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Abstract Data on source conditions for the 14 April 2010
paroxysmal phase of the Eyjafjallajokull eruption, Iceland,
have been used as inputs to a trajectory-based eruption
column model, bent. This model has in turn been adapted
to generate output suitable as input to the volcanic ash
transport and dispersal model, puff, which was used to
propagate the paroxysmal ash cloud toward and over
Europe over the following days. Some of the source param-
eters, specifically vent radius, vent source velocity, mean
grain size of ejecta, and standard deviation of ejecta grain
size have been assigned probability distributions based on
our lack of knowledge of exact conditions at the source.
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These probability distributions for the input variables have
been sampled in a Monte Carlo fashion using a technique
that yields what we herein call the polynomial chaos quad-
rature weighted estimate (PCQWE) of output parameters
from the ash transport and dispersal model. The advantage
of PCQWE over Monte Carlo is that since it intelligently
samples the input parameter space, fewer model runs are
needed to yield estimates of moments and probabilities for
the output variables. At each of these sample points for the
input variables, a model run is performed. Output moments
and probabilities are then computed by properly summing
the weighted values of the output parameters of interest. Use
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of a computational eruption column model coupled with
known weather conditions as given by radiosonde data
gathered near the vent allows us to estimate that initial mass
eruption rate on 14 April 2010 may have been as high as 10
kg/s and was almost certainly above 10”kg/s. This estimate
is consistent with the probabilistic envelope computed by
PCQWE for the downwind plume. The results furthermore
show that statistical moments and probabilities can be com-
puted in a reasonable time by using 9*=6,561 PCQWE
model runs as opposed to millions of model runs that might
be required by standard Monte Carlo techniques. The output
mean ash cloud height plus three standard deviations—
encompassing c. 99.7 % of the probability mass—compares
well with four-dimensional ash cloud position as retrieved
from Meteosat-9 SEVIRI data for 16 April 2010 as the ash
cloud drifted over north-central Europe. Finally, the ability
to compute statistical moments and probabilities may allow
for the better separation of science and decision-making, by
making it possible for scientists to better focus on error
reduction and decision makers to focus on “drawing the
line” for risk assessment.

Keywords Iceland - Eyjafjallajokull - Plume - Eruption
source parameter - Ash transport - Ash dispersal -
Uncertainty - Probabilistic hazard map - Aviation safety

Introduction

The 2010 eruption of Eyjafjallajokull, Iceland, caused havoc
for European aviation with ash emissions from 14 April
2010 into May, and one period of peak emissions during
14-18 April (Petersen 2010). To make predictions of the
likely position of the ash cloud and issue advisories to the
airline industry, the London Volcanic Ash Advisory Center
(VAAC) used the NAME computational model (Ryall and
Maryon 1998) to calculate long-range, atmospheric ash
advection and dispersion. Other VAACs use different but
similar computational models (Folch 2012). Such models
require input data on volcanic source conditions, particular-
ly eruption plume position, height and width as a function of
time, and the distribution of ash within this virtual volcanic
cloud. All such models allow ash to settle as single particles
(i.e., “dry deposition”), and are therefore able to track
(decreasing) ash content. A few models furthermore have
an algorithm for microphysics, which allows the estimation
of hydrometeor content, sometimes therefore taking into
account aggregation and the formation of accretionary lapilli
(i.e., “wet deposition”, implemented in FALL3D and
ATHAM (Folch 2012; Textor et al. 2006)). The inputs to
these models are rarely well-constrained, hence estimates of
the uncertainty in the inputs is valuable in making probabi-
listic predictions of ash cloud motion. The models also
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depend on datasets such as the windfield, which have sto-
chastic variability that must be considered. Despite the
potential risk to property and life from ash clouds, models
that take into consideration the uncertainty and variability in
input parameters and datasets using rigorous stochastic
methods (Bonadonna et al. 2010; Folch 2012) to produce
forecasts with specified uncertainty do not exist. We begin
the process of rigorous uncertainty estimation by addressing
the problem of propagation of uncertainties in the volcanic
input parameters to produce a coherent probabilistic forecast
of ash cloud position.

Computational models of volcanic ash cloud transport
and dispersion (VATD models), such as NAME and the puff
model used here, require as input the mass of ash together
with the pyroclast grain size distribution as a function of
height and time. Windfield data are also needed. Visual or
radar observations of plume height are often used to esti-
mate a mass eruption rate (MER) based on a (poorly con-
strained) empirical relationship (Sparks et al. 1997).
Integrating the MER estimates over the duration of the
eruption yields an ash mass that is then propagated by the
VATD simulation within a numerical weather prediction
(NWP) windfield model. Grain size is more difficult to
estimate than is plume height, so a common method of
estimation of initial grain size distribution is to assume that
all eruptions of a certain type—as determined by plume
height or magma type—have somewhat similar grain-size
distributions, and therefore grain size measurements for
eruption deposits where data are available can be propagated
to other eruptions. The problem with using plume height to
estimate MER is that there is considerable scatter in the
basic empirical relationships (Mastin et al. 2009), and plume
height is also strongly dependent on windspeed and other
atmospheric conditions (Bursik 2001; Tupper et al. 2009).
Thus estimates of ash size and mass that must be used in the
VATD model for near real-time forecasting have unknown
accuracy and (probably large) error. A further drawback in
propagating grain size data from one eruption to another is
that the grain size distribution that is injected into the upper
plume is strongly dependent on vent characteristics and the
amount of water, and resulting ash aggregation, both within
the vent and in the atmosphere near the vent. On top of this,
small errors in estimates of mass and grain size can cause
significant error in subsequent ash motion.

In this contribution, we consider volcanic input uncer-
tainty estimation, by using a physical model of a volcanic
eruption column, bent, to generate an input space for the
puff VATD model. Using source quantities such as vent size
and vent exit velocity, bent provides eruption column out-
puts such as ash mass or loading, position of ash in the
plume, and grain size distribution. In turn these outputs are
used as inputs to puff. By using an eruption column model
based on fundamental physics rather than a simplified
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scaling relationship that excludes important variables or an
eruption-to-eruption comparison, a variety of inputs and
observations from the volcanic source region, together with
their variability, can be modeled and propagated through the
now coupled bent and puff models.

In the subsequent sections we characterize and estimate
the several volcanic inputs to the computer models. Then,
we introduce a probabilistic computational methodology,
the polynomial chaos quadrature weighted estimate
(PCQWE), to forecast ash cloud movement. PCQWE treats
model input parameters as random variables, which are
approximated by a polynomial expansion designed to min-
imize moment errors (Xiu and Karniadakis 2002). This
approach provides a quantitative basis for forecasting, to-
gether with a robust estimate of the uncertainty in the
resulting measures.

Model inputs
Characteristics of the eruption column

The summit eruption of Eyjafjallajokull began on 14 April
2010 sometime between about midnight and sunrise, when
an eruption column was first noted (Thorkelsson 2012).
This strong or paroxysmal phase continued until 18 April.
Observations made over these first few days suggest that
variable discharge conditions and partial column collapse
were major eruption characteristics (Fig. 1). This resulted in
the dispersal of low-level, tropospheric ash far downwind.
Near-vent observations indicate that eruptive pulses were
often characterized by ejection of an initial gas-rich cap
from the volcanic vent, followed by a more densely laden

Fig. 1 Photograph with view to SE of the summit region of Eyjafjal-
lajokull during the initial vigorous eruption phase of 14—18 April.
White eddies are water rich, gray are pyroclast rich. The ash blown at
low level from the vent produced a voluminous, ground-hugging ash
cloud to the south. Photo: M. Roberts, Icelandic Meteorological Office
(IMO)

steady flow. There appeared to be no flow separation over
the volcano, hence ground-hugging clouds were generally
formed by partial column collapse. The result in the proxi-
mal region was a higher-level, bent-over column that was
often underlain by initially slow-moving, dense eddies coa-
lescing downwind into a lower-level gravity current (phoe-
nix cloud) with a virtual source south of the vent and a sharp
upwind edge. Thus, observations of plume rise are consis-
tent with rise height modulated by wind as well as column
collapse over the first 5 days of the eruption.

Model initialization

Ash loading, eruption column height, grain size, and wind-
field are thought to be the most important input variables for
volcanic ash transport and dispersion modeling (Mastin et
al. 2009). The current procedure is to derive mass loading
from the product of eruption duration and mass eruption rate
(equivalent to mass flux, Q). MER in turn is typically
calculated from an empirical relationship derived for strong
plumes (w»v), e.g., H;=1.670°*° (Morton et al. 1956;
Sparks et al. 1997), where w is characteristic plume speed
(meters per second), v is wind speed, H7 is eruption plume
height (kilometers), and Q is mass eruption rate given as the
equivalent volume eruption rate (cubic meters per second)
assuming a magmatic density (3,000 kg/m® for basalt in the
case of Eyjafjallajokull). This yields ash loading as a func-
tion of Hz Plume height, however, is a complex function of
source and environmental conditions especially windspeed
(Bursik 2001) and relative humidity (Woods 1993; Glaze et
al. 1997; Graf et al. 1999; Mastin 2007), so using plume
height alone to estimate mass loading can lead to severe
under- or overestimation of mass eruption rate. For weak
plumes in high winds, for example, it is not possible to
simply use column height to derive mass loading or MER,
as modeling suggests that the estimated MER can be to two
orders of magnitude too low (Bursik 2001; Bursik et al.
2009).

Rather than using a simplistic scaling relationship based
on one-dimensional steady plume theory in the absence of a
cross-flow or atmospheric water vapor, we use a numerical
eruption column model that allows for more complex phys-
ics. One way to use such a model would be to obtain a better
estimate of mass eruption rate from a measured eruption
column height, and wind and relative humidity profiles
(Fig. 2). Another way to use such a model is to estimate a
mass eruption rate from any available measured conditions
at the vent, such as vent radius, eruption speed or tempera-
ture, and the atmospheric profile. To explore the possibility
of obtaining estimates of mass eruption rate using a numer-
ical model that can take a variety of data inputs, we employ
the model bent (Bursik 2001), which has been modified to
incorporate volcano observations and then provide initial
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Fig. 2 Calculation and
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conditions for the ash transport model puff. Using boundary
conditions on eruption temperature and water vapor content,
as well as grain size, crater diameter, and speed of erupting
mixture (Table 1) coupled with atmospheric conditions as
given by radiosonde data, bent solves a cross-sectionally
averaged system of prognostic equations for continuity,
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momentum, and energy balance. Variable parameters (such
as density, gas constant, entrainment constant, etc.) are
solved with a set of diagnostic equations. Bent takes a size
distribution of pyroclasts, then outputs the mass distribution
with height of the various sized clasts in the atmosphere.
Bent results suggest that increasing wind speed causes

Table 1 Uncertain eruption source parameters based on observations of the 2010 Eyjafjallajokull eruption and information from other eruptions of

the past of the same type

Comment

Parameter Value range PDF

Vent radius, by, m 65-150 Uniform, +definite

Vent velocity, wy, m/s 45-124 Uniform, +definite

Mean grain size 2 boxcars™: Sum of two uniform, € R
(Folk and Ward 1957), 1.5-2 and 3-5
Md.,, ¢ units

Grain size 2.0£0.6 Uniform, € R

sorting, o, (0 units

Measured from IMO radar image of summit vents on 15 April 2010
Measured by infrasound 6-21 May, when MER similar to 14—18 April

(Woods and Bursik 1991), Table 1, vulcanian or phreatoplinian.
A. Hoskuldsson, Eyjafjallajokull Eruption Workshop, 09/2010,
presentation, quote:’vulcanian with unusual production of fine ash’.

(Woods and Bursik 1991), Table 1, vulcanian or phreatoplinian

#Boxcar: function that is zero everywhere except over a short interval where it is constant

@ Springer
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enhanced entrainment of air and horizontal momentum,
plume bending, and a decrease in plume rise height at
constant eruption rate. Thus, it is able to model how wind
and atmospheric stratification affect the plume rise height
(Graf et al. 1999), and has been tested against plume rise
height data, and against dispersal data (Bursik et al. 2009).

Given our use of a numerical eruption column model, we
can take advantage of all potential data available for charac-
terizing the volcanic source, such as satellite observations of
eruption temperature and vent size, infrasound measurements
of eruption speed, visual observations of plume or eddy rise or
ballistic speed, visual observations of vent size, visual obser-
vations of column collapse, FLIR observations of eruption
speed and temperature, radar observations of grain size, etc. In
the present contribution, instead of using column height to get
MER and mass loading, we use estimates of source variables
(together with their uncertainties): initial (vent) exit speed and
vent radius, and grain size (Table 1). Other important bound-
ary conditions are those of temperature and water content
(because of computational restrictions explained more thor-
oughly further in this contribution, both are assumed to be
single-valued, and taken to have characteristic values of erup-
tion temperature, Teppiion= 1,200 °C and source water vapor
content, np=1.7 wt.%; (Keiding and Sigmarsson 2012)) (see
Supplement A for example bent input file).

For the start time and duration of the initial eruptive
pulse, no more data are available than observations that
the summit vent must have become active around midnight
in the morning of 14 April 2010, and that the eruption
continued at first light (Thorkelsson 2012). We therefore
estimate that the eruption started at midnight, and use an
ash transport and dispersal model default source eruption
duration of 3 h. We have used radar measurements from 15
April 2010 to estimate vent size, and infrasound from the
second strong eruptive phase in May 2010 to estimate vent
velocity, but both variables have been estimated during
other eruptions by a variety of methods. Most commonly,
both vent size and ejection speed have been measured from
ground-based observation or photography (Chouet et al.
1974; Sparks and Wilson 1982; Calder et al. 1997). From
the source variables, bent can be used to calculate model
MERs and plume heights. Below, we check these for con-
sistency with observed plume height.

In producing its eruption outputs, bent accounts for at-
mospheric (wind, temperature, humidity, etc.) conditions as
given by atmospheric sounding data. Thus plume rise height
is given as a function of volcanic source and environmental
conditions. To aid in the hindcast exercise herein, we make
use of the IMO Keflavik radiosonde from 14 April 00Z. The
radiosonde is the closest weather data both spatially and
temporally to the early period of the eruption between about
midnight and 07Z, and therefore best represents the near-
vent weather conditions.

The volcanic source variables estimated for our compu-
tations (Table 1) resulted in output eruption column model
heights varying between the top of the volcano at 1.7 km
ASL and 8 km (Figs. 2 and 3), and grain size distribution at
height of Md,, ranging from 1.5<¢<5, and o, from 0.4<¢
<4.8. (The ¢ size system is defined as p=Ilog,(d/d,), where
d is grain size in millimeters, and dy=1 mm; moments are
calculated by mass, not by particle count.) The model col-
umn heights are consistent with the observations noted
above of column collapse accompanying sustained eruption
columns, as well as column heights measured from the
Keflavik radar data. The radiosondes for much of the initial
phase of the eruption (14-18 April) generally show a
marked peak in wind speed at altitudes between 5 and
10 km, with v, of 30—60 m/s; this finding is consistent with
the jetstream flowing almost directly over Eyjafjallajokull.
We found that, although the input parameter values used in
the plume model produced a plume that rose to 1.7-8 km,
for many input values the plume rise height would have
been much higher and is in this range owing to a shearing of
the plume by the jetstream (Fig. 2). The calculated MER
drops off exponentially with time in the first days of the
eruption. Given this exponential drop-off as well as the
heavy ash loading from the initial eruptive phase, we spec-
ulate that the initial MER was likely greater than 10"kg/s.
Because of the interaction of the plume with the wind, there
is disparity in MER (hence loading) between the bent esti-
mate and the scaling relationships, of up to two orders of
magnitude.

The output from bent is put in a file that initializes a puff
run, which consists of information on ash loading and grain
size distribution as a function of height and other geometric
parameters dealing with plume shape (Supplement A).
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Fig. 3 Mass fluxes determined by the eruption source conditions
(Table 1) using bent and IMO radiosonde data ranged from ~7x 10°
to ~7x107kg/s, resulting in occasional eruption plume (column) col-
lapse (lower grouping of output points)
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Given these initial conditions for ash transport produced
by bent, the puff Lagrangian VATD model was used to
propagate ash parcels in a wind field (Searcy et al. 1998).
Puff tracks a finite number of Lagrangian point particles of
different sizes, whose location R is propagated from time-
step k& to timestep £+ 1 via an advection/diffusion equation

Ri(ti1) = Ri(ty) + W (t) At + Z (1) At + Si(t) At (1)

Here R,(t;) is the position vector of the ith particle at time
kAt, W(t,) is the local wind velocity at the location of the ith
particle, Z(#;) is a turbulent diffusion that is modeled as a
random walk, and S,(#;) is a term which models the fallout of
the ith particle due to gravity. Note therefore that puff takes
into account dry particle fallout (not wet fallout or aggrega-
tion, in common with most VATD models), as well as
dispersion and advection. For more detailed description
see Searcy et al. (1998); source code and documentation is
available at http:/puff.images.alaska.edu/monitoring.shtml.
Puff can be run using one of several numerical weather
prediction windfields (NCEP 2009a; NCEP 2009b; USN-
FNMOC 2009; WRF 2009). These NWP models are avail-
able at differing levels of spatial and temporal resolution. In
the present case, puff uses global NCEP/NCAR reanalysis
windfields to track the propagation of ash from Iceland to
Europe, using 6-h, 2.5° data. Outputs from a deterministic
puff model run consist of ash parcel positions and smoothed
concentration fields. The outputs can be post-processed to
extract outcomes like maximum height of ash, which can be
compared to observations.

Methodology of uncertainty quantification

A comprehensive accounting for the many uncertainties in
model outputs can be represented in different ways, including:
(1) worst-case scenarios that attempt to provide bounds using
interval analysis (Ben-Haim and Elishakoff 1990; Natke and
Ben-Haim 1997); (2) methods based on fuzzy set theory,
linguistically often identified as being concerned with possi-
bility (Elishakoff 1999); (3) evidence theory, which tries to
create upper and lower bounds on the likelihood of events
(Shafer 1976); and (4) probabilistic or stochastic models,
which offer a mathematically rich structure (Adler 1981;
Augusti et al. 1984; Christakos 1992; Grigoriu 2002;
Papoulis 1984; Torquato 2002). As the existence of several
approaches suggests, there is no “best” approach to quantify-
ing uncertainty, even within a specific scientific problem.

To account for the parametric (input) uncertainties in a
model, one can use available data and expert knowledge to
formulate a probability distribution function (pdf) of the
inputs and then evaluate the model with sufficiently many
different inputs using a Monte Carlo sampling technique. In
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the standard puff model with turbulence turned off used
herein, one tracks the position of representative particles as
they are transported by wind, and the position of each parcel
is a deterministic quantity. Each puff simulation consists of
the transport of millions of such parcels. The resultant set of
outputs and functionals of outputs (e.g., maximum height of
the ash cloud at a given location from each run of puff) can
be treated as a data set and analyzed to establish a pdf of the
desired output or compute appropriate statistics (means,
medians, and variances). Unfortunately, even for simple
choices of the input variables the computational cost of this
approach—requiring millions of model evaluations—is soon
unaffordable. To alleviate this cost yet produce a solution in
which the statistical moments of the outputs converge, we
create a small, “smart” combination of simulations consisting
of thousands of runs, as opposed to a Monte Carlo combina-
tion consisting of millions of runs. The outputs can be com-
bined to produce results comparable to those from a Monte
Carlo procedure but at a much smaller computational cost.
This procedure has origins dating back to the work of Wiener
(1938), and has been the subject of much recent study (see for
e.g., Xiu and Karniadakis (2002), LeMaitre et al. (2001), Xiu
and Hesthaven (2005), and Berveiller et al. (2006)). Such a
methodology for block and ash flows was presented in detail
in an earlier work (Dalbey et al. 2008), and is extended here
for the current application to ash transport.

Uncertainty characterization

Given the paucity of information about the intensity of the
eruption during its strongest, early morning initial phase, we
use available information to construct a constant source-
time function of steady output in mass eruption rate and
grain size for the puff default eruption duration of 3 h,
initializing the eruption at midnight, 14 April 2010. Each
instance of the source-time function is constructed from a
single sample of the space of uncertain bent input parame-
ters gleaned from the best available information for this and
other similar eruptions. The grain size, mass loading and ash
cloud height, width, and depth output from bent are then
taken as input to the VATD model puff. In addition to the
(uncertain) volcanic source inputs, a VATD model such as
puff requires NWP wind data that are subject to temporal
and spatial variation that is not captured by available data-
sets. With this proviso—that the wind is also an important
source of uncertainty that we are not in the present case
characterizing, we proceed to propagate the uncertainty
derived from our lack of complete understanding of the
volcanic source characteristics. Furthermore, we mention
explicitly that, although we have employed bent and puff
models in this paper, our analysis is not dependent on these
specific column and transport models. Other models for
either the volcanic eruption column or the VATD process
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could be used instead, and, following the same methodolo-
gy, would produce a similar probabilistic forecast of ash
cloud location.

Polynomial chaos quadrature weighted estimate

Consider any output variable of interest (e.g., ash concen-
tration at a location). We assume this to be a random vari-
able, x;, whose time evolution is given by the bent-puff
coupled eruption column advection/diffusion solver, written
as a generic differential equation

x=f(t,x,6,W) (2)

In Eq. 2, ¢ is time, ©={6;, 0,,...} represents uncertain
system parameters such as the vent radius, vent velocity, mean
grain size, and grain size variance, and ¥ is a given windfield
from a NWP model. As noted above, VV is indeed also
stochastic, and its uncertainty may be expressed using ensem-
bles of possible windfields (WRF 2009). We focus here on the
effect of the volcanic source parameter uncertainty, condition-
al to a given windfield forecast. We intend to incorporate the
effect of the wind uncertainty in upcoming contributions using
an extension of the present methodology.

Using the estimated values of physical variables of vent
speed and radius and grain size distribution, together with
estimates of their uncertainty, as inputs into the bent erup-
tion column model, we generate a sampling of the uncertain
input parameter space for a typical VATD model. From this
sample of puff runs, we then generate statistical moments
for any output variable of interest, such as concentration at a
point or in a region, or cloud size and position. In the present
case, the output variables that we will concentrate on are
related to ash cloud size and position, as measurements of
these parameters from satellite data are better—having a
longer history of development and testing—than are meas-
urements of concentration, and therefore more suitable for
model comparison and validation.

The starting point for our development of the PCQWE
method is to approximate the input and output variable
distributions by a truncated polynomial series, the poly-
nomial being associated with the distribution (so, e.g.,
the Hermite polynomials are associated with a Gaussian
distribution):

N
6,6)=> 0,008 =67 0(&) = 0(1,E) =6, () (3)
k=0

x(6,0) = % (00:(8) = x (VD (&) = x(1,6) = X, (D) (4)
k=0

where, X, and 6, are matrices composed of coeffi-
cients of PC expansions for state x and parameter ©

respectively and {¢;} is the set of orthogonal polyno-
mials in the unit random variable & chosen for the
approximation. This approach was pioneered by Xiu
and Karniadakis (2002) and termed generalized polyno-
mial chaos (gPC). gPC is an extension of the homoge-
nous chaos idea of Wiener (1938) and involves a
separation of random variables from deterministic ones
in the solution algorithm for a stochastic differential
equation. Suitably chosen polynomials converge rapidly
to the assumed pdf for the input variables.

Galerkin projection (multiplication by ¢, and integration
over dp(w), where p is probability and w is a dummy
variable that spans the random space) is used to generate a
system of deterministic differential equations for the expan-
sion coefficients. The Galerkin projection step fails when
applied to problems with non-polynomial nonlinearities,
and can produce unphysical solutions when applied to
systems modeled by hyperbolic partial differential equa-
tions. Furthermore, Galerkin projection requires that a
“new” set of unphysical partial differential equations be
solved—a difficult option since the primary models bent
and puff cannot be easily altered. Non-intrusive spectral
projection (NISP) or stochastic collocation methods can
overcome these difficulties (LeMaitre et al. 2001; Xiu
and Hesthaven 2005; Berveiller et al. 2006). Dalbey et
al. (2008) have proposed polynomial chaos quadrature
(PCQ) as a variation of the NISP method (see LeMaitre
et al. (2001), Xiu and Hesthaven (2005), and Berveiller
et al. (20006)). Key to this methodology is the recognition that
the projection desired to estimate the coefficients of the poly-
nomial expansion or to estimate moments (mean, variance,
etc.) will require numerical integration with quadrature of the
state variable x, using the numerical integration of the expres-
sion for the time derivative of x from Eq. 2. PCQ approx-
imates the Nth moment of x as:

<x(t)N>: / ( 0/ xdt) dp(w) = Z ( / f(t,x,@,W)dt) dp(o)

(5)

= w, (£ (1, %, 0, W)Y (6)

q

For a fixed value of parameter © = O, the evaluation of
x is done using a run of bent and puff. This method can be
viewed as a Monte Carlo-like evaluation of system equa-
tions, but with sample points &, and corresponding weights
w, selected by quadrature rules. In other words, the output
moments are approximated as a weighted sum of the
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output of simulations run at carefully selected values of
the uncertain input parameters (namely the quadrature
points). The formula above for moments can be used to
estimate the means and variances. Similarly the ith
polynomial coefficient for the kth random wvariable, x;,
can be obtained as,

g wy [ (1,%,04,W)0;(&,)
;W@@W

(7)

Xik =

With the coefficients in hand, the truncated polyno-
mial series can be used to estimate probabilities. The
Gaussian quadrature points optimize the degree of the
polynomial function that integrates exactly an Hermite
polynomial representation of the uncertainty. The classic
method of Gaussian quadrature exactly integrates poly-
nomials up to degree 2N+1 with N+1 quadrature points
to obtain the Nth moment. The tensor product of one-
dimensional quadrature points is used to generate quad-
rature points in general n-dimensional parameter space.
As a consequence, the number of quadrature points
increases as (N+1) to integrate exactly an n-variate
polynomial of degree 2N+1 as the number of uncertain
input parameters, n, increases. Thus, in the analysis
below, when we use 9°=6,561 quadrature points (model
runs), it means that there are four uncertain input
parameters (vent radius, vent velocity, initial mean grain
size, and initial standard deviation of the grain size) for
which we are integrating the polynomials up to degree
17 (=2x8+1) and are able to calculate moments up to
order 4. It is important to point out here the extremely
sensitive dependence of the number of quadrature points
on the number of uncertain parameters, i.e., the number
of points goes up in proportion to the power of the
number of parameters. This effectively limits the number of
uncertain input parameters that can be propagated. For exam-
ple, although four variable input parameters necessitate about
10* model runs in the present case, eight variable input
parameters necessitate 10°~10 runs. Thus, one needs to be
judicious and parsimonious in the choice of only the most
critical input parameters that are to have variability. Although
the present contribution cannot include a sensitivity study of
the relative importance of various uncertain input parameters,
we have tried to wisely choose those four that should have the
most profound impact on the output mass and geometry. The
input source variables deemed to have the most direct impact
on cloud geometry and loading are vent radius, source vent
velocity, initial grain size mean, and initial grain size standard
deviation. Vent radius and source vent velocity directly con-
trol mass eruption rate, hence column height and spreading.
Initial grain size mean and standard deviation are the source
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conditions that most directly control the fallout rate of the
particles, hence the mass loading at the height of the eruption
cloud.

Analysis and PCQWE results

The first step in the analysis is to produce the sampling
values and their weights, for the uncertain bent inputs, viz.
vent radius, vent velocity, mean grain size, and grain size
variance. The inputs are sampled at selected points, in the
present case, Gauss-Legendre quadrature points, since the
underlying distribution has been taken to be uniform for
each of our uncertain inputs. We have used uniform distri-
butions as given data consist only of ranges. We cannot
assign to any one point within each range a higher likeli-
hood than surrounding points. Outputs are summed with
appropriate weights, producing the polynomial chaos quad-
rature weighted estimate of downwind ash position and
loading. For the range of values of vent radius and velocity
that were sampled, we noted two different regimes of plume
rise (Fig. 3); the lower regime is associated with those inputs
that result in eruption column collapse. As noted previously,
at least partial column collapse seemed to be a major feature
of this eruption.

Since PCQ is a numerical method of integration ( [,

f(x)dx =~ va:”] w; f(&;) where N, is the number of quadra-
ture points and w;, &; are quadrature point and weight combi-
nations), using an insufficient number of quadrature point-
driven samples will result in integration error. This neces-
sitates an adaptive or nested quadrature scheme that allows
us to successively refine the accuracy by increasing the
number of sample points, i.e., simply running the model at
additional quadrature points rather than having to resample
the input distributions. In a nested quadrature scheme, one
can compare the solution computed at a given order with
that of a quadrature rule of lower order, which evaluates the
integrand at a subset of the original N points, to minimize
the integrand evaluations. Gaussian quadrature rules are not
naturally nested. Hence, we employ Clenshaw—Curtis quad-
rature (Cheney and Kincaid 1999; Clenshaw and Curtis
1960) for numerical integration. The Clenshaw—Curtis
scheme is based on an expansion of the integrand in terms
of Chebyshev polynomials and naturally leads to nested
quadrature rules. Another advantage of Clenshaw—Curtis
quadrature is that the quadrature weights can be evaluated
in order NlogN time by fast Fourier transform algorithms as
compared to order N* for the Gaussian quadrature weights.

Following runs of bent at the quadrature points, each
output is then propagated through puff, which was then
run for a real-time period of 5 days. The weighted outputs
from puff were then combined to produce a probabilistic
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estimate of ash cloud position by applying the appropriate
weight to each deterministic bent—puff run.

Numerical methodology of the type used here must
always be tested for independence from discretization
parameters and number of model runs. As we seek to
develop a numerical method that could be implemented
in a finite (usually short) computing time, we need to
minimize the number of puff particles used and the total
number of runs, while at the same time maintaining
model accuracy. The number of model runs is given
by the number of quadrature points. Convergence of
moments in PCQ as a function of the number of quad-
rature points is discussed in detail in (Dalbey et al.
2008). For the present set of simulations, we compared
the outputs for 9*=6,561 model runs against those for
13*=28,561 model runs (quadrature points). The results
indicate that 9* runs is substantially the same as 13*
runs in terms of the values of selected outputs (Fig. 4).
In examining the output ash cloud top height for 16
April 2010 12Z, for 6,047 computational grid points,
the maximum deviation between 9* and 13* quadrature
points is 2.76 %, and the mean difference is 0.02 %.
For this analysis, percent differences were calculated by
normalizing the cloud top height difference between 9*
and 13* quadrature points against the maximum cloud
height at the given time. Most grid points contain no
ash in both model runs, thus the difference between the
mean and maximum deviations. These results suggest
that 9* runs is sufficient for propagation of the uncer-
tainty in the inputs. In terms of sensitivity to discretiza-
tion parameters, the most important discretization in
puff is the use of Lagrangian “particles” that are prop-
agated in the windfield. Once the particles have been
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% 50N, 13CC ——
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- 51N, 9CC
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Fig. 4 Comparison of output on mean cloud-top height from runs of
9* and 13* quadrature points, taken as transects along latitudes 50 and
51° North. Each curve is labeled according to the number of runs and
the latitude. Comparison is between the runs having different numbers
of quadrature points along the same parallel

moved sufficiently far, they need to be counted in some
way to obtain smooth concentration gradients as one
sees in nature. If too few particles are used, then the
smoothing process can yield poor estimates of concen-
tration as a function of position. In terms of the effect
of discretization parameters, the comparison of outputs
using 10° to 107 particles in the puff simulation indi-
cated that the choice of 4x10° particles was adequate
for our purposes (Table 2), and is consistent with the
findings of others (Scollo et al. 2011).

We focus on four-dimensional ash cloud-top position in
presenting typical output from this process, as this will be our
validation dataset as well. Results for 9* Clenshaw—Curtis
quadrature points and 4 x 10° puff particles for 16 April 2010
are shown in Fig. 5. Although maximum mean ash cloud-top
height hovers between 1 and 2 km, the standard deviation in
the estimate is higher, and the region of non-zero deviation is
much larger than that of the mean. Thus, the standard practice
of capturing most of the probability density or mass by taking
the mean plus three standard deviations of an output variable
(encompassing approximately 99.7 % of the probability mass,
assuming a Gaussian distribution of the output variable) will
result in a maximum predicted cloud-top height of approxi-
mately 8 km at these times. One can conclude from this that
the input source parameter uncertainty resulted in a sufficient-
ly large uncertainty in downwind ash cloud position. Clearly,
this result shows that it is critical to do everything possible to
“beat down” the input source parameter uncertainty if we are
to obtain tightly constrained estimates of the position of the
downwind ash cloud, but that even what might be a poorly
constrained estimate is helpful.

Discussion and conclusions

For model evaluation and validation, both individual deter-
ministic puff runs and PCQWE output were compared with

Table 2 Comparison of concentration at 52° N, 13.5° E and 0-
2,000 m elevation using different numbers of initial puff particles

n puff particles Abs. concentration Rel. concentration

(initial) (mg/m3 ) (puff particles in cell)
1x10° 1.15x1073 28
5%10° 1.82x1073 221
1x10° 1.66x1073 405
2x10° 1.74x1073 844
4x10° 1.70x1073 1,655
8x10° 1.79%1073 3,471
1x107 1.71x1073 4,151

The absolute concentration is calculated from the relative concentration
assuming a cloud thickness of 1 km based on CALIOP data (e.g.,
Fig. 6)
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Fig. 5 Model outputs for the
ash cloud over north-central
Europe on 16 April 2010 using
9* Clenshaw-Curtis quadrature
points and 4 x 10° puff particles.
Ash cloud heights in meters;
contour interval 600 m for
mean and 400 m for standard
deviation. a Mean cloud height
at 00Z, b standard deviation of
cloud height at 00Z, ¢ mean
cloud height at 06Z, d standard
deviation of cloud height at
06Z, e mean cloud height at
127, f standard deviation of
cloud height at 127, g mean
cloud height at 18Z, and h stan-
dard deviation of cloud height
at 187

ash position as determined by analysis of Meteosat-9
SEVIRI data. The main metric used in the present work is
ash cloud-top height as a function of map position and time.
Four-dimensional ash cloud top position on 16 April 2010
has been chosen for validation as it is thought to be well-
characterized by the test dataset from Meteosat-9 SEVIRI.
The plume generated in the initial, paroxysmal phase of the
eruption in the early morning of 14 April 2010 drifted over
northern Europe on 16 April 2010, hence this is the region
and time we focus on. Meteosat processing by the algo-
rithms used in this contribution is the most robust method-
ology for ash detection and assessment. Volcanic ash was
identified in the satellite data using the methodology de-
scribed in Pavolonis et al. (2006) and Pavolonis (2010). The
ash loading (mass per unit area) and ash cloud height were
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retrieved using an optimal estimation approach (Heidinger
and Pavolonis 2009; Heidinger et al. 2010). Ash loading
was not used for validation however as the SEVIRI data
product consists of an estimate for an unknown depth within
the upper part of the ash cloud. All microphysical assump-
tions used in the retrieval are described in (Wen and Rose
1994). In model and data, plume edge was defined by
detectability of ash in a computational cell or pixel, respec-
tively. Comparison with CALIOP limb sounder data sug-
gests that Meteosat generally characterizes cloud top height
well, but there are exceptions (Fig. 6). Volcanic ash cannot
be detected if ash is obscured (from the top) by liquid water
or ice clouds. This is true for all satellite-based infrared ash
retrieval schemes. Based on careful manual analysis of
satellite imagery, volcanic ash was generally the highest
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Fig. 5 (continued) [

cloud layer over Europe on 16 April 2010. However, higher
level ice clouds did interfere with satellite detection of
volcanic ash in areas northeast of Poland on 16 April 2010.

Qualitative comparison

In a qualitative analysis, PCQWE ash location matches ash
location in the data (Fig. 7). The Meteosat-9 SEVIRI cloud
top height outputs were compared with model mean ash
parcel height plus three standard deviations (statistics calcu-
lated from outputs of computational runs), as an estimated
upper bound on predicted plume top height. 9* PCQ
Clenshaw—Curtis runs were sampled in the input space,
and 4x 10° ash particles were used. For a Gaussian, univar-
iate distribution, mean £3¢ incorporates 99.7 % of the

model probability mass. Since in the present case pdfs are
non-Gaussian, this value is somewhat lower. If we can
assume that the largest values of vent radius and eruption
speed resulted in the runs in which ash was transported at
the highest modeled levels, this result suggests that the
initial eruption was at the higher end of the intensities used
in individual model runs. This would imply that the MER
during the initial phase of the eruption was on the order of
10%kg/s.

None of a random sample of seven of the 6,561 model
runs that went into the PCQE composite yielded ash parcels
over northern Germany as seen in the SEVIRI test dataset.
Thus, there is a non-zero probability mass of model runs that
is encompassed by the space of reasonable estimated volca-
nic input source parameters, which contribute nothing to the
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Fig. 5 (continued)

presence of ash in the forecast region. This suggests that
individual runs of VATD models can yield results far from
truth, even for rational choices of input parameters, and that
stochastic combination is critical when volcanic input
parameters are poorly constrained.

Continuing with our qualitative analysis, in planview,
PCQWE predictions of location encompass a much larger
area than does the data, but include most of the cells in which
SEVIRI recorded ash. In both model and data, ash cloud top
height varies from <1 km to c. 8 km. There is a variation in
height along the axis of the ash cloud in the satellite data that
in magnitude, and often in detailed location, corresponds with
the variation seen in the PCQWE output (Fig. 7c—d), although
the height variation does not correlate in detail at all times
(Fig. 7a-b). (We note that comparison of SEVIRI ash
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retrievals with CALIOP limb sounder data shows that these
height variations are real.) Depending on the time, the position
of the higher parts of the ash cloud in the satellite data shifts
between its eastern and western ends. Locally, Meteosat can
misinterpret meteorological clouds as ash clouds, and can
have a larger variance in the vertical dimension than limb
sounder data. These, as well as a poorly constrained vertical
dispersion in the ash motion used in the model may contribute
to this difference in height between model and data.
Nevertheless, the point here is that since we do not know a
priori the characteristics of the paroxysmal eruption column,
the fact that the highest model ash parcels are close to the data
suggests not only that the model parameter space encom-
passes the true, but that the paroxysmal initial pulse was as
large as allowed by the parameter space.
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Fig. 5 (continued)

An important difference between model and data is the
existence of ash clouds in the model to the northeast that are
not present in the data. Detailed investigation of individual
model runs shows that these ash bodies are derived in
virtually all model runs at high elevation at a location west
of Norway where the ash cloud bifurcates. The low-level
ash cloud that corresponds to that seen in the Meteosat data
propagates to the south from this point, while the high-level
model cloud propagates eastward, eventually doubling
back over Russia and northern Europe. Although there
is no indication of such a cloud in the Mecteosat data, as
stated previously our detailed analysis of the satellite
data suggests that higher level ice clouds did interfere
with satellite detection of volcanic ash in areas northeast
of Poland on 16 April 2010.

Quantitative comparison

Quantitative comparison of the probabilistic forecast of
four-dimensional location calculated with PCQWE and
Meteosat-9 was undertaken using data and output for 12Z
16 April 2010 for the ash cloud over north-central Europe
(Table 3; Fig. 8). In Table 3, the Figure of Merit in Space
and other statistics are calculated for each time for the
correspondence in three dimensions between the PCQWE
output mean ash cloud-top height plus three standard devia-
tions (thus encompassing about 99.7 % of the probability
mass) and the ash cloud-top height as given by the
Meteosat-9 SEVIRI retrieval. The most general statement
that can be made is that PCQWE output includes the entire
Meteosat-9 ash cloud area at the 5 % level (i.e., in the figure,

@ Springer



Bull Volcanol

Fig. 6 CALIOP space-borne 12
lidar detection of the Eyjafjal-

lajokull ash cloud over northern

Europe on 16 April. White line 10
is elevation of tropopause; red

line is elevation of ground sur-

face. The discontinuity at s

8.5 km altitude is due to a B
change in the vertical and hori- f’
zogtal resolution of CALIOP, 2 5
which changes the noise char- g
acteristics of the data. The blue 2
oval outlines the ash layer. Near = i
this location and time, the
highest ash was detected by
Meteosat at c¢. 3 km, with con- ¢
siderable altitudinal variation 27
down to ¢. 100 m

o

Lat:  47.00

Len: 9.49
utc:  12:33:.06

95 % of the model probability mass is inside the appropri-
ately colored region that completely encompasses the data),
and that model and data correspond quite well even at the
70 % level (i.e., 30 % of the probability mass encompass
most of the data). Table 3 shows that when using the
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standard measure of mean plus three standard deviations in
ash cloud location, at best PCQWE predicts location with
around 83 % probability (“PCQWE given Sat” row in the
table). This result is sensitive to the lower elevation cutoff
used in PCQWE. In the two cases studied, when the
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Fig. 7 Meteosat-9 SEVIRI cloud top height data product compared
with model mean ash parcel height plus three standard deviations.
Colored regions are SEVIRI cloud top estimate; contours of cloud
height are model. Outermost contour is 2,000 m height and contour
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interval is 2,000 m. There is a +1 km quantization error in the model
height output. a 16 April 2010 00Z, b 16 April 2010 06Z, ¢ 16 April
2010 12Z, d 16 April 2010 18Z
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Table 3 Comparison of forecast for April 16 at 12Z and satellite data using 4x10° puff particles and 9* and 13* points of Clenshaw—Curtis
quadrature rule-based PCQWE

Metric of PCQW min ht PCQWE min ht PCQWE min ht PCQWE min ht
footprint 124 m* 9* points 124 m 13* points 380 m* 9* points 380 m 13* points
FMS 0.0544 0.0553 0.0690 0.0715
PCQWE given Sat 0.8238 0.8268 0.6889 0.6879

Sat given PCQWE 0.0551 0.0559 0.0712 0.0739

Mean +3 standard deviations used for forecast; 380 m is default lowest quantization of heights in Meteosat data in software used in calculation;
124 m is minimum height in Meteosat ash top height data on 16APR at 127

FMS figure of merit in space = (area of intersection of PCQWE forecast and satellite image)/(area of union), PCOWE given Sat = (area of
intersection PCQWE forecast and satellite image)/(area of satellite), Sat given PCOQWE = (area of intersection PCQWE forecast and satellite image)/
(area of PCQWE forecast)

Fig. 8 Meteosat-9 SEVIRI a
cloud outline (filled black
region) compared with model
generated probabilities of ash
presence based on source
parameter uncertainty
propagation. Color scale bar in
fractional probability. Outer
edge of blue area is at 20 %
probability. a 16 April 2010
00Z, b 16 April 2010 06Z, ¢ 16
April 2010 12Z, d 16 April
2010 182
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Fig. 8 (continued)

PCQWE clevation cutoff is the same as the lowest ash
parcels imaged by Meteosat (124 m), the results are consid-
erably better than those obtained using a higher cutoff
(380 m—the lowest software quantization height). The
number of “false positives” for the model hovers between
93 and 95 % (“Sat given PCQWE”), because the PCQWE
output is nearly a superset of the Meteosat data that encom-
passes about 20 times the map area encompassed by the
satellite data (“FMS” compared to “Sat given PCQWE?”).
Thus, not only can results be output in the form of statistical
moments (Figs. 5 and 7), but we have also generated outputs
in the form of the probabilities directly (Fig. 8). The probabil-
ity plot used herein shows the probability that ash can be
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found at a given location at any altitude at the displayed time.
A three-dimensional plot for a given time could also be
produced, so the current two-dimensional planview is used
to provide a simple demonstration of the concept. Although
the current results suggest that contouring an ash cloud at
about the 70 % percentile would yield a good estimate of
ash position based on the comparison with the SEVIRI data, in
practice, it would probably be justly conservative to choose a
lower value, to reduce the possibility of encounter.
Nevertheless, one important point of a probabilistic plot is
that agencies and other decision-making groups can choose a
statistical cut-off that they deem servicable in a given situa-
tion. The critical decision of “where to draw the line” does not
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need to fall upon scientists who should primarily focus on
making the best measurements and calculations possible.

A practical consideration in contemplating these results is
whether they are feasible from the standpoint of computa-
tion time—can the computation be finished by the time a
decision needs to be made. One run of bent takes seconds of
CPU time to execute, whereas a run of puff finishes in
minutes of CPU time. A sample 9*=6,561 quadrature point
run with 4x10° puff particles was executed on 24 CPUs,
each using a little less than 2 h of wall time. Given a
relatively modest parallel computing capacity, therefore,
the methodology executes relatively quickly.

The main conclusions from this study are the following:

1. It is possible to use other source parameters besides
eruption column rise height to obtain reasonable esti-
mates of boundary conditions important to the calcula-
tion of the loading and transport height of tephra.

2. When possible therefore, volcanologists should make
and take advantage of as many measurements of source
parameters as is possible.

3. Although any measurements of source parameters can be
used in a model such as outlined herein, source parameter
uncertainty should be addressed as vigorously as possible to
minimize errors in downwind plume position and loading.

4. With respect to the source parameters for the initial,
paroxysmal phase of the April 2010 Eyjafjallajokull
eruption, numerical modeling with bent coupled with
radiosonde data for 14 April 2010, as well as the obser-
vation that the highest model ash particles are needed to
encompass the downwind ash cloud as retrieved from
SEVIRI data, suggest that perhaps the initial phase of
the eruption was at the high end of the parameter space
explored herein, meaning that maximum MER could
have been as high as 10%kg/s, and was almost certainly
higher than 10”kg/s.

5. Eyjafjallajokull eruption column height was severely
affected by the high winds.

6. It is critical to obtain as good as possible a picture of the
weather conditions at the source, especially as given by
radiosonde measurements taken close the volcano and
eruption time.

7. Given the success in generating a probabilistic envelope
of ash position that encompasses Meteosat-9 data
(Fig. 8; Table 3), the results suggest that variations in
source parameters of the type investigated here play a
role in accurately estimating distal ash position.

8. PCQWE can be used to generate a probabilistic forecast
of ash position for a relatively small sample size of order
9% computational runs.

9. The ability to generate a probabilistic forecast of ash
cloud position, together with statistical moments may
allow for a better separation of scientific and decision-

making tasks in eruption crises, as this frees scientists to
address errors in measurement and analysis in a system-
atic fashion and allows decision-makers to be responsi-
ble for “drawing the line” on a region of risk.

We are currently exploring the application of PCQWE to
the additional variability arising from our incomplete
knowledge of the windfield. The question arises however,
whether even PCQWE can provide probabilistic estimates
useful in Volcanic Ash Advisories in a reasonable time. This
question clearly needs to be investigated further.
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