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Abstract—A nonlinear filter is developed by representing the state prob-
ability density function by a finite sum of Gaussian density kernels whose
mean and covariance are propagated from one time-step to the next using
linear system theory methods such as extended Kalman filter or unscented
Kalman filter. The novelty in the proposed method is that the weights of the
Gaussian kernels are updated at every time-step, by solving a convex opti-
mization problem posed by requiring the Gaussian sum approximation to
satisfy the Fokker—-Planck—-Kolmogorov equation for continuous-time dy-
namical systems and the Chapman—Kolmogorov equation for discrete-time
dynamical systems. The numerical simulation results show that updating
the weights of different mixture components during propagation mode of
the filter not only provides us with better state estimates but also with a
more accurate state probability density function.

Index Terms—Gaussian sum filter (GSF), Kalman filter, probability den-
sity function (pdf).

I. INTRODUCTION

The state estimation problem has been extensively studied since the
celebrated Kalman filter [1] appeared in 1960. The Kalman filter is the
optimal estimator for linear dynamical systems with linear measure-
ment models driven by Gaussian disturbances, and it finds the most
probable state as the unbiased linear minimum variance estimate of the
system. The optimal filtering problem for nonlinear systems poses a
challenge since it requires maintaining the complete description of the
conditional probability density function (pdf) which in general requires
an infinite number of parameters [2]. Several finite dimensional sub-
optimal filters [3]-[8] have been developed over the last five decades
while sampling based methods also known as Particle Filters (PF) [9]
have become more popular for general nonlinear filtering problem.
However, various factors like volume of state space in which condi-
tional pdf is non-vanishing, rate of decay of the conditional pdfin state
space, stationarity of the problem, analytical structure of the problem
(e.g., linear dynamics, bilinear dynamics, unimodal pdf, etc.), effective
dimensionality of the problem etc. strongly affect the computational
complexity and performance of the PF [10] and hence, an efficient
approach for general nonlinear filtering has to take into account the
evolution of the state probability density function (pdf) using the Kol-
mogorov equation.

A Gaussian mixture approximation for the state pdf has been gaining
increasing attention in the context of Bayesian estimation using contin-
uous representation of state pdf [6], [11], [12]. For a nonlinear dynam-
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ical system with additive Gaussian white noise, the first two moments
of the Gaussian components are propagated using the linearized model,
and the weights of the new Gaussian components are set equal to the
prior weights. In the case where observations are available both the
moments and the weights are accordingly updated using Bayes rule to
obtain an approximation of the a-posteriori pdf, yielding the so called
Gaussian Sum Filter (GSF) [6], [12]. The literature on nonlinear fil-
tering using Gaussian mixtures is rich in theoretical work on the GSF
[12], GSF with a more advanced measurement update [6], mixture of
Kalman filters [13] and Gaussian sum particle filtering [14]. Applica-
tions and improvements brought to the GSF are continuing endeavors
in fields like target tracking [15]—[17], computer vision [18], [19] and
geoscience [20]. However, in all of these methods the weights of the
Gaussian mixands are kept constant between two measurements which
constrains the accuracy of the GSF algorithm in approximating the
forecast pdf when measurements data is sparse [12].

Initial results of the weight adaptation of the Gaussian mixtures in
the nonlinear filtering problem have been studied in [21] where reg-
ularization was proposed as a means to circumvent the stationary pdf
solution. The main focus of this technical note is to incorporate the
complete evolution of state pdf between two measurements by solving
the FPKE for continuous-time dynamical systems and the CKE for dis-
crete-time dynamical systems in the GSF context.

The organization of the technical note is as follows: first, the con-
ventional GSF is introduced in Section II, followed by the adaptive
Gaussian sum filter method in Section III. Numerical results are pre-
sented in Section V followed by conclusions in Section VI.

II. CONVENTIONAL GAUSSIAN SUM FILTER

Let us consider a general n-dimensional continuous-time dynamic
system with uncertain initial conditions and discrete-time measurement
model, given as:

x(t) =f (t,x(t)) + T(t) (H
Z1 :h(tk,xk) =+ vi 2)

where X, = X(t1,) represents the n-dimensional state vector, and I'(#)
represents a zero mean Gaussian white noise process with the corre-
lation function Q6(¢ — 7). The nonlinear function h(.) captures the
measurement model and the random vector v denotes the measure-
ment noise, which is temporally uncorrelated, zero-mean random se-
quence with known covariance, R, and uncorrelated with I'(#).

The total uncertainty associated with the state vector x(¢) is char-
acterized by the pdf p(¢,x(¢)) and a nonlinear filtering problem cor-
responds to finding a-posteriori distribution for x; given the measure-
ment data Z, = {z;|i = 1,2,....,k}, i.e., p(t.,x(t)|Zx) and a prior
pdf p(to, X0 ). In the GSF context, the conditional pdf is approximated
by a finite sum of Gaussian kernels:

N v ‘
P(Ex(IZ) =Y wip N (x®:pePi) ()
=1 4

~~

Pi

where 'wf| P pi‘ 1. and Pi‘ & represent the conditional weight, mean and
covariance of the ¢** Gaussian kernel with respect to the first & mea-
surements. The positivity and normalization constraint on the mixture
pdf, p(t,x|Zy ), leads to the following constraints on the weights:
N
Zwi‘k =1, 7”;|k~ >0, WVt 4)
=1
Since all the components of the mixture pdf (3) are Gaussian, only
estimates of their mean and covariance need to be estimated between ¢ 1.
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and ¢t using, for example, the conventional Extended Kalman Filter
(EKF) time update equations [12]:

- i i of (t,x(t))

2 =f (t: ﬂt\k) s A= % (5)
By

Pt\k —At|th|k +Pt\kAt|k+Q (6)

wip =wipp for tp <t <ty 7

The measurement update is done by making use of the Bayes’s rule as
explained in [12]

Il‘i-,-H [k+1 =ﬂ2~+1 s K;C (Z"“ —h (t’””;ﬂ% I’v)) ®)
. . e . e —1
Kj =PiHi (HiPi . HY +Ry) ©)

P;:c+l|lc+l = (I - KZH;C) P;:c+1|lcs

OXy ;
Brttk
wh I = w;ﬁl‘kﬁ;‘
‘k+1|k+1 — N
i U“kJrl\kﬁ
B =N (Zk —h (f/wﬂ/#uk) )
ipi i
HyPy Hy + Rk) : an

A point estimate for state is taken to be the mean of the posterior pdf
and the corresponding covariance matrix is computed as

N

B =) Wikl (12)
=1
N . . . . r

Puy= Y win [Pi|k+(uz|k—u”k) (ije—ne) ] (13)
=1

The Gaussian sum approximation for the conditional state pdf,
p(t,x|Zy), obtained by integrating (5)—(11), approaches the true
conditional pdf under the assumption that there is a sufficient number
of Gaussian kernels and the covariance of all Gaussian kernels is small
enough such that the linearizations around the means are represen-
tative for the dynamics in the vicinity of the respective means [8].
Furthermore, the assumption that Gaussian component weights ’“/‘Z|k
remain constant between measurement updates is appropriate if the
underlying system dynamics is linear or the system is at worst mar-
ginally nonlinear between two measurement updates. In practice, this
assumption may be easily violated resulting in a poor approximation
of the conditional pdf. Practically, the dynamic system may exhibit
strong nonlinearities between measurement updates and the state pdf
may show multi-mode behavior in the absence of measurement data.

III. ADAPTIVE GAUSSIAN SUM FILTER

Although different approaches [6], [14], [17] have been proposed
to update Gaussian kernel weights using measurement data, the
existing literature provides no means for adaptation of the Gaussian
kernel weights during the propagation of state pdf between two mea-
surements. The lack of adaptive algorithms for weights of Gaussian
mixture is felt to be a serious disadvantage of existing GSF algorithms
when measurement data is sparse or system dynamics is highly
nonlinear. In this section, two different approaches are presented to
update the Gaussian kernel weights between two measurements. The
first approach makes use of the FPKE for state pdf evolution and
hence addresses continuous-time dynamical systems. The second
approach makes use of the CKE for state pdf evolution between two
measurements and hence addresses discrete-time dynamical systems.
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A. Continuous-Time Dynamical Systems

In essence, the problem of adaptation of weights of Gaussian kernels
corresponds to finding the nature of time-evolution of the system-state
pdf. For stochastic continuous dynamic system the exact evolution of
state pdf is given by the FPKE [22]:

p(t.x|Zy,) = Lp(t, x|Zx)
_ott (t,x)p(t, x|Z)
a ox

0
at?

azp(tvx|zl€)

)= 5xaxT 4)

The FPKE is a formidable equation to solve, because of the following
issues: 1) Positivity of the pdf, 2) Normalization constraint of the pdf:
leen (t,x(t)|Zy)dx = 1, and 3) No fixed Solution Domain: how to
impose boundary conditions in a finite region with non-zero probability
mass.

The key idea of the proposed approach is to approximate the state pdf
by a finite sum of Gaussian density functions whose mean and covari-
ance are propagated from one time-step to the next using (5). Unlike
the GSF algorithm, the weights w‘t’:‘ . of the Gaussian kernels are not
known at time ¢ and must be computed as part of the solution process.
The weights of the Gaussian kernels are updated at every time-step, by
substituting the Gaussian mixture approximation, p(¢, x|Zy) of (3) in
the FPKE (14) and minimizing the L2-norm of the FPKE error while
taking into account the constraints of (4) and (5). This leads to the fol-
lowing optimization problem:

1 9,
min J = 3 /e“)(tgx)dx, i=1,---,N

i
ik

N
s.t. Zwi‘k =1, urﬂk > 0. (15)
=1
Here e(t,x(t)) represents the FPKE error:
p(t,x|Zx)
e(t,x) = Opt X|Z) _ Lp(t. x|Zy) (16)
ot N

T
lep Wik

where wy |, € RY is the vector of Gaussian kernel weights and the
elements of lgp € RY are given as

8%p;
Ox0xT

Lp, =~ O;Z f(t,x) —p;Tr {6f(({)tx)

Furthermore, the first term in (16) is computed as

:|+ T{Q }(17)

N

9p(t, x|Zy) i . opf
T = Z Wik Pi + Wik op L

=1

ﬂt\k

i
+wyp Tr Pf”

) . (18)

Here, ﬂi‘ . and P,§| . are given by (5). One can use Galerkin projec-
tion method to find the system of deterministic differential equations to
solve for w! |- This is equivalent to minimization of L»-norm of e(#, x)
without the constraints of (4). Since the satisfaction of these constraints
is essential to guarantee a unique solution for the FPKE, this can create
many spurious modes in the numerical solution for FPKE [23]. To find
unknown weights, dvf“w is approximated as

Opi
6P’

1 v v
— (uv;/‘k - 'w;|k) where t' =1t+ At.

Wik = 57 (19)

Notice that the time interval At represents our choice of time scale for
changing the mixand weights between two measurements. Finally, the
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substitution of (19) into (18) leads to
aﬁ(fv X| Zk )

=1
N T
ap; . Opi i 1 ;
Y Tr | =P | — —pi | wips

(20)

T T
Pg Wi/ + MDpT Wy

T At

where w/ |, € RV > is the vector of new weights to be found, pg €

R™V*! is the vector of Gaussian components. The derivatives in the
aforementioned equations can be analytically computed [24]. Finally,
the FPKE error of (16) can be compactly written as

1

e(t.x) = —tpgTW”k + (mpr — lrp) Wy 21

Since the FPKE error (21) is linear in the new Gaussian weights,
w4, the optimization problem of (15) can be written as the following
Quadratic Programming (QP) problem:

) I T
W?,|k = arg min Wi Mew s + Wi Newyp,
t/‘k P4

.6 1N Were = 1w, > Onx (22)

where 1y x1 € R is a vector of ones, Oy € RY is a vector of zeros
. N 7 J N 7 J .
and the matrices M. € RV *" and N. € RV *" are given as

M.y =3 mN (Il‘;|k;”‘t|ksPt\k + Pilk)
. 1 opT .. Op; = 1
N. =—p; Ly Tr | 222 P | = —
Neg; Atp !(a“ikll‘tk‘i‘ r OPilk Tk Atp'j
ap?
+ ap)é f(t,x) + p;Tr [%]

1 &*p; ,
a2 )

It is easy to see that the matrix M.. is positive semi-definite and the
cost function J is lower bounded due to linear equality and inequality
constraints. As a consequence of this, the aforementioned optimization
problem can be posed as a convex QP problem [24]. The solution of this
minimization problem (22) will substitute the weight update of (7), in
the conventional GSF. Ideally, one can seek to optimize for the mean
and covariance of each Gaussian kernel along with the weights. This
leads to a nonlinear optimization problem with (((n+2)(n+1))/2)N
variables rather than N variables here. To make matter worse there
are no guarantees for a global optimal for the solution of the resulting
nonlinear optimization problem as opposed to the guaranteed solution
here for the resulting QP problem.

The expectation integrals involved in the matrix N. may be com-
puted using Gaussian Quadrature (GQ), Monte Carlo integration or via
the Unscented Transformation (UT). While in lower dimensions the
UT is essentially equivalent to GQ for evaluating integrals, in higher
dimensions the UT is computationally more appealing in evaluating
integrals because the required number of evaluation points grows only
linearly with the number of dimensions.

Although, knowledge of the Jacobian matrix, Af;l «» s required in (5)
to propagate the covariance of each of the Gaussian component, one can
easily use other methods such as the Unscented Kalman Filter (UKF)
[7]. In [25], the efficacy of using the UKF to propagate the mean and
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covariance of the mixture components is shown for a finite dimensional
dynamical system.

B. Discrete-Time Nonlinear Dynamical System

In this section, the time-evolution of the system-state pdf between
two measurements is considered for discrete-time dynamic systems
given by the following stochastic difference equation:

Xet1 = £(te, xi) + 1, (23)
where x;, € R" represents the state vector and 9, represents the zero
mean white noise with covariance function Q. The time evolution of
the conditional pdf p(¢x+1,Xk+1|Zs) from time-step k to time-step
k + 1 is given by the CKE [5]

P(tk+1gxk+1|zk):/P(tchrl,Xk+1|tlc7xk)1)(tlc;xk|zlc)dxk (24)

where, p(tr41,Xn41|tr,xz) is the conditional state transition pdf
which corresponds to the pdf for .. The properties of the CKE are
similar to that of the FPKE and like the FPKE the ordinary problem
of finding the solution to the CKE is not so tractable in a systematic
manner. The Gaussian mixture model approximation of the forecast
pdf can be written as

N

Ptrt1, Xey1|Zy) = Z’wiﬂN (Xk+1; “ZHW P |k) . (25)

=1

In this equation, g} |, and P}, |, represent the mean and covariance
th

of the :"" Gaussian kernel and are computed by making use of the EKF
equations
ﬂ2+1\k =f (lﬁl";c\k) (26)
i ipi i i Ot (K, xs,
Pl = ALPLAL + Qe AL = T )
Xk Bk

To determine the unknown weights, w} 11, the following integral
square difference between the true pdf, p(ti+1,Xr+1|Zr), and its
approximation, p(tx+1,Xk+1|Zx ), is minimized:

min
wi
W1

1 A ‘
5 /|p(t/€+1axk‘+l|zk) — p(tht1s Xiet1]Ze) [ dxpga

N
s.t. Zw;“*l =1, 'w;CJrl > 0. (28)
i=1

Again making use of the CKE for p(#5+1,Xk+1|Z%), and Gaussian
mixture approximation of (25) for p(tx+1, Xx+1|Zx ), the cost function
can be rewritten as [24]

1 "
J=3 FriMwig — Wiy (29
1 2 N 1T
where Wj41 = Wy Wia ... wWiy] , and the components of ma-
trix M are given by [24]
M;; =N (I‘L;:c+1 - I"Z~+1 s P;%Jrl + PZ:+1) . (30)
The components of the vector y € RY*! are given by
N
Yi = Zu'z,N,:] 31
g=1
[Vi,j = /N (f(fk,xk);pZJrl, PZJ’,I + Qk)
x N (xk; u{,P{,) dxy. (32)
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That is, y; is a sum of expectations of the component functions. Substi-
tution of (31) into (29) leads to the following quadratic programming
problem which can be readily solved:

. 1
min J = 7w£_~_1ka+1 - W£+1NW/<
Wit 2

s.t 1TWk+1 = 1./ W41 Z 0. (33)
Similar to the continuous-time case, this minimization problem along
with measurement update equations of (8)—(11) constitute the nonlinear
filter. It should be noticed that the matrix M is positive semi-definite
and the cost function .J is lower bounded and hence, the aforemen-

tioned optimization problem is indeed a convex optimization problem.

IV. COMPUTATIONAL COMPLEXITY

In this section, the asymptotic numerical efficiency of the Adaptive
Gaussian Sum Filter (AGSF) algorithm proposed in the previous sec-
tion is considered. A key question is to determine the effect on the run-
ning time of a particular iteration of the filter with respect to the state
dimension—n, the dimension of the observations—m, and the number
of Gaussian kernels V.

As reference the discrete-time version of the filter is considered. It
is assumed that the evaluations of the functions f(-) and h(-), Jaco-
bians and likelihood function is performed in O(1). The overall naive
computational complexity of the EKF due to its time update step and
measurement update step is O(n® + m® + n%m 4+ nm?). The com-
plexity to obtain the matrix M is O(N?n?) and the computational
complexity to obtain the matrix N using Unscented Transformation
is O(Nn® + N?L) where L is the number of sigma points. O( Nn?)
is due to sigma point selection scheme where the square root of the
covariance is needed and O(N? L) is due to function evaluations. Fur-
thermore, the convex optimization problem to find mixand weights can
be solved in polynomial time with O(S N®) elementary operations [26]
where S is the input length of the QP problem encoding in binary. Thus
the total running time of the AGSF per time step is given by

On® +m® +n*m +nm® + N?n® + N’L + SN°). (34)

The above calculation reveals that the complexity is very sensitive to
the number of Gaussian kernels, but still polynomial in nature. This em-
phasizes the need to limit NV even for multi-modal distributions. Hence,
the selection of Gaussian components has to be done judiciously in
order to obtain an accurate and relevant approximation to the state pdf
while scaling the computational burden to the temporal response re-
quirements of the task at hand.

Finally, the proposed AGSF algorithms adapt the mixand weights
under the assumption that the number of components remains constant
during propagation. A more robust scheme can be obtained using a
component refining and coarsening scheme. In [27] an iterative split-
merge procedure is presented which selects the mixand with the largest
contribution to the uncertainty propagation error and splits it along the
direction with most nonlinear dynamics.

V. NUMERICAL RESULTS

The performance of the AGSF, both in continuous and discrete-time
dynamical systems, have been compared with the conventional GSF
where the weights are kept constant between two measurements.
Two performance measures are considered to compare the proposed
algorithms with other nonlinear filtering algorithms. First, Root Mean
Squared Error (RMSE) averaged over R Monte Carlo runs is consid-
ered to assess the accuracy for the point state estimates

R
1 : 2
RMSErun(t) = \| 5 :Hx; _ pg‘kHZ. (35)
L =1
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Fig. 1. Example 1: evolution of the conditional pdf.

Where ] is the true value of the state at time ¢ for the j*" run and R is
the total number of runs. Since our objective is not only to obtain more
accurate state estimates but also to obtain a better approximation to the
true conditional pdf, the cross entropy with respect to the bootstrap PF
is considered

M N
H(t) = -3 w! log 3w’ (x{;pi‘k,Pm) . (36)
Jj=1 i=1

Here, x{ is the jth particle, w? s its corresponding weight and, M
is the total number of particles used in the bootstrap PF. Since we are
interested to see at each time step which estimate is closer to the truth,

the normalized cross entropy is computed

Hese(t
NHeasr(t) = csr(t) .
\/HGSF(t)Q + Haqgsp(t)?

(37)

A similar expression is computed for NH a¢; 54 (¢). Both performance
measures, the RMSE and the normalized cross entropy have been aver-
aged over 100 Monte Carlo runs for simulation results considered here.

Example 1: Let us consider the following continuous-time dynam-
ical system with uncertain initial condition and discrete measurement
model given as

& =sinz+ ()
zp =xf + vk

p(a0) ~0.IN(=1,1) + 0.9N(1,1), Qp =Ry =1

The total simulation time is set to 8 s, with measurement updates
every 1 s and the weights are updated every At = 0.1 s. Due to the
square form of the measurement model, and bimodal nature of the fore-
cast pdf, the measurements do not offer sufficient information to choose
one mode of the conditional pdf, thus the state estimate maintain its bi-
modal nature. In such situations an accurate propagation makes the dif-
ference in providing better estimates and a more accurate conditional
pdf. Fig. 1 presents the evolution of the conditional pdf for one par-
ticular run for the bootstrap PF, conventional GSF and the proposed
AGSF algorithm. Fig. 1 shows the increase of the weight of the first
component which is in agreement with the conditional pdf given by
the bootstrap PF.

Fig. 2(a) shows the plots for the RMS error for the conventional GSF,
bootstrap PF and the AGSF based upon both FPKE and CKE error
feedback. Furthermore, Fig. 2(b) shows the plots for normalized cross
entropy for the conventional GSF and AGSF with respect to the boot-
strap PF solution. From these plots, it is clear that the AGSF solution
is closer to the bootstrap PF solution as compared to the conventional
GSF. It should be mentioned that 1000 particles have been used for
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Fig. 2. Example 1: simulation results. (a) RMSE; (b) average normalized cross
entropy.
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Fig. 3. Example 2: numerical simulation results. (a) Weights comparison; (b)
dynamics; (c) RMSE; (d) average normalized cross entropy.

the bootstrap PF with resampling after each measurements, and the ex-
pectations needed for the quadratic programming problem have been
computed using GQ with 200 quadrature points.

Example 2: To show the efficacy of the proposed approach, let us
consider the Lorenz system with uncertain initial condition and discrete
measurement model given as

1 =a(=r1 + 22)

&g =y —xe — X123

&3 = — vz +x1x2 + (1)

2k =V (t6)? + 2o (tr)? + w3 (tr)® + vk

a=10,8 =28,y = %,RkZQkZL

(38)

The total simulation time is 1 s with weights being up-
dated every At = 0.01 s. The initial state pdf is set
to  p(x(to)) ~ 0.9N([—0.2, —0.2, 8], V0.35I53 )+
0.10([0.2,0.2,8]",1/0.35I5x3). Fig. 3(a) shows the evolution of
the weights of different Gaussian components for conventional GSF
and AGSF while Fig. 3(b) shows the evolution of the particles of the
bootstrap PF as well as the evolution of the mean of the Gaussian
components (blue lines) for one particular run. It is clear that the
weights found by the AGSF are in agreement with the distribution
of the particles. The values for Gaussian mixand weights in the
conventional GSF have not changed due to the symmetry in the
two Gaussian components and the quadratic measurement model.

2 4 6 8
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Fig. 3(c) and 3(d) show the plots for RMSE and normalized cross
entropy. As expected, updating the weights of the Gaussian mixture
leads to lower distance between the estimated conditional pdf and the
conditional pdf given by the bootstrap PF. Hence, the adaptation of
the weights during propagation leads to a more accurate conditional
pdf approximation than without weight update. For this example
10,000 particles have been used for the bootstrap PF with resampling
after each measurement, and the expectations needed for the quadratic
programming problem have been computed using UT with 6n + 1
sigma points.

VI. CONCLUSION

Two related approaches have been described to adapt the weights
of Gaussian mixands between two measurements in the context of
Gaussian sum filter. This is accomplished by minimizing the L-norm
of the Fokker—Planck—Kolmogorov equation or the Chapman—Kol-
mogorov equation error resulting in a convex optimization problem.
Although any other L,-norm can be used to define the resulting
optimization problem to find the updated weight, the L2-norm has
been considered in this work since it helps in capturing the state pdf
well in high probability areas. Since the means and variances of each
Gaussian kernel evolve independently, the adaptive Gaussian sum
filter can easily be parallelized, and the end-to-end compute time can
be managed efficiently.

The update methods presented are particularly useful in the case of
pure forecast, systems characterized by temporally sparse observations,
large measurement noise or unobservable systems. The numerical re-
sults presented in this technical note serve to illustrate the fact that a
better approximation to the conditional pdf can be achieved by updating
the forecast weights between two measurements. Future efforts are fo-
cused on studying the methods for automatic selection of Gaussian ker-
nels and use of L;-norm to define the optimization problem.
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Optimal Smoothing for Finite State
Hidden Reciprocal Processes

Langford B White, Senior Member, IEEE, and Francesco Carravetta

Abstract—This technical note addresses modelling and estimation of
a class of finite state random processes called hidden reciprocal chains
(HRC). A hidden reciprocal chain consists of a finite state reciprocal
process, together with an observation process conditioned on the recip-
rocal process much as in the case of a hidden Markov model (HMM).
The key difference between Markov models and reciprocal models is
that reciprocal models are non-causal. The technical note presents a
characterization of a HRC by a finite set of hidden Markov bridges, which
are HMMs with the final state fixed. The technical note then uses this
characterization to derive the optimal fixed interval smoother for a HRC.
Performance of linear and optimal smoothers derived for both HMM
and HRC are compared (using simulations) for a class of HRC derived
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from underlying Markov transitions. These experiments suggest that, not
surprisingly, the performance of the optimal HMM and HRC smoothers
are signifcantly better than their linear counterparts, and that some per-
formance improvement is obtained using the HRC smoothers compared
to the HMM smoothers. The technical note concludes by mentioning
some ongoing and future work which exploits this new Markov bridge
characterization of a HRC.

Index Terms—Finite state systems, hidden Markov models (HMMs),
Markov processes, optimal smoothing, reciprocal processes (RP).

I. INTRODUCTION

Reciprocal processes (RP) are one-dimensional Markov random
fields (MRF), although they are not Markov processes in the usual
sense. However, any Markov process is reciprocal. Reciprocal pro-
cesses share the fundamental property of MRFs in that their statistical
properties may be specified by a nearest neighbour condition. Re-
ciprocal processes were originally studied in detail in the 1930s,
in particular by Bernstein [1] who formulated the concept of a RP,
and also by Schrodinger [2], who studied the quantum mechanical
behavior of an electron on a finite interval of the real line. The study
of reciprocal processes became prominent in the 1960s and 1970s,
when several researchers such as Slepian [3] and Jamison [4] studied
Gaussian RPs. The general theory of RPs was presented by Jamison in
[5] where important relationships between RPs and Markov processes
were established.

In the last 2 decades of the twentieth century, a considerable amount
of related work was published by Krener [6], Krener, et al. [7] and
Adams, et al. [8] in particular. These papers dealt specifically with
continuous time reciprocal processes with the underlying models being
constructed from stochastic differential equations. Optimal linear esti-
mation was addressed in [8]. An interesting example which demon-
strates one significant application of RPs is described in [9] which
showed how tracking with predictive information may be dealt with
in the RP framework. That paper also dealt with the continuous time,
Gaussian case. We also note related work in physics also by Levy and
Krener [10], [11] where relationships between reciprocal processes and
quantum mechanics are explored.

In [12], a complete description of discrete time Gaussian reciprocal
processes from a modelling and optimal estimation perspective is given
by Levy, et al.. In particular, it is shown that any Gaussian reciprocal
process can be represented by a second order difference equation driven
by a Gaussian moving average (MA) noise process of order one. A
global matrix-vector equation describing the state of the process is de-
rived and a forward-backward procedure for generating realizations
of the process in a causal manner is obtained from the global equa-
tion via LU factorization. Using a similar approach, the optimal fixed-
interval smoother is obtained, and is realized by a similar forward-
backward method, not unlike the familiar fixed-interval smoother for
Gauss—Markov processes.

More recently, Vats and Moura [13] also considered the Gaussian
reciprocal case. In their approach, they also used an LU decomposition
of a global model to derive a forward-backward representation which,
unlike [12], incorporated the boundary conditions explicitly into these
recursions. Optimal smoothing was also addressed in [13].

This technical note is the first to be concerned with finite state dis-
crete time reciprocal processes, although non-recursive models for fi-
nite state MRFs in two dimensions were considered in [14]. In the se-
quel, we shall sometimes refer to a finite state reciprocal process as
a reciprocal chain. Analogously to a hidden Markov chain (HMC), a
HRC consists of a reciprocal chain, and an observation process statis-
tically dependent on the RC. The main contributions of this technical
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