the maneuver. Kawase et al. [29] designed an ®-¯
filter in conjunction with a two-dimensional circular
prediction algorithm. In [30] Kawase et al. combined
the circular prediction with a two-stage Kalman
filter, which has been used for maneuvering targets
by Alouani et al. [8]. The center-point approach
(CPA) predicts in a polar coordinate system (R and
Ã) whose origin is the center of the circle. The CPA
is not amenable for further stability, performance and
uncertainty analysis, because of the complex center
coordinate calculation and discontinuities in the polar
angle Ã between successive scans. This discontinuity
appears by switching from the previous circle to the
next circle as the radius and center change. Moreover,
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this algorithm has to distinguish between clockwise
and counterclockwise turns. Tenne and Singh [31]
presented a circular tracking algorithm in a local
coordinate system retaining a set of states to avoid
such discontinuities.
This paper develops a three-dimensional tracking

algorithm for maneuvering trajectories. Section II
introduces the planar circular tracking technique
in a local coordinate system, which is amenable to
extension to a three-dimensional tracking algorithm
as proposed in Section III. This section derives the
circular prediction plane on which the prediction is
performed using the Unscented transformation. The
Hybrid filter is introduced as a convex combination
of the circular prediction and a constant velocity
prediction. The paper concludes with an illustration
of the proposed technique on a benchmark trajectory
consisting of coordinated turns and straight line
maneuvers.

II. THE PLANAR CIRCULAR TRAJECTORY
CONSTRAINT

To develop the algorithm, consider four points
lying on a circle as shown in Fig. 1(a). The four
points are connected to create two triangles 4123
and 4134, where the triangle sides are named by
the points which they connect, for example, R12 is
the distance between points and . The fourth
point can be described relative to the points to
by a variety of angle and distance combinations.

A convenient pair is the angle '2 and the distance
R34 as indicated in Fig. 1(b). The desired prediction
equations define the relationships between the fourth
point, which is parameterized by R34 and '2 and
the previous three points. To derive the prediction
equation, consider the points , , and relative
to point , which is equivalent to introducing a
Cartesian coordinate system labeled u-v with its origin
at point . Observing Fig. 1(b), the distances are
defined in terms of ui and vi.

R213 = u
2
3 + v

2
3 (1a)

R214 = u
2
4 + v

2
4 (1b)

R224 = (u4¡ u2)2 + (v4¡ v2)2 (1c)

R234 = (u4¡ u3)2 + (v4¡ v3)2: (1d)

Equations (1c) and (1d) can be rewritten as

u2u4 + v2v4 = R12R14 cos('1 +'2) (2a)

u3u4 + v3v4 = R13R14 cos'2 (2b)

and solving for the relative position [u4 v4]
T, yields

the desired relationship·
u4

v4

¸
=
·
u2 v2

u3 v3

¸¡1·R12 cos('1 +'2)
R13 cos'2

¸
R14: (3)

Fig. 1. Properties of points lying on a circle.
(a) Basic properties. (b) Relative relationships.

The unknown distance R14 in (3) is determined from
4134 using the cosine rule

R14 = R13

24cos'2§
sµ

R34
R13

¶2
¡ sin2'2

35 : (4)

In case of a prediction with constant angular velocity
('2 = '1 and R34 = R23) it can be shown that the
smaller value of (4) yields the trivial solution of
R14 = R12, and therefore the desired relationship for
the prediction is the positive radical. This equation
is also valid for the nonconstant angular velocity
case since the smaller value of R14 would place the
predicted position in the vicinity of point , which is
not the desirable solution.
From the triangle 4234 in Fig. 1(a), the variable

R34 can be calculated using the sine theorem

R34 =
sin°1
sin°2

R23 =
sin'2
sin'1

R23 (5)

where the relationships °1 = '2 and °2 = '1 have been
applied, which can be easily observed from Fig. 1(a).
The solution of R14 (4) contains the evaluation of a

square root, whose radicand can take negative values
and can cause numerical instability. It is therefore,
desirable to derive an alternative form, which proves
advantageous in the prospective development. An
alternative equation for the distance R14 can be
obtained by substituting (5) into (4) and rearranging
leading to

R14 = R13 cos'2 +
sin'2
sin'1

q
R223¡R213 sin2'1: (6)

The square root expression can be modified by
observing Fig. 2, where the triangle 4123 has been
extended in the direction of the phasor R12 to build a
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Fig. 2. Right angle triangle extension to triangle 4123.

right angle triangle with the hypotenuse R13q
R223¡R213 sin2'1 = R13 cos'1¡R12:

Further simplification with the use of the sum of angle
theorem leads to

R14 = [R13 sin('1 +'2)¡R12 sin'2]
1

sin'1
: (7)

Note that (7) is also valid for straight line maneuvers.
Assuming a constant speed (CS) angular turn (7)
reduces to

RCS14 = 2R13 cos'2¡R12 (8)

and in case of a straight line maneuver

lim
'1!0

RCS14 = 2R13¡R12: (9)

For prospective development of a three-
dimensional extension of the proposed algorithm, the
prediction (3) can be interpreted as a vector quantity.
Define the vector ~r12 of length R12 pointing from
point towards point , and vector ~r13, respectively.
By evaluating the matrix inverse and noticing that
the determinant can be expressed as u2v3¡ u3v2 =
R12R13 sin'1, which is a direct result of the cross
product performed in a two-dimensional plane

k~r13£~r12k= R12R13 sin'1 (10)

the prediction equation (3) can be rewritten as·
u4

v4

¸
= T(¼=2)~n13R14

cos('1 +'2)
sin'1

+T(¡¼=2)~n12R14
cos'2
sin'1

: (11)

The following substitutions have been introduced. The
matrix T(®) is the rotational transformation matrix
defined as

T(®) =
·
cos® sin®

¡sin® cos®

¸
: (12)

The normalized vector ~n12 is the unit vector pointing
in the direction of ~r12. The new prediction (11)
consists of a summation of the rotated and scaled unit
vectors ~n12 and ~n13 in a two-dimensional plane. In a
three-dimensional environment the same rotation has
to be performed around the normal vector defined by
the two-dimensional plane.

III. THE THREE DIMENSIONAL EXTENSION

Commonly target position estimators function
in a three-dimensional environment. The radar
measurements, for example, are obtained in a
spherical coordinate system reporting the range,
azimuth, and elevation, whereas the target’s position
is described in a global Cartesian coordinate system.
Kawase et al. [32] applied his two-dimensional CPA
to a three-dimensional prediction, where the prediction
is performed on a turning plane and its normal
vector is being estimated. The proposed curve-fitting
estimator constrains the prediction to a circular
trajectory in a two-dimensional coordinate system.
This section addresses the fact that the three points
form a two-dimensional plane, which is oriented
in three-dimensions. The circular estimation can be
performed in this two-dimensional plane and later
back-transformed to the global three-dimensional
coordinate system.

A. Representing the Circular Prediction Plane

The circular prediction algorithm described in
the previous section is performed based on three
position measurements. These three locations define
two vectors ~r12 and ~r13 as shown in Fig. 1, which
span a two-dimensional plane in three-dimensional
space. The normal vector ~ns of the two-dimensional
plane can be obtained by evaluating the normalized
cross product between ~r12 and ~r13. The orientation of
the normal vector is positive when the three vectors
constitute a right-handed coordinate system, which
can also be determined by the right-hand screw rule
rotating ~r12 into the direction of ~r13. The transition
from the original Cartesian coordinate system to
the circular prediction plane can be achieved by a
multi-step rotation of the coordinate system. The first
step consists of a rotation around the z-axis such that
the projection of the normal vector onto the x-y plane
aligns with the x-axis. This rotation is performed by
the three-dimensional transformation matrix G1('s),
where 's is the polar rotation angle of the normal
vector projected on to the x-y plane. Subsequent
to the alignment with the x-axis, the second step
rotates the coordinate system around the transformed
y-axis. This rotation is performed by the rotation
matrix G2(#s), where #s is the direction cosine of
the normal vector with respect to the z-axis. The
combined coordinate transformation can be obtained
by constructing the rotation matrix G =G2('s)G1('s):

G =

264cos's cos#s sin's cos#s ¡sin#s
¡sin's cos's 0

cos's sin#s sin's sin#s cos#s

375 : (13)
Note that the rotation matrices Gi are orthogonal and
thus G¡1i =GTi .
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B. Extended Circular Prediction Algorithm

Based on the development of the two-dimensional
circular prediction algorithm and the results of the
circular prediction plane, this section describes the
circular prediction algorithm in three-dimensional
space. The fact, that the circular prediction can
be described as a rotation of ~r12 and ~r13 can be
exploited to extend the algorithm to include the third
dimension. Equation (11) can be rewritten to include
a zero z-component of the predicted position and the
normalized vectors, where the rotation matrix T(®)
can be defined as

T(®) =

264 cos® sin® 0

¡sin® cos® 0

0 0 1

375 : (14)

Substituting the normalized vectors ~n12 and ~n13 with
vectors described in the relative Cartesian coordinates
denoted by a prime (11) can be written as264u4v4

0

375= T(¼=2)G
264 u

0
3

v03
w03

375 R14
R13

cos('1 +'2)
sin'1

+T(¡¼=2)G

264 u
0
2

v02
w02

375 R14
R12

cos'2
sin'1

(15)

where G is given by (13). The circular prediction
of (15) is described with respect to a Cartesian
coordinate system where the x-y plane coincides
with the circular prediction plane. Including the back
transformation into (15) involves the evaluation of
the matrix product G =G¡1T(¼=2)G. Note, since
T(¡¼=2) = TT(¼=2) and G is orthogonal it can be
shown that the combined transformation matrix
G¡1T(¡¼=2)G = GT. Therefore, the circular prediction
performed on the two-dimensional plane can be
written with respect to the global Cartesian coordinate
system. By adding the coordinates of the first point
and substituting the relative coordinates with the
global coordinates we obtain the circular prediction
in global Cartesian coordinates264x4y4

z4

375= G
264x3y3
z3

375s1 +GT
264x2y2
z2

375s2 + (I¡Gs1¡GTs2)
264x1y1
z1

375
(16)

where the abbreviations:

s1 =
R14
R13

cos('1 +'2)
sin'1

, s2 =
R14
R12

cos'2
sin'1

(17)

have been introduced. Performing the circular
prediction with (16), we obtain a position on
the two-dimensional plane, which is furthermore

constrained to lie on a circle defined by the three
measurements.

IV. DEVELOPMENT OF THE HYBRID FILTER

The unscented transformation [24] is used in
conjunction with the circular target motion models
as discussed in the previous section. In the following
text, we describe the unscented transformation to
obtain the circular prediction and its covariance,
which is used in conjunction with the minimum mean
square error estimator to update the prediction with
the measurement.
The circular prediction on the three-dimensional

prediction plane is described by (16), which depends
on the three position measurements. These are
generally obtained by a radar in spherical coordinates.
To obtain the statistics of the circular prediction, the
three measurements are stacked to form an augmented
vector of length n= 9:

x= [r1 Ãr1 #r1 r2 Ãr2 #r2 r3 Ãr3 #r3]
T

(18)
consisting of the radar reports as range r, azimuth
Ãr, and elevation #r. Its covariance Px is a diagonal
matrix with the repeated elements of the individual
covariances ¾2r , ¾

2
Ã, and ¾

2
#. The unscented

transformation can be applied to the augmented space,
where the so-called ¾ points are transformed to the
Cartesian coordinate system and further propagated
with the circular prediction (16). The unscented
transformation selects a ¾-set consisting of 2n+1
points, which is the perturbation from the mean by
a scaled deviation. The deviations ¾i are defined as the
columns of the matrix square root of Px [24], and the
¾-set is defined as

³0 = x̄ (19)

³i = ³0 +
p
(n+·)¾i for i= 1 : : :2n (20)

such that the ¾-set exhibits the same probabilistic
characteristics as the random variable x and · is a
free variable of the unscented filter, which in this
particular application has been set to 2. The weights
w0 = ·=(n+·) and wi = 1=(2(n+·)) have been
selected to match the first four central moments of
x, which is true for all Gaussian random variables if ·
is selected to satisfy the constraint, n+·= 3.
The ¾-set is transformed to the Cartesian

coordinate system and further propagated by the
circular prediction (16). This output set labeled ´i
yields the statistics of the circular prediction (CP)
(mean xCP and covariance PCP) by applying

xCP = ¯́ =
2nX
i=0

wi´i (21)

PCP = Ṕ =
2nX
i=0

wi(´i¡ ¯́)(´i¡ ¯́)T: (22)
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Fig. 3. Unscented ¾-set illustrated on the circular prediction.

Fig. 3 illustrates the ¾-set and the propagation on
an example configuration. The position uncertainties
are symbolized by the 1-¾ covariance ellipsoids.
The standard unscented transformation creates 19
circular trajectories, i.e., 19 possible combinations
of the three uncertain measurements, to determine
the statistics of the circular prediction. The small
squares indicate these predictions, which result in the
mean and covariance by evaluating the weighted sum.
The mean and covariance are illustrated by the large
square and the prediction ellipsoid.
The predicted mean and covariances can now be

used in the minimum mean square error estimator to
update the prediction with the measurement, which
has been converted to the Cartesian coordinates using
an unbiased transformation [33].

A. The Hybrid Filter

The prediction algorithms constraining the target
motion on a smooth curve provide a reasonable
performance for circle-like trajectories. However,
real target motions can be approximated by
piecewise curves which are circles and straight
lines. Furthermore, with the presence of noise, the
performance of a stand-alone circular filter would
degrade. The proposed circular filter is therefore
integrated with traditional filters including straight line
target models.
The constant velocity model in three-dimensions

includes the x, y, z position as well as the three
velocities vx, vy, and vz , such that the state transition
matrix can be constructed as shown in Appendix A.
This system is driven by white noise accelerations
separated in each direction, and the process noise
covariance can be calculated as shown in Appendix A,
where the inverse three-dimensional rotation matrix
of (13) has to be utilized. The radar measurements
are obtained in the spherical coordinate system

reporting the range (r), azimuth (Ã), and elevation
(#), which are related to the Cartesian coordinate
system centered at the radar location by the standard
spherical to Cartesian coordinate transformation. With
the aforementioned derivations it is of relative ease to
program the extended Kalman filter algorithm.
The hybrid filter consists of a convex combination

of the circular prediction and the predicted position
of the extended Kalman filter. These predictions are
statistically correlated since they are conditioned
on the same measurements. Therefore, the fusion
is performed using the CI algorithm developed by
Uhlmann [34]. In contrast to the Kalman filter update,
the CI does not assume independent data to be fused,
thus yielding a conservative fusing algorithm. Assume
two random processes A and B, which are described
by their means (a, b) and covariances (Pa,Pb). The
fused mean and covariance can be obtained as

P¡1c = wP¡1a +(1¡w)P¡1b (23)

P¡1c c= wP¡1a a+(1¡w)P¡1b b (24)

where w takes values in the range of [0,1]. The
weight w can be interpreted as a tuning parameter of
the CI. Its selection shapes the estimated covariance
either closer to the covariance of A (w! 1) or to the
covariance of B (w! 0). In the following section,
both random processes are equally weighted (w = 0:5).
Upon arrival of a new measurement, the combined
prediction can be updated using the linear estimator.

V. BENCHMARK TRAJECTORY IN THREE
DIMENSIONS

This section presents the performance
characteristics of the proposed hybrid filter compared
with the extended Kalman filter with a straight
line constant velocity model and the interacting
multiple model (IMM) algorithm with the modes
described in the subsequent text. The benchmark
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Fig. 4. Benchmark target maneuver with sample measurements.

Fig. 5. Consistency test of hybrid three-dimensional filter.

trajectory facilitates a combination of coordinated
turns and straight line maneuvers with constant,
zero, and increasing acceleration phases. The
benchmark considers a target whose position is
sampled every T = 30 s as shown in Fig. 4. A sample
of measurements is indicated by the markers £. The
target maneuver consists of three parts in the x-y
plane:

1) a circular trajectory with constant angular
velocity, resulting in a constant acceleration of
0.0132 m/s2,
2) a straight line maneuver with constant speed,
3) an accelerating target on a circular trajectory,

resulting in an increasing acceleration up to
0.053 m/s2,

where the target speed lies in the range of
2.62 m/s—5.56 m/s. The targets elevation is simulated
as an up-and-down maneuver comparable to a
sine function. The targets position is reported by
a stationary radar located at the x =¡250 m, y =
200 m and z = 0 m as indicated by the circled
position. The measurements are obtained in the radar
coordinate system as range bearing whose standard
deviation in range is 10 m and 2 deg in the bearing
angles.
All filters have been initialized with the first three

measurements and when necessary the velocity state

has been evaluated from the finite difference, whereas
the initial position covariance is the measurement
covariance Rk at time k converted into Cartesian
coordinates Rck . The velocity state covariance is
initialized as (Rc2 +R

c
3)=T

2 due to the finite difference.
A consistency test as described in [35] has

been carried out to ensure proper operation of the
hybrid filter. A filter is called consistent if its state
estimation is unbiased and the error covariance is
correctly approximated by the filter’s state covariance
matrix. This test is performed off-line as Monte
Carlo simulation, where the ground truth is known.
The hypothesis H0 postulates that the normalized
estimation error squared equals the dimension of
the state. Performing a Monte Carlo simulation the
hypothesis H0 can be accepted if the test statistic lies
in the two-sided 95% probability concentration region.
Fig. 5 shows this region along with the average
normalized estimation error squared (NEES) based
on 100 Monte Carlo runs. Only a small part lies
outside the 95% region and the H0 hypothesis can be
accepted. Note that most filters fail to be consistent
during maneuvers that are outside of their respective
models.
A statistical comparison of the filters can be

achieved by a simple hypothesis test [35, pp. 76—77].
Define the performance measure as the absolute
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Fig. 6. Statistical test comparison of hypotheses H1 and H2.

estimation error ²filter(k). Let us postulate the
hypothesis that the error of filter 1 is larger than the
error of filter 2:

H1 : ¢(k) = ²filter1(k)¡ ²filter2(k)> 0: (25)

Based on Monte Carlo simulations the test statistic

¹(k) =
¢̄(k)
¾¢(k)

(26)

can be calculated, where the ¢̄ corresponds to the
mean of ¢(k) and ¾¢(k) represents the deviation. If
¹ exceeds a threshold ¹0 then the hypothesis H1 is
accepted. The threshold is commonly defined by the
significance level of the null hypothesis.
The statistical test is performed to compare the

performance of the straight line (SL) model to the
combined straight line and circular prediction (hybrid)
model. The hypothesis is postulated as

H1 : ¢(k) = ²SL(k)¡ ²hybrid(k)> 0: (27)

The second hypothesis H2 compares the circular filter
with the hybrid filter. Both test statistics are shown in
Fig. 6. The hypothesis H1 compares the hybrid filter
with the extended Kalman filter using a straight line
model, and it can be observed that the hybrid filter
performs better during the circular maneuver since the
test statistic is above the threshold, whereas during
the straight line maneuver the test statistic falls below
the threshold. The comparison of the circular filter
and the hybrid filter yields better performance for the
circular filter during the turning maneuvers and the
hybrid filter exhibits increased performance during the
straight line maneuver.
The third test H3 compares the IMM algorithm

with the proposed hybrid filter. The three-mode
IMM consists of a constant velocity model and a
Wiener process acceleration model with two process

noise settings q2 = 0:0132
2 and q3 = 0:0331

2, which
correspond to the minimum acceleration and the
average acceleration. The Markov chain transition
matrix between these models

pij =

264 0:9 0:09 0:01

0:15 0:7 0:15

0:01 0:15 0:84

375 (28)

has been chosen to indicate a strong likelihood to
operate at the current model and to allow a smooth
transition between the constant velocity and slow
accelerating and fast accelerating models. Fig. 6 shows
the result of the statistical comparison as defined by
(26). The hybrid filter outperforms the IMM algorithm
during the constant acceleration phase, whereas the
IMM yields a better performance during the constant
velocity phase. As the acceleration is increasing both
filters perform well. The transition of the IMM to
the acceleration phase appears faster than the one
of the hybrid filter, which exhibits a smaller error at
the mid-phase of the maneuvering circle path. Fig. 7
compares the combined position rms error of the
proposed hybrid and the IMM algorithm. Throughout
the benchmark trajectory both filters perform likewise,
whereas the IMM algorithm exhibits a lower rms
error during the constant velocity path and during
the transition to the turning phase. The initial peak of
the IMM is the result of the finite difference velocity
initialization.

VI. REMARKS AND CONCLUSION

In real applications the filters are confronted with
missed and false measurements. In case of missing
measurements the proposed filter remains predicting
on the previous circular path until a new measurement
arrives. The missed measurements subsequently
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Fig. 7. Combined position rms error comparison.

have to be replaced by the corresponding prediction.
The limits on how long this filter can predict on the
previous circle and when the target is declared to be
lost have to be identified. False radar reports could
be handled by the circular filter using a least squares
approach to identify the circular path based on the
history of a window of measurements.
In this work, the fact that a target trajectory has

to be smooth even if the acceleration is impulsive
has been exploited to develop a new technique for
target tracking. The proposed algorithm integrates
the measured data into the filter and constrains the
prediction to lie on a smooth curve, modeled, for
example by the arc of a circle. This filter recalculates
the equations of the circle at every time instant and
thus, in the presence of reasonably fast sampling
approximates any smooth trajectory via multiple arcs
of circles.
The development of the circular filter is illustrated

in two-dimensional space and subsequently extended
to three-dimensional space using orthogonal
transformations. For the determination of the
covariance of the estimate, the proposed algorithm
relies on the unscented transformation, a novel
approach to approximate the statistics of a random
variable subject to a nonlinear transformation. The use
of the unscented transformation enables us to calculate
the statistics of the circular prediction algorithm.
The hybrid filter consists of a combination of the

straight line prediction and the circular prediction. It
has been shown on a benchmark maneuver that the
hybrid filter outperforms standard filters, such as the
extended Kalman filter using a straight line model.
In addition, a closed-form solution to the circular
prediction algorithm has been derived, which has been
implemented in conjunction with the extended Kalman
filter. Statistical tests have been performed to validate
the performance increase using the hybrid filter.
The proposed filter in two-dimensional or

three-dimensional can complement the bank of filters
in an IMM filter [35] or the variable-dimension
filter developed by Bar-Shalom and Birmiwal [14].
Maneuver detectors have been applied to switch
between different target models describing various
maneuvers of the target.

APPENDIX A. CONSTANT VELOCITY MODEL

A common model used for target tracking,
assumes a target moving on a straight line with a
constant velocity, where the system is driven by white
noise acceleration. The linear state space is comprised
of the Cartesian position and its corresponding
velocities yielding the state transition matrix:

©=
·
In£n TIn£n

0n£n In£n

¸
(29)

where In£n is the identity matrix of dimension
n= 3 and 0n£n corresponds to the null matrix. The
measurements are again assumed to be the radar
reports in polar coordinates. Subsequently, the
extended Kalman filter equations have to be applied.
This model is driven by white noise acceleration,
which can be best described in the target’s coordinate
frame, where the Cartesian abscissa is aligned with the
heading direction. The accelerations are divided into
the parallel acceleration ap, the normal acceleration an
acting on the target in perpendicular direction, and the
binormal acceleration ab. The variances are defined as
¾2p, ¾

2
n , and ¾

2
b , respectively. The covariance matrix

described in the Cartesian system can be obtained
using the inverse three-dimensional rotation matrix
of (13)

Scart =G
Tdiag[¾2p ¾2n ¾2b]G: (30)

The process noise Qd is recalculated for every time
step. Due to the nonlinear state space system, the
orientation of the covariances depends on the heading
angle #. Assuming a discretized white noise the
process noise is defined as [6]:

Qd =

E

½Z T

0

Z T

0

©(T¡ ¿1)Bwc(¿1)w(¿2)Tc BT©(T¡ ¿2)Td¿1d¿2
¾

(31)
where © is the Jacobian of the state space, B is
the input matrix, and wc is the continuous white
noise vector with the covariance Efwc(¿1)w(¿2)Tc g=
Qc±(¿2¡ ¿1)

Qd =

264
T3

3
Scart

T2

2
Scart

T2

2
Scart TScart

375 : (32)
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