
Pergamon PII: S0305--0548(96)00077-9 

Computers Ops Res. Vol. 24, No. 7, pp. 647-657, 1997 
© 1997 Elsevier Science Lid 

All fights reserved. Printed in Great Britain 
0305-0548/97 $17.00+0.00 

M A C H I N I N G  C O N D I T I O N  O P T I M I Z A T I O N  B Y  G E N E T I C  

A L G O R I T H M S  A N D  S I M U L A T E D  A N N E A L I N G  

Z. Khan1":L B. Prasad§ and T. Singhll 
Department of Mechanical and Aerospace Engineering 1009 Furnas Hall, Suny at Buffalo, Buffalo, NY 14260, 

U.S.A. 

(Received July 1995;in revised form September 1996) 

Scope and Purpose--Knowledge of optimal cutting parameters for machining operations is required for process 
planning of metal cutting operations. Numerous nonlinear and non-convex machining models have been 
developed with the objective of determining optimal cutting conditions. Traditionally these problems have been 
solved using gradient based algorithms. The purpose of this article includes studying three non gradient based 
stochastic optimization algorithms to test their efficiency in solving several benchmark machining models. 

Abstract--Optimal machining conditions are the key to economical machining operations. In this work, some 
benchmark machining models are evaluated for optimal machining conditions. These machining models are 
complex because of non-linearities and non-convexity. In this research, we have used Genetic Algorithms and 
Simulated Annealing as optimization methods for solving the benchmark models. An extension of the Simulated 
Annealing algorithm, Continuous Simulated Annealing is also used. The results are evaluated and compared with 
each other as well as with previously published results which used gradient based methods, such as, SUMT 
(Sequential Unconstrained Minimization Technique), Box's Complex Search, Hill Algorithm (Sequential search 
technique), GRG (Generalized Reduced Gradient), etc. We conclude that Genetic Algorithms, Simulated 
Annealing and the Continuous Simulated Annealing which are non-gradient based optimization techniques are 
reliable and accurate for solving machining optimization problems and offer certain advantages over gradient 
based methods. © 1997 Elsevier Science Ltd 

1. INTRODUCTION 

The most important interface between product design and manufacture is Process Planning. Process plans 
typically contain the specified sequence of operations to be performed, specifying various parameters that 
aid in producing the part like machining dimensions, tolerances etc. and machine and tool selection with 
machining conditions to be used. In traditional process planning, the process planner who is usually 
knowledgeable and experienced, generates the process plan on an ad-hoc basis. This may lead to 
inconsistencies in manufacturing production. It is also impossible to achieve any kind of optimization 
which results in the increase of planning and manufacturing costs. With today's advanced computers, this 
task can be routinely performed. Computer Aided Process Planning (CAPP) is one of the most important 
advances in the area of manufacturing engineering. 

A part of the CAPP process is the selection of an economically optimal combination of machining 
conditions. This is achieved by using optimization models for machining conditions. These models are 
usually a combination of variables such as production time, production cost, metal removal rate, profit 
etc. which are either maximized or minimized as appropriate. Like any other optimization model, these 
are in the format of an objective function and a set of constraints. These models are usually non-linear 
and the optimization method that are suitable to solve them are problem dependent [ 1 ]. 

The primary objectives in the solution process for an optimization problem are reliability, accuracy of 
result, insensitiveness to the initial conditions and small computational effort. A number of researchers 
have used a host of algorithms to solve the machining models which are discussed further in Section 2. 
A fact to be noted is one method is always better than the other for a certain problem. So it is hard to 
determine which method is right for a given model. 
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Thus, there exists a need to determine a standard method in the CAPP process which can generate the 
optimal machining parameters given any machining model. In Section 2, we present Genetic Algorithms 
(GA), Simulated Annealing (SA) and a modification of the SA which will be referred to as Continuous 
Simulated Annealing (CSA), as solution methods for these complex problems. SA's and GA's are non- 
traditional methods which offer the maximum advantages when the problem is highly non-linear and 
non-convex. The performance of the algorithms for a number of machining models are presented and 
compared with the results available in literature, which include optimization methods, such as SUMT, 
Box, Hill, GRG, etc. [1]. 

2. REVIEW OF MATHEMATICAL PROGRAMMING-BASED METHODS 

The main goal of optimization is to find the best possible combination of factors which can be termed 
as design variables to extremize a given cost function. Calculus based solution methods are the most 
commonly used techniques. These methods require that the optimization be started from a number of 
initial points to avoid convergence to a local minima. Thus, calculus based methods are best when the 
solution space is convex. For non-convex solution spaces, the results might not be globally optimal. 
Review of the optimization methods used by other researchers in the area of machining optimization is 
given as follows. Duffuaa, Shualb and Alam [1] have compared the results of a number of gradient based 
optimization algorithms with different machining models. Their approach is limited because of the use 
of gradient based methods which are not ideal for non-convex problems. They have concluded that the 
Generalized Reduced Gradient method is the most suitable for solving machining optimization models. 
Petropoulos [2] has used geometric programming for optimization of machining parameters. Multipass 
turning optimization has been addressed by Ermer and Kromodihardjo [3]. They use a combination of 
linear and geometric programming. Iwata et al. [4] have used a stochastic approach to solve for optimal 
machining parameters. Eskicioglu and Eskicioglu [5] have demonstrated the use of Non-Linear 
Programming for machining parameter optimization. Hati and Rao [6] have used SUMT to solve a multi- 
pass turning operation. 

The above review clearly shows that most of the researchers have used one or two methods to compare 
their model performance. The performance of optimization algorithms is problem dependent for non- 
linear problems, implying that there are advantages and disadvantages of using a particular optimization 
method depending on the area of application. The potential of applying Simulated Annealing and Genetic 
Algorithms to machining optimization problems is explored in this work. Techniques that emulate nature 
have led to the development of methods like Genetic Algorithms, Simulated Annealing and Neural 
Networks. These methods are ideal for global optimization for non-linear systems with non-convex 
solution spaces. 

2.1. Genetic Algorithms 

Genetic Algorithms are used extensively for the solution of optimization problems and were first 
developed by Holland [7] in the 1970s. These algorithms are based on the biological evolution process. 
A similar analogy is used to evolve solutions to complex optimization problems. The notable feature of 
Genetic Algorithms is that it emulates the biological system's characteristics like self repair and 
reproduction. 

It is generally well known that the human being is a very good example of a decision maker. So 
researchers began experimenting with the natural systems and have developed methods like Genetic 
Algorithms and Neural Networks. The actual differences between the GA's and other methods of 
optimization are briefly summarized below. GA move through the solution space starting from a 
population of points and not from a single point. This is similar to the calculus based methods where we 
have to restart the solution from a number of points to ensure global convergence. GA's work with the 
objective function information directly and not with any other auxiliary information like derivatives. 
Constraints are included in the objective function using some Penalty function. GA's use probabilistic 
rules and not deterministic rules. The GA's also differ from Simulated Annealing in the fact that the 
optimal solution is selected from a population of solutions and not from one solution which is computed 
based on a probability. 

The theory behind the Genetic Algorithms is explained in this paragraph. A potential solution to a 
problem may be represented by a set of parameters known as genes. These genes are combined together 
to form a string which is referred to as a chromosome. It is widely believed that ideally a binary string 
should be used for the chromosome. The set  of parameters represented by a particular chromosome is 
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called as genotype. This genotype contains the information required to construct an organism called the 
phenotype. A fitness function is analogous to the objective function in an optimization problem. The 
fitness function returns a single numerical 'fitness' which is proportional to the 'utility' or 'ability' of the 
individual which that chromosome represents. During reproduction in the GA, individuals are selected 
from the population and recombined, producing off-springs which will comprise the next generation. Two 
parents are selected and their chromosomes are recombined, typically using the mechanisms of crossover 
and mutation. Crossover is the operation when two individuals are taken and their chromosomes are cut 
at some randomly chosen position, to produce two head and tail segments. These segments are swapped 
to produce two new full length chromosomes. The offsprings inherit some genes from each parent. This 
is known as a single point crossover. Mutation is the technique used to randomly alter the genes with a 
small probability and is typically applied after crossover. Crossover is more important for rapidly 
exploring a search space. Mutation provides only a small amount of random search. If the GA has been 
implemented correctly, the population will evolve over successive generations so that the fitness of the 
best and the average individual in each generation increases towards the global optimum. A gene is said 
to have converged when 70% of the population share the same value of the fitness function. 

Most of the research work in GA has been concentrated in the area of Numerical optimization. GA's 
have been shown to outperform conventional optimization methods on difficult, discontinuous and noisy 
functions. GA's are also used in the field of image processing, combinatorial optimization and machine 
learning. With medical X-rays or satellites images, there is often a need to align two images of the same 
area, taken at different times. By comparing a random sample of points on the two images, a GA can be 
used to find a set of equations which transform one image to another. Combinatorial optimization is a 
class of problems where the solution space is discrete. So traditional methods of optimization are not well 
suited to such problems. Traveling salesman problem, job shop scheduling etc., are examples of such 
problems. 

In this work the Genetic Algorithm has been implemented in C + +. Each variable was represented by 
32 bits. Reproduction is done by 1-point crossover [10] with a likelihood of 0.65 (normally between 0.6 
and l) and mutation [9] with a likelihood of 0.001. The population is assumed to have converged when 
70% of the population have the same fitness. Constraints are augmented to the objective function using 
different Penalty functions, such as, exterior, interior, extended interior, quadratic extended etc. in this 
work, the type of penalty function used did not seem to make any difference in the final results. The 
results presented in this article are based on the exterior penalty approach. 

2.2. Simulated Annealing 

Simulated Annealing is also an emerging technique that is being extensively used in optimization of 
complex systems. The backbone of the theory lies in the fact that there exists a very strong analogy 
between statistical mechanics (the behavior of systems with many degrees of freedom in thermal 
equilibrium at a finite temperature) and multivariable optimization. In addition, the annealing process in 
solids provides a framework for optimization of the properties of very large and complex systems. This 
was introduced in the early 1980s by Kirkpatrick, Gellat and Vecchi [8]. The salient features of this 
method are its general applicability and its ability to obtain solutions arbitrarily close to an optimum. A 
major drawback of this method is that finding high quality solutions may require large computational 
effort. 

The SA can be applied to generate a sequence of solutions of a combinatorial optimization problem 
[12]. The analogy between a physical multiple particle system and a combinatorial problem is based on 
the following equivalences. 

• Solutions in a combinatorial optimization problem are equivalent to the states of a physical system. 
• The cost of a solution is equivalent to the energy of the state. 
° The temperature is analogous to the control parameter which is explained below. 

The Simulated Annealing algorithm can be viewed as an iteration of the Metropolis algorithm, which is 
evaluated at decreasing values of the control parameter. A feature of the Simulated Annealing algorithm 
is that, besides accepting improvements in the cost, it also, to a limited extent, accepts deterioration in 
cost. Initially, when the control parameter is large, a large percent of deterioration will be accepted and 
as the value of the control parameter decreases, the rate of accepting deterioration will be smaller and 
finally as the control parameter becomes zero, the probability of accepting deteriorations is almost 
nonexistent. This shows that the Simulated Annealing algorithm can escape from the local minima which 
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a gradient based approach cannot emulate. Simulated Annealing can be viewed as a generalization of the 
local search. It may become identical to some forms of the local search or greedy methods when the value 
of the control parameter is taken to be zero. Deterministic minimization algorithms could get trapped in 
local minima. However, pseudo random methods, such as Simulated Annealing can overcome this 
problem, that is, in theory, a global minima can be found if certain sufficient conditions are satisfied 
[I2]. 

The Simulated Annealing algorithm is very easy to program. Typically it takes only a few hundred 
lines of computer code. Implementation of a new problem often only takes very little modifications of 
the existing code. The amount of computational effort required by the Simulated Annealing algorithm is 
very large for convergence to a near-optimum solution. This may vary depending on the nature and size 
of the optimization problem. 

Simulated Annealing has been applied to a variety of problems like Traveling Salesman Problems, 
Graph Partitioning Problems, Matching Problems, Scheduling Problems, VLSI Design, Facilities Layout 
and Image Processing. 

2.3. Continuous Simulated Annealing 

Corana et al. [13] proposed a modification to the SA approach for combinatorial optimization. The 
proposed algorithm includes adaptive modification of the search space in each coordinate direction based 
on the ratio of accepted to rejected configurations. A ratio of 1:1 is selected since a lower rate implies 
larger number of rejections, thus wasting computational time and a higher rate implies that the test points 
lie close to the starting point, thus limiting the search space to a small domain of the feasible region. The 
search space is a n dimensional cuboid whose center is the starting point. Random numbers are generated 
consistent with the bounds of the search space in each coordinate direction sequentially, to generate 
successive search coordinates. The sides of the cuboid are modified based on the number of accepted and 
rejected configurations along each coordinate direction in an attempt to maintain an accepted to rejected 
ratio of 1:1. The adaptation criterion is 

v~(1 + b~  ( N - 0.6)) /f ni>0.6N 

vi'= ni (1) 
v~(l + - -  (0 .4 -  ~/))- i  tf ni<O.4N 

otherwise Vi 

where u~ is the current bound on the search space in the i 'h direction, ni is the number of accepted 
configurations, N is the total number of searches in the i 'h direction, and v,' is the adapted bound, c is a 
number greater than one and is generally selected to be 2. Corana et al. [13] have tested their algorithm 
on some benchmark problems successfully. 

3. MACHINING MODELS USED IN THE PERFORMANCE STUDY 

In this section, we review the different machining models we have used in this study. 

3.1. Hati and Rat  model 

Hati and Rat  [6] have used this model in multi-pass turning optimization of mild steel work-piece 
using a carbide tool. The objective function used is minimum production cost in dollars/piece. 

Min. Cost=n(3141.59V- if  - ~d- 1+2.879 × 10 -SV4f°'75d -0.025 + 10) (2) 

Subject to the following constraints: 

(i) Maximum and Minimum cutting speeds 

50--- V_<400 rn/min (3) 

(ii) Maximum and minimum feed rates 

0.30-<f-<0.75 mm/rev (4) 

(iii) Range of allowable depths of cut 



(iv) Cutting force 

where 
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1.20<-d--2.75 mm 

Fc-----85 kg 

and 

(1 +x) ) 
Fc=(28.10V °°7- 0.525V°'5)dX f 1.59+0.946 V'(i -x)2+x) 

(v) Cutting power 

where 

(vi) Tool life 

where 

Pc-<2.25 kW 

0.746FcV 
P c -  - -  4500 

25-<TL-45 min 

(vii) Temperature 

where 

TL=60( 101° 
v S f  1.75d0-75 ) 

T_< 1000°C 

T= 132V°'4f°2d °1°5 

(viii) Limitations on the value of the depth of cut in removing 'A' in 'n' passes: 

A 
- = n  
d 
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(5) 

(6) 

(7) 

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

3.2. Ermer's model 

Ermer's model [11] minimizes production cost in dollars/piece for single pass turning 

Min. Cost= 1.25V- if - ~ + 1.8 × 10 -svaf°16+0.2 

Subject to the following constraints: 

(i) Surface finish 

where 

SF<--IO0 tz in 

(16) 

(17) 
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(ii) Feed rate 

(iii) 

where 

SF= 1.36 × 108V- LS2f Loo4 (18) 

f-<0.01 in/rev (19) 

HP<-2.0 hp (20) 

HP= 3.58 V°91f °'7s (21) 

3.3. Petropoulos model 

In this model [2], the objective function minimizes the production cost in pence/piece for single pass 
turning of medium carbon steel workpiece using a carbide tool. 

Min. Cost=452V-~f -~ × 10 -5V2'33f°'4 (22) 

Subject to the following constraints: 

(i) Cutting Power 

where 

(ii) Surface finish 

where 

Pc-<5.5 (23) 

Pc = 10.6 × 10 -2Vf°S3kW (24) 

Ra<--2 /zm (25) 

Ra=2.2 × 104V-l'52f/zm (26) 

3.4. Ermer and Kromodihardjo model 

This model [3] minimizes the production cost in dollars/piece for single pass turning. 

Min. Cost= 1.2566V- ~f - 1 + 1.77 × 10 -SV3f°a6+0.2 

Subject to the constraints: 

(i) Feed rate 

(ii) Horsepower 

where 

(iii) Surface finish 

where 

(27) 

f-<0.1 in/rev (28) 

HP<-4 hp (29) 

HP = 2.39 vO.91fo.ss d o.75 (30) 

SF<--50 tz in (31) 

HP=204.62 × lOeV-1"52fl"°°4D°'~ (32) 

3.5. lwata, Oba and Murotsu model 

Iwata, Oba and Murotsu [4] have proposed this model for multi-pass turning operation of medium 
carbon steel using carbide tool where the objective is production cost/piece in yens/piece. 
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Min. Cost= ~ 3927V,.-~f-t+ 1.95 X 10 -SV~Ssf7 texp(5.884fi)d,.-L117+60 
i = l  

Subject to the following constraints: 

(i) Maximum and minimum feed rates. 

0.001 ~f---5.6 mm/rev 

(ii) Maximum and minimum cutting speeds 

14.13-<V-< 1005.3 m/min 

(iii) Maximum and minimum depth of cut 

where 'A' is the depth of material to be cut. 
(iv) Maximum cutting force 

where 

O<-d<-A mm 

Fc -  170 kg 

Fc= 290.73 V- °l°13f°725d 

(v) Stable cutting region related to the cutting surface 

fV2_>2230.5 

(vi) Maximum allowed surface roughness 
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(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

0.356f 2--<Hm~x (40) 

where 

Hm~ranges from 0.01 to 0.06 mm 

(vii) The maximum power consumption 

Pc=7.5 kW 

where 

(41) 

(42) 

F~V 
Pc=4896 (43) 

(viii) The sum of depths of cut of the 'n' passes used to remove the total depth 'A' of the material. 
n 

.~=~ d,=A (44) 

4. PERFORMANCE STUDY OF GENETIC ALGORITHMS AND SIMULATED ANNEALING METHODS 
ON THE MACHINING MODELS 

In this section, we present the performance study and evaluation of GA, SA and the CSA on the 
machining models discussed in Section 3. All the models were tested using the three algorithms with 
three different initial conditions to check for the consistency of the results. The results are presented in 
the form of tables with optimal cutting conditions and cost ((.)0 and (.)* represent initial and optimal 
conditions respectively). All the results axe discussed in the next section. The GA and SA programs were 
developed on an IBM PC using C++.  For the GA, the population size was 240 per generation and the 
number of generations allowed were 250. The maximum number of function arid constraints evaluations 
were 240 x 250. After considerable amount of parametric study on the solutions, we concluded that for 
the five models under consideration, we can reduce the population size to 100 per generation and increase 
the maximum number of generations allowed to 300 (considerable reduction in number of function and 
constraints evaluations) and still get similar results. But for other problems, results might be different. 
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Table 1. Results for Hati and Rao model 

Method Run V0 f0 V* f* Cost Function 
# (m/rain) (mm/rev) (m/min) (mm/rev) (yensdpiece) Evaluations 

Simulated 1 255.0 0.525 ° 148.215 0.3617 79.544 49500 
Annealing 2 112.5 0.262 1 4 8 . 1 9 2  0.3617 79.545 70500 

3 375.0 0.875 148.176 0.3616 79.548 36000 
Continuous 1 255.0 0.525 1 4 8 . 2 1 9  0.3617 79.542 36000 
Simulated 2 112.5 0.262 1 4 8 . 2 1 9  0.3617 79.542 37000 
Annealing 3 375.0 0.875 1 4 8 . 2 1 9  0.3617 79.542 41000 
Genetic 1 145.703 0.3598 79.722 25000 
Algorithm 2 147.710 0.3614 79.569 50000 

3 146.472 0.3589 79.821 40500 

For SA, the temperature was reduced from 0.5 to 0.001 in 123 steps. For each temperature, there were 
1000 iterations. This results in total number of function and constrains evaluations to be 123 × 1000, 
which is much higher than GA. But the SA results are better than the GA results for the given five 
models. The number of iterations at any given temperature can be reduced if the saturation phenomenon 
occurs at that temperature, i.e., if the cost function is not changing at that temperature, then proceed to 
next temperature. The number of variables to be perturbed for each iteration is selected randomly (each 
variable has a 60% chance of  being selected). The percentage of perturbation to be applied to each 
variable, at each iteration, is also selected randomly (between - 25% and +25%). All random numbers 
are generated from a uniform distribution random number generator. 

The CSA algorithm was designed to perturb the current solution 20 times in each coordinate direction 
before the bound along that direction is adapted based on the ratio of accepted and rejected solutions. The 
temperature is reduced by a factor of 0.85 for every 2000 adaptations of the search bounds. The CSA 
consistently generated better results than the GA and SA in addition to using smaller number of function 
evaluations, for all the benchmark problems. 

The first model used in the study was the Hati and Rao model. Three runs were made with different 
initial vectors and the results are presented in Table 1. A depth of cut of 5 mm was used i.e., 2.5 mm for 
each pass. 

The second model used in the study was Ermer's model. A depth of 0.2 inch in one pass was removed 
starting from three different points and the results are given in Table 2. 

The third model used in the study was the Petropoulos model. Here a depth of cut of  3 mm in one pass 
was used with three starting points and the results are given in Table 3. 

The fourth model used was Ermer and Kromodihardjo model. The results are shown in Table 4 where 

Table 2. Results for Ermer's model 

Method Run V0 f0 V* f* Cost Function 
# (in/min) (in/rev) (in/min) (in/rev) (dollars/pc) Evaluations 

Simulated 1 725.5 0.0050 1 4 3 . 9 1 7  0.001439 6.2553 65900 
Annealing 2 376.2 0.0025 1 4 3 .9 0 8  0.001439 6.2550 120000 

3 1368.0 0 . 0 0 9 1  143.908 0.001439 6.2550 68500 
Continuous 1 725.5 0.0050 143.9140 0.001439 6.2551 37000 
Simulated 2 376.2 0.0025 143.9407 0.001439 6.2528 43000 
Annealing 3 1368.0 0 . 0 0 9 1  146.5218 0.001411 6.2531 31000 
Genetic 1 145.068 0.001423 6.2758 65500 
Algorithm 2 145.156 0.001416 6.2992 41000 

3 150.098 0.001423 6.3142 40250 

Table 3. Results for Petropoulos model 

Method Run 1/o fo 1/* f* Cost Function 
# (m/min) (mm/rev) (m/rain) (mm/rev) pence/piece Evaluations 

Simulated 1 625.0 0.705 174.394 0.2321 12.097 89000 
Annealing 2 250.0 0.282 1 7 4 . 4 0 2  0.2321 12.098 62900 

3 1041.0 1 .175  174.402 0.2321 12.098 51000 
Continuous 1 625.0 0.705 174.2229 0.2321 12.096 55000 
Simulated 2 250.0 0.282 1 7 4 . 4 3 2 8  0.2322 12.100 12000 
Annealing 3 1041.0 1 .175 174.2229 0.2320 12.097 38000 
Genetic 1 174.622 0.2316 12.111 51500 
Algorithm 2 174.446 0.2320 12.102 25250 

3 174.399 0.2321 12.099 49500 
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Table 4. Results of Ermer and Kromodihardjo model 

Method Run 1/o .to V* f* Cost Function 
# (in/min) (in/rev) (in/rain) (in/rev) (dollars/pc) Evaluations 

Simulated 1 755.5 0.05 433.809 0.003811 1.5528 42000 
Annealing 2 591.25 0.01 433.980 0.003814 1.5526 88400 

3 1258.75 0.083 433.663 0.003810 1.5527 68900 
Continuous 1 755.5 0.05 440.8529 0.003907 1.5526 80000 
Simulated 2 591.25 0.01 441.2849 0.003908 1.5526 72000 
Annealing 3 1258.75 0.083 433.1774 0.003803 1.5526 46000 
Genetic I 434.375 0.003814 1.5536 22000 
Algorithm 2 434.398 0.003816 1.5533 41400 

3 435.371 0.003827 1.5537 36500 

Table 5. Results for lwata, Oba and Murotsu model 

Method Run V o fo I/* f* Cost Function 
# (m/rain) (mm/rev) (m/rain) (mm/rev) (yens/piece) Evaluations 

Simulated 1 275.25 0.865 216.019 0.3885 108.0334 39000 
Annealing 2 ll0.10 0.322 216.013 0.3886 108.0327 70500 

3 458.75 1.340 216.013 0.3886 108.0332 51000 
Continuous 1 275.25 0.865 216.0618 0.3886 108.0177 40000 
Simulated 2 110.10 0.322 216.0601 0.3886 108.0181 36000 
Annealing 3 458.75 1.340 216.0006 0.3886 108.0319 42000 
Genetic 1 216.108 0.3879 108.093 59250 
Algorithm 2 215.953 0.3878 108.137 27500 

3 215.948 0.3883 108.086 47000 

0.2 inches of material was removed in one pass. 
The fifth model in the study was the Iwata, Oba and Murotsu model. SA, CSA, and GA were used to 

solve this model for removing a depth of 2 mm and a surface roughness of Hm~=0.006 mm. The results 
are presented in Table 5. 

5.  C O M P A R I S O N  W I T H  C A L C U L U S  B A S E D  S E A R C H  M E T H O D S  R E S U L T S  

In this section we compare the results of SA, CSA, and GA with calculus based search methods 
published by Duffuaa et al. [1] The next five tables show the comparison. For the GA, the initial values 
of the variables shown are not used and the population is initialized by randomly generating values in the 
given range of each variable. The cells showing **** indicate that the input vector led to the failure of 
the corresponding algorithm. 

It is evident from Tables 6--10 that the stochastic optimization algorithms have consistently performed 
better than the gradient based approaches. It should be noted that very often the gradient based method 
did not converge to the optimal solution. 

Table 6. Comparison table for Ermer and Kromodihardjo model 

Run V o .to CSA SA GA SUMT Box Hill GRG 
# (m/rain) (mm/rev) (dollars/pc) (dollars/pc) (dollars/pc) (donars/pc) (dollars/pc) dollars/pc dollars/pc 

1 320 0.0018 1.5526 1.5528 1.5532 1.553 1.629 1.555 1.553 
2 320 0.0039 1.5526 1.5526 1.5533 **** 1.195 **** 1.553 
3 440 0.0018 1.5526 1.5527 1.5536 1.553 2.057 1.554 1.553 
4 440 0.0039 1.5527 1.5527 1.5527 **** 1.500 **** 1.553 

Table 7. Comparison table for Ermer and Kromodihardjo model 

Run Vo f0 CSA SA GA SUMT Box Hill GRG 
# (m/mi)n (mm/rvv) (dollars/pc) (dollars/pc) (doHargpc) (dollars/pc) (dollars/pc) (dollars/pc) (dollars/pc) 

1 135 0.0011 6.251 6.2551 6.2758 6.26 6.29 6.31 6.26 
2 135 0.0035 6.251 6.2551 6.2985 **** **** **** 6.26 
3 170 0.0011 6.250 6.2563 6.6259 6.26 6.30 6.27 6.26 
4 170 0.0035 6.251 6.2557 6.3042 **** **** **** 6.26 
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Table 8. Comparison table for Petropoulos model 

Run Vo fo CSA SA GA SUMT Box Hill GRG 
# (m/min )  (mm/rev) (pence/pc) (pence/pc) (pence/pc) (pence/pc) (pence/pc) (pence/pc) (pence/pc) 

1 185 0.15 12.096 12.0979 12.099 12.10 13.08 11.74 12.10 
2 185 0.20 12.096 12.0981 12.103 12.10 12.51 11.45 12.10 
3 215 0.15 12.096 12.0979 12.112 12.10 13.41 11.79 12.10 
4 215 0,20 12.092 12.0977 12.100 **** **** **** 12.10 

Table 9. Comparison table for Hati and Rao model 

Run Vo $o CSA SA GA SUMT Box Hill GRG 
# (m/min )  (mm/rev) (yens/pc) (yens/pc) (yens/pc) (yens/pc) (yenslpc) (yens/pc) (yens/pc) 

l 146 0.375 79.545 79.5442 79.677 **** **** **** 151.55 
2 196 0.575 79.543 79.5443 79.722 **** **** **** 151.55 
3 146 0.375 79.542 79.5457 79.719 **** **** **** 151.55 
4 196 0.575 79.544 79.5465 79.581 **** **** **** 151.55 

Table 10. Comparison table for lwata, Oba, and Murotsu model 

Run Vo fo CSA SA GA SUMT Box Hill GRG 
# (m/mi n )  (mm/rev) (yens/pc) (yens/pc) (yens/pc) (yens/pc) (yens/pc) (yens/pc) (yens/pc) 

1 190 0 .23 108.0180 108.0328 108.056 108.03 108.03 108.12 108.03 
2 190 0 .32  108.0180 108.0203 108.091 108.03 108.03 108.91 108.03 
3 250 0 .23 108.0176 108.0324 108.086 108.03 108.03 108.38 108.03 
4 250 0 .32  108.0135 108.0323 108.086 108.03 108.03 108.75 108.03 

6. D I S C U S S I O N  OF RESULTS AND C O N C L U S I O N S  

From the results obtained, we conclude that all three methods, i.e., SA, CSA, and GA are highly 
reliable and converge consistently to the optimum solutions for the five benchmark machining 
optimization problems. Significantly, all three methods were unaffected by the choice of the input vector, 
although, sometimes this led to an increase in the convergence time. The GA, SA and CSA only required 
changes which include programming the objective function and constraints for the different benchmark 
problems. SA gives high precision and the code can be run longer to get higher precision. For GA, the 
precision is limited by the number of bits used to represent each variable. We used 32 bits to represent 
each variable where the maximum precision depends on the parameter range which is resolved into 232 
parts. If the range is large, e.g., velocity has range of about 1450 in the given five models, then the 
precision goes down. For GA, to improve the precision we can increase the number of bits used to 
represent each variable. The CSA achieved high precision because of its adaptive capability. 

All three methods converge to global minima and do not require any gradient information. This 
property makes these methods suitable for discontinuous functions. The disadvantage of these methods 
is the number of function evaluations required per run (i.e., the time required to converge) may be long. 
Total number of function and constraints evaluations for GA, CSA, and SA are much higher than any 
gradient based method. This results in longer convergence times and make these methods not very 
attractive for real-time parameter optimization. 
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