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1. 

The transition of stability of the vertically upright position of the pendulum from an
unstable to a stable configuration has been illustrated in the literature when the pivot of
the pendulum is subject to a periodic motion. Many studies, which have included analytical
and numerical approaches, have been used to determine the conditions for stability. The
stability border has been calculated for the undamped case by Landau and Lifshitz [2]
using the averaging method. Other analytical tools, such as the method of small parameters
by Hsu [6], and the harmonic balance method by Clifford and Bishop [3], have been used
to determine the stability border. A numerical approach was utilized by Capecchi and
Bishop [4] to arrive at the stability border. Arnold [7] provides an elegant stability
condition for uncompressible flows using the trace of the Poincaré map (or monodromy
matrix). In this note we use the Floquet theory and variational system to calculate the
stability border in closed form. An overview of the mathematical tools that are used to
calculate the stability border are provided. We then compute the stability border in the
viscous damped case, using the same tools as in the undamped case.

2.     

In this section the stability of an undamped inverted pendulum is considered. The pivot
point of a simple inverted pendulum (Figure 1) is subjected to vertical oscillation of the
form y(t)= o cos (vt). Our goal here is to establish the stability border that relates the
amplitude (o) to the frequency (v) of the forcing function. The equation of motion of the
inverted pendulum is

ẍ=0gl −
ov2

l
cos (vt)1 sin (x), (1)

where g is the acceleration due to gravity and l is the length of the pendulum. Since we
are interested in the stability of the vertically upright position of the pendulum, we linearize
equation (1) around x=0, leading to

ẍ=0gl −
ov2

l
cos (vt)1x. (2)
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Equation (2) can be represented in state space form as

0ẋ1

ẋ21= & 0
g
l
−

ov2

l
cos (vt)

1

0'0x1

x21. (3)

Equation (3) has the same form as the equation

ẋ=A(t)x, x$Rn, A(t+ p)=A(t), (4)

with a period p=2p/v. The stability of the upright position depends on the characteristic
roots of the period-advance map M= gp

0 [7]. The characteristic roots s1 and s2 satisfy the
characteristic equation of the matrix M, which are given by the equation

s2 −Tr (M)s+Det (M)=0, (5)

where

Det (M)= efP
0 Tr(A(t)) dt Tr (M)=Tr (gp

0). (6,7)

From equations (6), (7) and (3), it follows that Det (M)= ef P
0 0 dt =1: therefore

s2 −Tr (M)s+1=0. (8)

The roots of equation (8) are

s1,2 =
Tr (M)2zTr2 (M)−4

2
(9)

If abs (Tr (M))q 2, then roots of equation (8) are real and

abs (Tr (M))=abs (s1 + s2)q 2. (10)

Since the characteristic multipliers of A(t) have to lie within the unit circle, we require
=s1,2=E 1 [7]. This requirement conflicts with equation (10), as the sum of the two roots
is greater than 2. Therefore, for stability, we require

abs (Tr (M))=abs (s1 + s2)E 2. (11)

The stability border is given by the equation

=Tr (M)==2. (12)

Determination of the stability border requires a closed form solution of equation (3),
which is not available. However, if the amplitude of the excitation (o) is small, we can
approximate the solution of equation (3) by expanding it into a Taylor series with respect

Figure 1. A vertically excited inverted pendulum.
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to o around o=0. Since the right side of equation (3) is a smooth function o, the solution
is differentiable with respect to o [9]. The solution j(t) can be approximated as follows:

j(t, o)= x(t, 0)+ y(t, 0)o+ 1
2z(t, 0)o2 + o(o3), (13)

where x(t, 0)= j(t, 0), y(t, 0)= (1j(t, o/1o)/o=0 and z(t, 0)= 12j(t, o)/1o2)/o=0.
To calculate the M matrix we have to obtain the fundamental matrix of equation (3).

The column vectors of the fundamental matrix are two linearly independent solutions of
equation (3). Since equation (3) is linear, if the initial values are linearly independent, the
corresponding solutions are linearly independent. We choose [1, 0] and [0, 1] as the set of
initial values to calculate two independent solutions j1,0(t, o) and j0,1(t, o) of equation (3):

0j� 1j� 21=A(t, o)0j1

j21 where A(t, o)= & 0
g
l
−

ov2

l
cos (vt)

1

0',
0j1(0)
j2(0)1=0101, 0011. (14)

This set of independent initial conditions results in the transition matrix F(p, 0) being
equal to M.

Substituting equation (13) into equation (14) and equating terms of equal powers of o

leads to the zeroth order equation

ẋ=A(t, 0)x, x(0)=0101, 0011. (15)

Solving equation (15), we obtain x1,0(t, 0) and x0,1(t, 0). The solution of the zeroth order
equation appears as a forcing term in the first order equation, which can now be solved
in closed form. The first order equation is

ẏ=A(t, 0)y+01A(t, o)
1o 1o=0

xi,j(t, 0), y(0)=0001, i, j=0, 1. (16)

Because the initial values of equation (14) do not depend on o, the initial values of the
variational system are [0, 0].

The second order equation

ż=A(t, 0)z+201A(t, o)
1o 1o=0

yi,j(t, 0), z(0)=0001, i, j=1, 0, (17)

can be solved in a similar fashion.
We now have a Taylor series solution which includes terms up to the second order

(equation (13)). The M period-advance map is given by the equation:

M=$j1,0
1 (p, o)

j1,0
2 (p, o)

j0,1
1 (p, o)

j0,1
2 (p, o)%, p=2p/v. (18)
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Figure 2. The stability border: - - - -, solution of Landau and Lifshitz; —, solution by the proposed technique.

Tr (M) is used to determine the stability border (equation (12)), which leads to the
equation

=j1,0
1 (p, o)+ j0,1

2 (p, o)==2. (19)

The closed form solution of the inverted pendulum was determined using a symbolic
manipulator, which resulted in the expression

be−2zgp/zlv +e2zgp/zlv +
(1−e4zgp/zlv)o2v3p

e2zgp/zlvzgzl(4g+ lv2)b=2. (20)

Figure 3. Numerical simulation: (a) v=9, o=0·5; (b) v=9, o=0·6.
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Figure 4. Stable areas for the damped case.

Solving equation (20) for o, we have

o(v)=

g1/4l1/4X−2l+2 e2zgp/zlvl−(8g/v2)+
8 e2zgp/zlvg

v2

z1+ e2zgp/zlvzvzp
. (21)

Landau and Lifshitz [2] solved for the stability border of an undamped inverted
pendulum using the average technique, which resulted in the equation

v2o2 −2gl=0. (22)

Figure 5. The stability surface.
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Figure 6. Stability contours: 1, c=0; 2, c=4; 3, c=6; 4, c=8.

The stability borders resulting from equations (21) and (22), which tend to merge with each
other with increasing forcing frequency, are illustrated in Figure 2. Any combination of
forcing amplitude and frequency that lies above the curves should result in the vertically
upright position of the pendulum being a stable equilbrium position. For a forcing
frequency of 9 rad/s, equation (21) requires the forcing amplitude to be greater than 0·512
for stability and equation (22) requires the forcing amplitude to be greater than 0·492.
Thus, the two equations predict different characteristics for an forcing amplitude of 0·5.
Numerical simulation of the non-linear undamped system for a forcing amplitude of 0·5
(Figure 3(a)), illustrates that the system is unstable, exemplifying that the stability border

Figure 7. Numerical simulation: (a) v=20, o=0·22; (b) v=20, o=0·23.
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estimated by the proposed approach is more accurate than that estimated by equation (22).
The expected stability of the equilibrium point for a forcing amplitude of 0·6 is confirmed
in Figure 3(b). Figure 3(b) reveals the existence of a high frequency signal which
corresponds to the frequency of excitation, superposed on a low frequency signal.

3.     

In this section we investigate the stability of the inverted pendulum which is subject to
viscous damping at the pivot. The dynamics of the damped inverted pendulum are given
by the state space equation

0ẋ1

ẋ21= & 0
g
l
−

ov2

l
cos (vt)

1

−c'0x1

x21, (23)

Equation (23) has the same form as equation (4) with a period p=2p/v. The procedure
to establish the stability boundary is identical to the one used for the undamped system.
The only difference is that Tr (A)$ 0, which results in constraints that are different from
the undamped case to determine stability. From equations (6), (7) and (23) it follows that
Det (M)= e fP

0 − c dt =e−cp, where c is the damping coefficient and ce 0. With the
knowledge that the stability of the upright position of the pendulum depends on the
absolute values of the characteristic roots of the period-advance map M= gp

0, we substitute
Det (M) into equation (5), resulting in the characteristic equation of the M matrix,

s2 −Tr (M)s+e−cp =0, (24)

the roots of which are

s1,2 =
Tr (M)2zTr2 (M)−4 Det (M)

2
. (25)

We investigate, separately, the real and the complex roots cases. It is evident that

=Tr (M)=Q 2zDet (M)c s1, s2 $ C, =Tr (M)=e 2zDet (M)c s1, s2 $ R. (26,27)

In the complex case, Det (M)= e−cp is smaller than 1, since c and p are positive numbers.
This implies stability, since the product of the roots is less than 1.

In the real case the necessary conditions for stability are satisfied if

Tr (M)−zTr2 (M)−4 Det (M)
2

e−1,
Tr (M)+zTr2 (M)−4 Det (M)

2
E 1.

(28)

Combining the stability constraints for the two cases, we have, from equations (26) and
(28),

6−2 e−cp/2 QTr (M)Q 2 e−cp/2,
−1−Det (M)ETr (M)E 1+Det (M),

if =Tr (M)=Q 2zDet (M)
if =Tr (M)=e 2zDet (M)

. (29)

From equation (29), the stable area is given by the inequality

=Tr (M)=E 1+e−cp, (30)
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which is illustrated in Figure 4. Area 1 corresponds to equation (26) and area 2 corresponds
to equation (28).

The calculation of Tr (M) or, to be specific, the second order approximation of Tr (M),
is carried out in the same fashion as the undamped case using variational systems. The
difference is the calculation of the stability border, which is based on equation (30).
Therefore, the stability border is a function of o, v, l and c. In the interest of brevity, the
closed form expression representing the stability border is not included here.

The surface that represents the stability border for the damped system is illustrated in
Figure 5. Any combination of the damping constant, amplitude and frequency that lie
above the surface leads to the upright position being a stable equilibrium point. It can be
seen from the graph that the stability is a strong function of the damping constant. Thus,
for larger damping a larger amplitude of forcing is required to stabilize the system
compared to a system with low damping, for the same forcing frequency. The variation
of the stability boundary for different values of the damping constant is demonstrated in
Figure 6. This figure clearly shows that for given forcing frequency, the forcing amplitude
increases with damping, for stability.

The system response for a forcing frequency of 20 rad/s and forcing amplitudes of 0·22
and 0·23 is illustrated in Figure 7. The stability surface indicates that the forcing amplitude
corresponding to a damping constant of 0·5 and a forcing frequency of 20 is 0·2234. For
a forcing amplitude of 0·22, the system settles to the equilibrium position that corresponds
to the vertically down postion and the forcing amplitude of 0·23 forces the system to come
to rest at the vertically upright position. Thus, it is evident that the proposed approach
to arrive at the stability surface is fairly accurate.

4. 

A perturbation approach has been used to arrive at a closed form solution of the stability
surface for a damped inverted pendulum. A recursive solution is used to arrive at the
period-advance map, the eigenvalues of which determine the stability of the system. The
stability border illustrates that, for high frequencies, the system is not a strong function
of the damping in the system. However, at larger damping, the amplitude of forcing for
a given frequency increases significantly, compared to the undamped case. Numerical
simulations of the non-linear system are used to corroborate that the stability border
predicted by the linearized approximation is reliable. The solution for the undamped case,
which is a special case of the damped system, has been shown to closely approach that
determined by Landau and Lifshitz [2].
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