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thrust-induced braking acceleration. Therefore, including air drag,
the equations of motion now become

b= —(a+ Bv*)g + gcosy (4a)
vfb = —gsiny (4b)
where CrA
B = p:pA 5)
2mg

The drag coefficient Cp, mass m, and aerodynamic reference area
A are all assumed to be constant, as is the local atmospheric density
Py Again, from Eqgs. (4) the vehicle flight-path angle may be used as
the independentvariable to obtain a single first-order equation, viz.,

L L+ haw (6)
dy
where
fi(¥) = a cosecy — cots (7a)
() = Bcosecys (7b)

Equation (6) is a form of Bernoulli’s equationthathas a closed-form
solution” It can be demonstrated that the nonlinearequation can be
transformedinto a linear equation with an integrating factor through
an appropriate variable transformation. The general solutionis then
given by

v(y) = KCXP<_2/ h d‘ﬁ) - 25XP<_2/ fldW)
x[/exp(Z/fl dw)fz dwi| (®)

Evaluating the integrals and determining the constant of integration
k from the boundary conditions, the solution is found to be

I 70 MO siny/2) T
v = cos(¥o/2) sin(/2)
» |:v2 n Beos’(Y/2) B sin®(¥o/2)
0 a—1 a+1

o—a’ oa—1

L 2Beos’W/2) sinzwo/zq _ Beos’(Y/2)

BSiR(/2)  2Bcos’(§/2) s (¥/2)

oa+1 o —a’

©)

which clearly reduces to the vacuum case defined by Eq. (3) as
B — 0.

The velocity-flight-path-angle profile is shown in Fig. 2 for a
range of drag parameters 8. It can be seen that as the effect of air
drag increases, the trajectory curves more quickly toward the local
vertical. Because the effectof dragis to increase the effective thrust-
weightratio of the vehicle, the descent maneuver may be completed
with a lower thrust-inducedacceleration than would be required for
the vacuum descent case.

Conclusions

It has been demonstratedthat the conventionalsolutionfora grav-
ity turn maneuver in vacuum may be extended to include descent
to the surface of a body with an atmosphere. With the assumption
of quadratic air drag, the resulting equations of motion are shown
to be a form of Bernoulli’s equation, which has a closed analytical
solution. With the vehicle velocity available as a function of flight-
path angle, the solution for the altitude and time variables is then
reduced, in principle, to a set of quadrature integrations.
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I. Introduction

ONSIDERABLE interest had developed in the study of op-

timization theory as applied to the spacecraft system by the
early 1960s. The basic theory in determining the extrema of the op-
timal control problems has been developed for nonsingular'? and
singular’ controls. Computation difficulties have plagued the study
of time- and fuel-optimal control problems, particularly for systems
with nonlinear dynamics. However, there has been a resurgence
of interest in the design of controllers for spacecraft reorientation
maneuvers in the past decade*~' Among these studies, the opti-
mization objectives have included the maneuver time,*>7 the fuel
consumed,>®° and the weighted fuel/time cost function.'® In addi-
tion, the singular controls of both time- and fuel-optimal controls
have been analyzed for spacecraftreorientations’:!!

This Note addresses the problem of designing fuel/time-optimal
controllers for spacecraft undergoing rest-to-rest maneuvers. A
modified switch time optimization (STO) algorithm'? is used to
solve the problem of reorienting an inertially symmetric spacecraft
with weighted fuel/time cost function from an initial state of rest
to a final state of rest. In this work, we do not study controls with
singular arc and, therefore, assume that the fuel/time-optimal con-
trol profile is bang-off-bang!®!>!* As the weight on the fuel, «,
is increased from zero, it is shown that the number of switches in
the control profiles, for an inertially symmetric spacecraft, varies
from 5 to 10 to 9. Beyond a specific value of «, it is shown that the
eigenaxis control with two switches is the optimum.

II. Problem Formulation

The Euler’s rotational equations of motion for an inertially sym-
metric rigid spacecraftwith principalbody axes at the center of mass
are

O=1u (D

where o = [w; w, ws] is the angular velocity vector and u” =
[u; u, u;], the control vector, is subject to the constraints

“1<u <1 i=123 )
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The associated kinematic equations of motion are

q =139 (3)
where
0 —w —w —ws
0 _
Q= wq w3 w) (4)
w, —ms 0 W
w3 W, —w 0

andq” = [qy ¢, 9> qs] are the quaternions that represent orienta-
tion between the Euler axis and the body-fixed reference frame.
The problem of design of weighted fuel/time-optimal controllers
for spacecraftreorientation can be stated as follows: Determine the
controls that drive the system states (w, q) described by Egs. (1)
and (3) from their specified initial conditions (wy, go) to their final
conditions (wy, ¢ ) while minimizing the cost function
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and the costates backward in time, is used to determine the optimal
control profile. The errors in the terminal constraints are used to
update the estimated values of the switch times and the maneuver
time for each iteration until convergence. In the fuel/time optimal
problem, we assume the control profiles are bang-off-bang, so that
we have to investigate only the behavior close to the switch times
as the STO algorithm does for the time-optimal control problem.

III. Numerical Examples
The problem addressed in this study is the design of a weighted
fuel/time optimal controller for an inertially symmetric spacecraft
undergoinga 180-degrest-to-restreorientation. The problemis sub-
ject to the following boundary conditions.
1) Initial conditions:

1(0) = @,(0) = w3(0) =0

and
& & 0)=1 0) =¢2(0) = ¢;(0) =0
J:/ 1+aZ|ui| dr ) q0(0) = 1, 91(0) = ¢2(0) = ¢5(0)
0 im1 2) terminal conditions:
subject to control constraints [Eq. (2)]. A modification of the STO wi(ty) = wy(ty) = w3(t;) =0
algorithmthat constructsan optimal solutionbased on the first-order and
gradient method by integrating the state equations forward in time
usinginitial guessesofthe final time and switch times of the controls, qo(ty) = qi(t;) = q2(1y) =0, gs(tp) =1
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Fig.1 Controls, states, and costates for a 180-deg, rest-to-rest maneuver with o = 0.
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Fig.2 Controls, states, and costates for a 180-deg rest-to-rest maneuver with o = 0.02.
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Fig. 3 Controls, states, and costates for a 180-deg rest-to rest maneuver with o = 0.08.
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and control constraints:

1)—1 <u; <1,i =1,2, and 3 for three-axis control;

2) —1 < u3 < 1 for eigenaxis control.

The modified STO algorithm will be used to solve both the time-
optimal and fuel/time-optimal control problems. A comparative
study of three-axis and eigenaxis control will also be carried out.

The time-optimal control profile is solved and the maneuver time
isshowntobe s, = 3.243, whichis the same as thatshown in Refs. 4
and 10. Figure 1 illustrates the time histories of controls, states, and

costates. The switching function, d H /du;, is the same as the costate
of the associated angular velocity in this application.

Becausethe time-optimal control consistsof 5 switches,including
fuel into the cost function should lead to a control profile that is
characterized by 10 switches."* This conjecture is verified for the
case of @ < 0.053, where the control profile maintains 10 switches
for the three-axis control. A typical set of time responses for « =
0.02 is shown in Fig. 2. When « is in the range 0.053-0.0806, there
are only nine switches for the three-axis control. Figure 3 illustrates
the nine-switch control with the corresponding states and costates
for the case of @ = 0.08.

Bilimoria and Wie* have shown that the eigenaxis control is not
the time-optimal control for the prescribed maneuver. Here, we
study the variation of the fuel/time cost as a function of « for eigen-
axis control. The variation of costs and final maneuver times for
different« for three-axis and eigenaxis controlsare shown in Fig. 4.
Resultsindicate that the eigenaxiscontrol turns out to be the optimal
control for @ > 0.063. The reason for this is that the final maneuver
time is increasing more sharply with « for the three-axis control
compared to the eigenaxis controller.

IV. Conclusions

A modified STO algorithm to solve the weighted fuel/time opti-
mal control problem has been developed. An inertially symmetric
spacecraft undergoing a rest-to-rest reorientation maneuver with
three independent bounded impulsive controls is investigated.
Solutions to both time-optimal and fuel/time-optimal control prob-
lems are analyzed using the modified STO algorithm.

Results from this study illustrate the variation of the switch-time
of the control profile from a 5-switch for the time-optimal case
to a 10-switch for small «. Increasing « beyond 0.053 results in
a transition from the 10-switch profile to a 9-switch profile. For
o > 0.063, it is shown that the eigenaxis control with two switches
is the optimum.
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Analytical Solutions for
Exponentially Correlated
Acceleration Tracking Filters
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I. Introduction

N earlier papers, Gupta and Ahn' and Gupta® have presented an

analytical solution of the steady-state exponentially correlated
acceleration (ECA) filter with the target position as the only mea-
surement. In radar applications, however, Doppler measurements
are also available in addition. Fitzgerald® has presented computed
steady-state data for a simple form of the ECA target tracking filter,
which utilized both position and velocity measurements. In a recent
paper, Ramachandra et al.* have presented the steady-state solution
of a three-state Kalman tracking filter that utilized both position and
velocity measurements and a constant-accelerationmodel.

The objective here is to extend the case of a closed-form steady-
state solution for the discrete ECA tracking filter by using the
MacFarlane-Potter-Fath eigenstructure method.> The ECA track-
ing filter estimates the target position, velocity, and accelerationin a
track-while-scansystem and utilizes the target position and velocity
measurements as inputs to the tracking filter. When the variance of
the velocity measurement error o, goes to infinity, the results are
shown to be in agreement with the analytic solution given by Gupta?
and with the numerical solution given by Fitzgerald?

II. Discrete Exponentially Correlated
Acceleration Tracking Filter

The following discrete ECA tracking filter model is considered’:
x(k+1) = &(Ty)x k) + v(k) z(k) = Hx (k) + w(k)
O (T,) = exp(FT))
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with
0 1 0 qu 4912 913
F=[0 0 1 OT)=| 912 9» 9»
0 0 -1/t 913 493 93
1 16 ¢,
PTH)=[0 1 (1—¢3) (2)
0 0 &3
_ 2
y 1 760 7Y 1 0 0
Ty =|0 1 -y H=|o 1 o
0 0 Y3
R, O
R(T) =
0 R,
and
0 =T/, ¢ =0—1+¢;, and ¢;=-exp(—0)
3)
Y =0+1—1s3, Y3 =exp(), and ¢35 =1

Here @ (Ty) is the dynamic state transition matrix of the system, H
is the measurement matrix, Q(7y) is the process noise covariance
matrix that is symmetric and nonnegative definite and g;; given
by Singer,® and R(T}) is the measurement covariance matrix and
uncorrelated with v (k).

It is well known that the steady-state Kalman filter for Eqs. (1-3)
becomes

x(k/k)y =x(k/k — 1)+ K[z(k) — Hx (k)] “4)
where the Kalman gain matrix K is given by
pu/Ri pu/R
K =PH'R' =| pu/R pn/R (5)
psi/Ri pn/R,

where P is the a posterioricovariancematrix of the estimationerrors.
The five parametersused to describe this problem® are rms target
acceleration o,,, correlation time of target acceleration t, sampling
time T, rms position measurementerror o, , and rms velocity mea-
surement error g,,,.
InEq. 3), R, = a,flp, R, = a,fw, and we define the three dimen-
sionless parameters as

p=1/T; 6)
T?c,

pr=—— 7
Omp
T}orrnv

p3=— (8)
Omp

We restrict p; (Ref. 3) to a few simple multiples of the critical
value p,. = 1./ T;. The critical value maximizes the position and
velocity errors of the filter. Values determined empirically are well
approximated by the equation’

1
Pie =7./T, = [0.56 4+ 3.4p, "% ] ©)

III. MacFarlane-Potter-Fath Eigenstructure Method

The steady-state solution of the time-invariant matrix Riccati
equation was discovered independently by MacFarlane et al.’ The
solution P (o0) of the steady-statematrix Riccati equationin discrete
time is formalized as Lemma 1.

Lemma 1 (Ref. 5). If W, and W,, are n x n matrices such that
W,; is nonsingular and

a2 Mp (10)
TLwar |~ [ W



