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thrust-induced braking acceleration. Therefore, including air drag,
the equations of motion now become

Pv D ¡.® C ¯v2/g C g cos Ã (4a)

v PÃ D ¡g sin Ã (4b)

where

¯ D ½¤CD A

2mg
(5)

The drag coef� cient CD , mass m , and aerodynamic reference area
A are all assumed to be constant, as is the local atmosphericdensity
½¤. Again, fromEqs. (4) the vehicle � ight-pathanglemay be used as
the independentvariable to obtain a single � rst-order equation,viz.,

dv

dÃ
D f1.Ã/v C f2.Ã/v3 (6)

where

f1.Ã/ D ® cosecÃ ¡ cotÃ (7a)

f2.Ã/ D ¯ cosecÃ (7b)

Equation (6) is a form of Bernoulli’s equationthat has a closed-form
solution.7 It can be demonstrated that the nonlinearequation can be
transformedinto a linear equationwith an integratingfactor through
an appropriatevariable transformation.The general solution is then
given by

v.Ã/¡2 D ·exp

³
¡2 f1 dÃ

´
¡ 2exp

³
¡2 f1dÃ

´

£ exp

³
2 f1 dÃ

´
f2 dÃ (8)

Evaluating the integrals and determining the constantof integration
· from the boundary conditions, the solution is found to be

v.Ã/¡2 D cos.Ã=2/

cos.Ã0=2/

2.1 C ®/
sin.Ã=2/

sin.Ã0=2/

2.1 ¡ ®/

£ v¡2
0 C ¯ cos2.Ã0=2/

® ¡ 1
C ¯ sin2.Ã0=2/

® C 1

C 2¯ cos2.Ã0=2/ sin2.Ã0=2/

® ¡ ®3
¡ ¯ cos2.Ã=2/

® ¡ 1

¡
¯ sin2.Ã=2/

® C 1
¡

2¯ cos2.Ã=2/ sin2.Ã=2/

® ¡ ®3
(9)

which clearly reduces to the vacuum case de� ned by Eq. (3) as
¯ ! 0.

The velocity-� ight-path-angle pro� le is shown in Fig. 2 for a
range of drag parameters ¯ . It can be seen that as the effect of air
drag increases, the trajectory curves more quickly toward the local
vertical.Because the effect of drag is to increasethe effectivethrust-
weight ratio of the vehicle, the descentmaneuvermay be completed
with a lower thrust-inducedacceleration than would be required for
the vacuum descent case.

Conclusions
It has beendemonstratedthat the conventionalsolutionfor a grav-

ity turn maneuver in vacuum may be extended to include descent
to the surface of a body with an atmosphere. With the assumption
of quadratic air drag, the resulting equations of motion are shown
to be a form of Bernoulli’s equation, which has a closed analytical
solution. With the vehicle velocity available as a function of � ight-
path angle, the solution for the altitude and time variables is then
reduced, in principle, to a set of quadrature integrations.
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I. Introduction

C ONSIDERABLE interest had developed in the study of op-
timization theory as applied to the spacecraft system by the

early 1960s. The basic theory in determining the extrema of the op-
timal control problems has been developed for nonsingular1;2 and
singular3 controls. Computation dif� culties have plagued the study
of time- and fuel-optimalcontrol problems,particularlyfor systems
with nonlinear dynamics. However, there has been a resurgence
of interest in the design of controllers for spacecraft reorientation
maneuvers in the past decade.4¡10 Among these studies, the opti-
mization objectives have included the maneuver time,4;5;7 the fuel
consumed,6;8;9 and the weighted fuel/time cost function.10 In addi-
tion, the singular controls of both time- and fuel-optimal controls
have been analyzed for spacecraft reorientations.9;11

This Note addresses the problem of designing fuel/time-optimal
controllers for spacecraft undergoing rest-to-rest maneuvers. A
modi� ed switch time optimization (STO) algorithm12 is used to
solve the problem of reorienting an inertially symmetric spacecraft
with weighted fuel/time cost function from an initial state of rest
to a � nal state of rest. In this work, we do not study controls with
singular arc and, therefore, assume that the fuel/time-optimal con-
trol pro� le is bang-off-bang.10;13;14 As the weight on the fuel, ®,
is increased from zero, it is shown that the number of switches in
the control pro� les, for an inertially symmetric spacecraft, varies
from 5 to 10 to 9. Beyond a speci� c value of ®, it is shown that the
eigenaxis control with two switches is the optimum.

II. Problem Formulation
The Euler’s rotational equations of motion for an inertially sym-

metric rigid spacecraftwith principalbodyaxes at the centerof mass
are

P! D u (1)

where !T D [!1 !2 !3] is the angular velocity vector and uT D
[u1 u2 u3], the control vector, is subject to the constraints

¡1 · u i · 1 i D 1; 2; 3 (2)
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The associated kinematic equations of motion are

Pq D 1
2 Äq (3)

where

Ä D

&

6$
0 ¡!1 ¡!2 ¡!3

!1 0 !3 ¡!2

!2 ¡!3 0 !1

!3 !2 ¡!1 0

’

7%
(4)

and qT D [q0 q1 q2 q3] are the quaternions that represent orienta-
tion between the Euler axis and the body-� xed reference frame.

The problem of design of weighted fuel/time-optimal controllers
for spacecraft reorientationcan be stated as follows: Determine the
controls that drive the system states .!; q/ described by Eqs. (1)
and (3) from their speci� ed initial conditions .!0; q0/ to their � nal
conditions .! f ; q f / while minimizing the cost function

J D
t f

0

1 C ®

3

i D 1

ju i j dt (5)

subject to control constraints [Eq. (2)]. A modi� cation of the STO
algorithmthat constructsan optimal solutionbasedon the � rst-order
gradient method by integrating the state equations forward in time
usinginitialguessesof the � nal time andswitch timesof thecontrols,

Fig. 1 Controls, states, and costates for a 180-deg, rest-to-rest maneuver with ® = 0.

Fig. 2 Controls, states, and costates for a 180-deg rest-to-rest maneuver with ® = 0.02.

and the costates backward in time, is used to determine the optimal
control pro� le. The errors in the terminal constraints are used to
update the estimated values of the switch times and the maneuver
time for each iteration until convergence. In the fuel/time optimal
problem, we assume the control pro� les are bang-off-bang,so that
we have to investigate only the behavior close to the switch times
as the STO algorithm does for the time-optimal control problem.

III. Numerical Examples
The problem addressed in this study is the design of a weighted

fuel/time optimal controller for an inertially symmetric spacecraft
undergoinga 180-deg rest-to-restreorientation.The problemis sub-
ject to the following boundary conditions.

1) Initial conditions:

!1.0/ D !2.0/ D !3.0/ D 0

and

q0.0/ D 1; q1.0/ D q2.0/ D q3.0/ D 0

2) terminal conditions:

!1.t f / D !2.t f / D !3.t f / D 0

and

q0.t f / D q1.t f / D q2.t f / D 0; q3.t f / D 1
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Fig. 3 Controls, states, and costates for a 180-deg rest-to rest maneuver with ® = 0.08.

Fig. 4 Comparison using three-axis and eigenaxis controls.

and control constraints:
1) ¡1 · ui · 1; i D 1, 2, and 3 for three-axis control;
2) ¡1 · u3 · 1 for eigenaxis control.
The modi� ed STO algorithmwill be used to solve both the time-

optimal and fuel/time-optimal control problems. A comparative
study of three-axis and eigenaxis control will also be carried out.

The time-optimal control pro� le is solved and the maneuver time
is shown to be t f D 3:243, which is the same as that shown in Refs. 4
and 10. Figure 1 illustrates the time historiesof controls, states, and

costates.The switching function,@ H=@u i , is the same as the costate
of the associated angular velocity in this application.

Becausethe time-optimalcontrolconsistsof 5 switches,including
fuel into the cost function should lead to a control pro� le that is
characterized by 10 switches.13 This conjecture is veri� ed for the
case of ® < 0:053, where the control pro� le maintains 10 switches
for the three-axis control. A typical set of time responses for ® D
0:02 is shown in Fig. 2. When ® is in the range 0.053–0.0806, there
are only nine switches for the three-axiscontrol. Figure 3 illustrates
the nine-switch control with the corresponding states and costates
for the case of ® D 0:08.

Bilimoria and Wie4 have shown that the eigenaxis control is not
the time-optimal control for the prescribed maneuver. Here, we
study the variationof the fuel/time cost as a function of ® for eigen-
axis control. The variation of costs and � nal maneuver times for
different® for three-axisand eigenaxiscontrolsare shown in Fig. 4.
Results indicate that the eigenaxiscontrol turnsout to be the optimal
control for ® ¸ 0:063. The reason for this is that the � nal maneuver
time is increasing more sharply with ® for the three-axis control
compared to the eigenaxis controller.

IV. Conclusions
A modi� ed STO algorithm to solve the weighted fuel/time opti-

mal control problem has been developed. An inertially symmetric
spacecraft undergoing a rest-to-rest reorientation maneuver with
three independent bounded impulsive controls is investigated.
Solutions to both time-optimal and fuel/time-optimal control prob-
lems are analyzed using the modi� ed STO algorithm.

Results from this study illustrate the variation of the switch-time
of the control pro� le from a 5-switch for the time-optimal case
to a 10-switch for small ®. Increasing ® beyond 0.053 results in
a transition from the 10-switch pro� le to a 9-switch pro� le. For
® > 0:063, it is shown that the eigenaxis control with two switches
is the optimum.

References
1Athans, M., and Falb, P. L., Optimal Control, McGraw–Hill, New York,

1966.
2Bryson,A. E., Jr., and Ho, Y.-C., AppliedOptimal Control-Optimization,

Estimation, and Control, Hemisphere, Washington, DC, 1975.
3Goh, B. S., “Necessary Conditions for Singular Extremals Involving

Multiple Control Variables,” Journal of SIAM Control, Vol. 4, No. 4, 1966,
pp. 716–731.

4Bilimoria, K. D., and Wie, B., “Time-Optimal Three-Axis Reorientation
of a Rigid Spacecraft,” Journalof Guidance,Control, andDynamics, Vol. 16,
No. 3, 1993, pp. 446–452.

5Bocvarov, S., Lutze, F. H., and Cliff, E. M., “Time-Optimal Reorienta-
tion Maneuvers for a Combat Aircraft,” Journal of Guidance, Control, and
Dynamics, Vol. 16, No. 3, 1993, pp. 232–240.



J. GUIDANCE, VOL. 20, NO. 2: ENGINEERING NOTES 397

6Carter, T., and Brient, J., “Fuel-Optimal Rendezvous for Linearized
Equations of Motion,” Journal of Guidance, Control, and Dynamics, Vol.
15, No. 6, 1992, pp. 1411–1416.

7Li,F., and Bainum,P. M., “Numerical Approach forSolvingRigidSpace-
craft Minimum Time Attitude Maneuvers,” Journal of Guidance, Control,
and Dynamics, Vol. 13, No. 1, 1990, pp. 38–45.

8Naidu, D. S., “Fuel-Optimal Trajectories of Aeroassisted Orbit Trans-
fer with Plane Change,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 27, No. 2, 1991, pp. 361–368.

9Redmond, J., and Silverberg, L., “Fuel Optimal Reorientation of Ax-
isymmetric Spin-Stabilized Satellites,” Journal of Guidance, Control, and
Dynamics, Vol. 16, No. 1, 1993, pp. 217–219.

10Seywald, H., Kumar, R. R., Deshpande, S. S., and Heck, M. L., “Min-
imum Fuel Spacecraft Reorientation,” Journal of Guidance, Control, and
Dynamics, Vol. 17, No. 1, 1994, pp. 21–29.

11Seywald, H., and Kumar, R. R., “Singular Control in Minimum Time
Spacecraft Reorientation,” Proceedings of the 1991 AIAA Guidance, Nav-
igation, and Control Conference (New Orleans, LA), AIAA, Washington,
DC, 1991, pp. 432–442.

12Meier, E.-B., and Bryson, A. E., Jr., “Ef� cient Algorithm for Time-
Optimal Controlof a Two-Link Manipulator,”Journalof Guidance,Control,
and Dynamics, Vol. 15, No. 5, 1992, pp. 859–866.

13Singh, T., “On the Fuel/Time Optimal Control of the Benchmark Prob-
lem,” Journal of Guidance, Control, and Dynamics (to be published).

14Wie, B., Sinha, R., Sunkel, J., and Cox, K., “Robust Fuel- and Time-
Optimal Control of Uncertain Flexible Space Structures,” Proceedings of
the 1993 AIAA Guidance, Navigation, and Control Conference (Monterey,
CA), AIAA, Washington, DC, 1993, pp. 939–948.

Analytical Solutions for
Exponentially Correlated

Acceleration Tracking Filters

Seong Dae Sagong¤

Youngdong Institute of Technology,
Chungbok 370-800, Republic of Korea

I. Introduction

I N earlier papers, Gupta and Ahn1 and Gupta2 have presented an
analytical solution of the steady-state exponentially correlated

acceleration (ECA) � lter with the target position as the only mea-
surement. In radar applications, however, Doppler measurements
are also available in addition. Fitzgerald3 has presented computed
steady-statedata for a simple form of the ECA target tracking � lter,
which utilizedboth position and velocitymeasurements. In a recent
paper, Ramachandra et al.4 have presented the steady-state solution
of a three-stateKalman tracking � lter that utilizedboth positionand
velocity measurements and a constant-accelerationmodel.

The objective here is to extend the case of a closed-form steady-
state solution for the discrete ECA tracking � lter by using the
MacFarlane–Potter–Fath eigenstructure method.5 The ECA track-
ing � lter estimates the target position,velocity, and accelerationin a
track-while-scansystem and utilizes the target positionand velocity
measurements as inputs to the tracking � lter. When the variance of
the velocity measurement error ¾2 goes to in� nity, the results are
shown to be in agreementwith the analyticsolutiongiven by Gupta2

and with the numerical solution given by Fitzgerald.3

II. Discrete Exponentially Correlated
Acceleration Tracking Filter

The following discrete ECA tracking � lter model is considered6:

x.k C 1/ D 8.Ts /x.k/ C v.k/ z.k/ D H x.k/ C w.k/

8.Ts/ D exp.FTs/
(1)
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with

F D

&$ 0 1 0

0 0 1

0 0 ¡1=¿

’%
Q.Ts / D

&$ q11 q12 q13

q12 q22 q23

q13 q23 q33

’%

8.Ts/ D

&$ 1 ¿µ ¿ 2Á1

0 1 ¿.1 ¡ Á3/

0 0 Á3

’%
(2)

8¡1.Ts/ D

&$ 1 ¡¿ µ ¡¿ 2Ã1

0 1 ¿ .1 ¡ Ã3/

0 0 Ã3

’%
H D

1 0 0

0 1 0

R.Ts / D
R1 0

0 R2

and

µ D Ts=¿; Á1 D µ ¡ 1 C Á3; and Á3 D exp.¡µ/
(3)

Ã1 D µ C 1 ¡ Ã3; Ã3 D exp.µ/; and Á3Ã3 D 1

Here 8.Ts/ is the dynamic state transition matrix of the system, H
is the measurement matrix, Q.Ts/ is the process noise covariance
matrix that is symmetric and nonnegative de� nite and qi j given
by Singer,6 and R.Ts / is the measurement covariance matrix and
uncorrelatedwith v.k/.

It is well known that the steady-stateKalman � lter for Eqs. (1–3)
becomes

Ox.k=k/ D Ox.k=k ¡ 1/ C K [z.k/ ¡ H Ox.k/] (4)

where the Kalman gain matrix K is given by

K D PH TR¡1 D

&$ p11=R1 p12=R2

p21=R1 p22=R2

p31=R1 p32=R2

’%
(5)

where P is thea posterioricovariancematrixof theestimationerrors.
The � ve parametersused to describe this problem3 are rms target

acceleration ¾a , correlation time of target acceleration ¿ , sampling
time Ts , rms positionmeasurementerror¾mp , and rms velocitymea-
surement error ¾mv .

In Eq. (3), R1 D ¾ 2
mp , R2 D ¾ 2

mv , and we de� ne the three dimen-
sionless parameters as

p1 ´ ¿=Ts (6)

p2 ´
T 2

s ¾a

¾mp

(7)

p3 ´
Ts¾mv

¾mp

(8)

We restrict p1 (Ref. 3) to a few simple multiples of the critical
value p1c D ¿c=Ts . The critical value maximizes the position and
velocity errors of the � lter. Values determined empirically are well
approximated by the equation3

p1c D ¿c=Ts D 0:56 C 3:4p¡0:86
2

1
2 (9)

III. MacFarlane–Potter–Fath Eigenstructure Method
The steady-state solution of the time-invariant matrix Riccati

equation was discovered independently by MacFarlane et al.5 The
solution P.1/ of the steady-statematrixRiccatiequationin discrete
time is formalized as Lemma 1.

Lemma 1 (Ref. 5). If W11 and W21 are n £ n matrices such that
W21 is nonsingular and

H f

W11

W21
D

W11

W21
D (10)


