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ABSTRACT
The time-optimal output transition control problem for stable or marginally stable systems with minimum-phase

zeros is discussed in this paper. A double integrator system with a real left-half plane zero is used to illustrate
the development of the time-optimal output transition controller. It is shown that an exponentially decaying post-
actuation control profile is necessary to maintain the output at the desired final location. It is shown that the
resulting solution to the output transition time-optimal control profile can be generated by a time-delay filter whose
zeros and poles cancels the poles and zeros of the system to be controlled. The design of the time-optimal output
transition problem is generalized and illustrated on the benchmark floating oscillator problem.

1 Introduction
Feedforward control is now a reliable approach for precision motion control in applications ranging from hard disk

drives [1], wafer scanners [2], cranes [3], to flexible space structures [4]. This includes shaping the reference input for
a stable system, i.e., feedback stabilized system or an open loop-control such as time-optimal control which provides the
nominal trajectories which are followed by a perturbation feedback controller. The input-shaping/time-delay filtering [5, 6]
approach which eliminates residual vibration by a simple phase shifted harmonic cancelation has been extensively studied.
Issues dealing with desensitizing the reference shaper to model parameter uncertainties has been the focus to permit robust
design [7,8] while techniques to minimize excitation of un-modeled modes has been addressed by limiting the jerk [9] or by
using smooth trajectories [10]. Modifications to the traditional input shaper design include work by Dijkstra and Bosgra [11]
where they illustrate the use of iterative learning control to design an input shaper to eliminate residual vibrations in rest-to-
rest maneuvers of wafer scanners. An adaptive input shaping technique was presented by Bodson [12] where the traditional
time-delay filter and a second order pre-filter are designed to eliminate residual vibrations.

Another class of open-loop controller which focuses on rest-to-rest maneuvers such a time-optimal [13–15] fuel-time
optimal [16, 17], jerk-limited time-optimal [18, 19] which explicitly includes control constraints has also been the focus of
numerous researchers over the past three decades. All the aforementioned papers deal with state-to-state transition. Often
one is interested in regulating specific outputs which can be a function of multiple states. For systems whose transfer
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functions are characterized by zeros, the output is a function of multiple states. For such systems, one can pose an optimal
control problem which endeavors to transition the output from a state of rest to a state of rest. This optimal output transition
problem has been addressed by Iamratanakul et al. [20] for a dual-stage disk drive where pre- and post-actuation is used
to minimize the energy consumed in the output-to-output transition problem. Iamratanakul and Devasia [21] extended the
minimum-energy control profile to a weighted time/energy cost function. They show that using pre- and post-actuation
results in reducing the weighted time/energy cost function for output-to-output transition relative to state-to-state transition.
Devasia [22] developed a time-optimal design strategy for system with rigid and flexible modes and illustrated the technique
on a benchmark floating oscillator problem with multiple inputs. The output-to-output transition problem was shown to be a
bang-bang profile in the transition time window and an output-maintaining inverse input law was derived to synthesize the
pre- and post-actuation control profiles.

This article focuses on systems with minimum-phase zeros, i.e., zeros in the left half of the complex plane. To help
illustrate the motivation for the parameterizations of the time-optimal output-to-output transition control profile, a double
integrator with a left half plane zero is considered. The optimal control is shown to be identical to one synthesized from a
time-delay filter which is designed to cancel the poles and zeros of the system via the zeros and poles of the transfer function
of the time-delay filter. The change in the structure of the post-actuation time-optimal control profile as a function of the
transition maneuver is illustrated for the double integrator problem. A generalization of the design approach is presented
followed by the illustration of the design of a post-actuation time-optimal controller for the benchmark floating oscillator
problem.

2 Problem Formulation
This section will focus on the development of a post-actuation time-optimal controller for a double integrator with a

left half plane zero. Closed form solutions to the output transition minimum-time control will be derived. Variation in the
structure of the time-optimal control as a function of the maneuver distance will be illustrated. The design of the post-
actuation control is initiated in the time-domain since it permits a clear motivation for the form of the post-actuation control.
It also help transition and illustrate the parity in formulating the post-actuation control in the frequency domain, leading to
the final generalization in the frequency domain.

2.1 Time Domain Development
Consider the time optimal control of the system:

ÿ(t) = ku̇(t)+αu(t) (1)

to transition from a initial state of rest to a terminal state where the output is at rest. Assume k and α are greater than zero,
resulting in a minimum phase zero of the transfer function relating the input u to the output y. Rewriting the system in state
space form, the time-optimal control problem can be stated as:

min J = t f (2a)
subject to{

ϕ̇1
ϕ̇2

}
=

[
0 1
0 0

]{
ϕ1
ϕ2

}
+

[
0
1

]
u (2b)

y =
[
α k
]{ϕ1

ϕ2

}
(2c)

ϕ1(0) = ϕ2(0) = 0, and y(t f ) = y f , ẏ(t f ) = 0, ∀t ≥ t f (2d)
−1 ≤ u(t)≤ 1 ∀t (2e)

Since the terminal constraint is:

ẏ(t f ) = αϕ2(t f )+ ku(t f ) = 0, (3)

and with the knowledge that u(t f ) is constrained to lie between -1 and 1, and assuming k is positive, Equation (3) can be
rewritten as the inequality constraints:



αϕ2(t f )− k ≤ ẏ(t f ) = 0 ≤ αϕ2(t f )+ k (4)

using the limiting value of u. The resulting inequality constraints are:

αϕ2(t f )− k− ẏ(t f )≤ 0 (5)
−αϕ2(t f )− k+ ẏ(t f )≤ 0 (6)

where the terminal velocity of zero has been represented symbolically to permit the determination of an analytical expression
of the Lagrange multiplier associated with the inequality constraint. The resulting optimal control problem is:

min J = t f (7a)
subject to{

ϕ̇1
ϕ̇2

}
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

{
ϕ1
ϕ2

}
︸ ︷︷ ︸

x

+

[
0
1

]
︸︷︷︸

B

u (7b)

y =
[
α k
]{ϕ1

ϕ2

}
(7c)

ϕ1(0) = ϕ2(0) = 0, (7d)
αϕ1(t f )+ kϕ2(t f ) = y f , (7e)
αϕ2(t f )− k− ẏ(t f )≤ 0 (7f)

−αϕ2(t f )− k+ ẏ(t f )≤ 0 (7g)
−1 ≤ u(t)≤ 1 ∀t (7h)

Including the terminal equality and inequality constraints into the cost function, the augmented cost function can be
written as:

Ja = ν1 (αϕ2(t f )− k− ẏ(t f ))+ν2 (−αϕ2(t f )− k+ ẏ(t f ))+

β(αϕ1(t f )+ kϕ2(t f )− y f )+
∫ t f

0

(
1+λT (Ax+Bu− ẋ)

)
dt (8)

where the Lagrange multipliers associated with the terminal inequality constraints: ν1 and ν2 ≥ 0 and the Hamiltonian is
defined as:

H = 1+λT (Ax+Bu) (9)

The necessary conditions for optimality are:

{
ϕ̇1
ϕ̇2

}
=

∂H
∂λ

=

[
0 1
0 0

]{
ϕ1
ϕ2

}
+

[
0
1

]
u (10){

λ̇1

λ̇2

}
= −∂H

∂x
=−

[
0 0
1 0

]{
λ1
λ2

}
(11){

λ1
λ2

}
(t f ) = ν1

{
0
α

}
−ν2

{
0
α

}
+β
{

α
k

}
(12)

u = −sign
(
BT λ

)
(13)

ν1,ν2 ≥ 0 (14)
H(0) = 0 (15)



Solving the costate equations, we have:

λ1(t) =C (16)
λ2(t) =−Ct +D (17)

Since λ1(t f ) = βα from Equation (12), we have C = αβ. Exploiting the constraint given by Equation (15), we have:

H(0) = 1+λ2(0) = 1+D = 0 (18)

assuming that the initial control magnitude is 1, resulting in D =−1. The resulting time-optimal control is:

u =−sign(−αβt −1) . (19)

It is clear from the structure of the switching function −αβt −1, that the control can switch at most once. Assuming a single
switch parameterization of the time optimal control profile as:

u(t) = 1−2H (t −Ts) ∀t ≥ 0, (20)

where H (t −Ts) is the Heaviside step function and the control switches at time Ts, we have:

−αβTs −1 = 0 ⇒ Ts =− 1
αβ

. (21)

Integrating the state equations given by Equation (10), we have:

ϕ1(t) =
1
2

t2 − (t −Ts)
2 H (t −Ts) ∀t ≥ 0, (22)

ϕ2(t) = t −2(t −Ts)H (t −Ts) ∀t ≥ 0. (23)

Since at time t f , the terminal control is -1, the active terminal constraint is:

αϕ2(t f )− k− ẏ(t f ) = 0 ⇒ α(−t f +2Ts)− k− ẏ(t f ) = 0 (24)

which results in the solution:

t f =
2αTs − k− ẏ(t f )

α
(25)

From the terminal equality constraint:

αϕ1(t f )+ kϕ2(t f ) = y f (26)

⇒ α
(

1
2

t2
f − (t f −Ts)

2
)
+ k (t f −2(t f −Ts)) = y f (27)

the switch time can be solved in closed form:

Ts =
1
2

√
−2k2 +4yf α

α
,−1

2

√
−2k2 +4yf α

α
. (28)



Equation (21) leads to the closed form solution for the Lagrange multiplier:

β =− 2√
−2k2 +4αy f

(29)

Since λ2(t f ) from Equation (12) is:

λ2(t f ) = (ν1 −ν2)α+βk =−αβt f −1, (30)

and with the knowledge that ν2 = 0, since the corresponding constraint is inactive, we have:

ν1 =
1
α

(31)

which is a positive number since α > 0.
With the knowledge that the Lagrange multipliers are the sensitivity of the cost function to variation in the level of the

constraint, we have:

dJa

dy f
= −β (32)

dJa

dẏ f
= −ν1 if constraint u=-1 is active (33)

dJa

dẏ f
= ν2 if constraint u=1 is active. (34)

Since the Lagrange multiplier β is defined as the sensitivity of the cost function to a perturbation in the constraint level
y f , we have:

β =−
dt f

dy f
=− 2√

−2k2 +4αy f
, (35)

which matches the solution given by Equation (29).
ν1 can also be calculated from the sensitivity equation:

ν1 =−
dt f

dẏ f
=

1
α
. (36)

which matches the solution given by Equation (31). Figure 1 illustrates the variation of the switch time (solid line) and the
maneuver time (dashed line) as a function of the final displacement for α = 1 and k = 2. It should be noted that the switch
time and the maneuver time are coincident for a displacement of y f = 6. The structure of the time-optimal post-actuation
control for maneuvers smaller than y f = 6 will be presented later.

2.2 Post Actuation
Figure 2 illustrates the terminal equality constraint for the output. It is clear that the terminal states ϕ1(t f ) and ϕ2(t f )

have to lie on the line given by Equation (3) shown by the dashed line. Once the states have reached the constraint line, the
states have to evolve such that they slide along the constraint line ensuring that y(t) = y f and ẏ(t) = 0 for all time greater
than t f .

Since,

αϕ1(t)+ kϕ2(t) = y f ,∀t > t f (37)

⇒ ϕ2(t) =
y f −αϕ1(t)

k
(38)
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Fig. 1. Variation of Maneuver and Switch Time
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Fig. 2. Output Constraint for Post-Actuation

and

ẏ(t f ) = αϕ2(t)+ ku(t) = 0,∀t > t f (39)

⇒ u(t) =−α
k

ϕ2(t). (40)



Substituting the control given by Equation (40) into the state equation, the resulting evolution of the states after time t f are:

ϕ̇2 = u =−α
k

ϕ2 (41)

⇒ ϕ2(t) = e−
α
k (t−t f )ϕ2(t f ) ∀t ≥ t f , (42)

and

ϕ1(t) =− k
α

e−
α
k (t−t f )ϕ2(t f )+

k
α

ϕ2(t f )+ϕ1(t f ). (43)

The control can now be represented as:

u = ϕ̇2 =−α
k

e−
α
k (t−t f )ϕ2(t f ). (44)

With the knowledge that u(t f ) =−1, we have:

u(t f ) =−1 =−α
k

ϕ2(t f )⇒ ϕ2(t f ) =
k
α

(45)

or

u =−e−
α
k (t−t f ) ∀t ≥ t f (46)

is the post-actuation control which constrains the output y(t) to equal y f for all time greater than t f . Note that the control given
in Equation 46 starts at -1 and transitions exponentially to zero thus satisfying the control constraint given by Equation 7h.

2.3 Frequency Domain Development
Singh and Vadali [15] presented a frequency domain approach for the design of time-optimal controllers. A time-delay

filter was parameterized in terms of the switch times and the maneuver time with the knowledge that the time-optimal control
profile is bang-bang. The output of the time-delay filter when subject to a step input results in a bang-bang control profile.
A parameter optimization problem is posed so as to require zeros of the transfer function of the time-delay filter cancel the
poles of the system with an additional constraint to satisfy the terminal maneuver constraint. The same approach of designing
a time-delay filter will be used for optimal output-to-output transition control.

With the knowledge that the post-actuation time-optimal control for the second order system given by Equation (1) is:

u(t) = 1−2H (t −Ts)+(1− e−
α
k (t−t f ))H (t − t f ), (47)

the frequency domain representation of the control profile is:

U(s) =
1
s

(
1−2exp(−sTs)+

α
k

s+ α
k

exp(−st f )

)
︸ ︷︷ ︸

Gc(s)

. (48)

where Gc(s) is the transfer function of a time-delay filter which generates the time-optimal post-actuation control profile.
Note that the transfer function of the time-delay filter includes a pole located at s = −α

k which corresponds to the zero
of the system transfer function, in essence canceling the zero of the transfer function with a pole of the time-delay filter.
Evaluating the transfer function of the time-delay filter at s = 0, we have:

Gc(s = 0) = 1−2e−sTs +
α
k e−st f

(s+ α
k )

= 1−2+1 = 0 (49)



which cancels one pole of the system transfer function located at the origin. To cancel a second pole at the origin, we require:

dGc(s)
ds

(s = 0) = 2Tse−sTs −
α
k t f e−st f

(s+ α
k )

−
α
k e−st f

(s+ α
k )

2 (50)

⇒ = 2Ts − t f −
1
(α

k )
= 0 (51)

when substituting the closed form solution for Ts and t f given by Equations (25) and (28). Thus the time-optimal post-
actuation control can be derived by designing a time-delay filter which uses its poles and zeros to cancel the zeros and poles
of the system respectively. Note that the structure of the time-delay filter for output-to-output transition depends on the zeros
of transfer function of the system as opposed to the structure of the time-delay filter for state-to-state transition which is a
sum of delayed step inputs, which results in a bang-bang control profile.

2.4 Small Maneuvers
Equation 25 presents the relationship between the maneuver time and the switch time:

t f = 2Ts −
k
α

(52)

when ẏ(t f ) = 0. It can be seen that the maneuver time and the switch time coincide when:

Ts =
k
α

(53)

which corresponds to a maneuver of

y f =
3k2

2α
. (54)

For maneuvers smaller than y f =
3k2

2α , the inequality constraints:

αϕ2(t f )− k ≤ 0 (55)
−αϕ2(t f )− k ≤ 0 (56)

are not active and consequently, the corresponding Lagrange multipliers ν1 and ν2 are zero. This implies that the magnitude
of the control at the final time is neither -1 or 1. Assuming the initial control is u = 1, the state evolution is given by the
equations:

ϕ1(t) =
1
2

t2 (57)

ϕ2(t) = t (58)

which results in the terminal constraint:

α
1
2

t2
f + kt f = y f (59)

which results in the solution:

t f =
−k±

√
k2 +2αy f

α
. (60)



The final time has to be:

t f =
−k+

√
k2 +2αy f

α
(61)

since the other solution results in a negative time. Since the output velocity at the terminal time should be 0, we have:

αt f + ku(t f ) = 0,→ u(t f ) =−
αt f

k
=

k−
√

k2 +2αy f

k
. (62)

The transversality conditions are:

{
λ1
λ2

}
(t f ) = ν1

{
0
α

}
−ν2

{
0
α

}
+β
{

α
k

}
(63)

and since:

λ1(t) =C (64)
λ2(t) =−Ct +D, (65)

H(0) = 1+λ2(0) = 0 (66)

we have:

C = αβ (67)
D =−1 (68)

β =− 1
k+αt f

=− 1√
k2 +2αy f

(69)

ν1 = ν2 = 0. (70)

Since the Lagrange multiplier β is defined as the sensitivity of the cost function to a perturbation in the constraint, we have:

β =−
dt f

dy f
=− 1

2α
2α√

k2 +2αy f
, (71)

which matches the solution given by Equation (69).
The post-actuation control to maintain y(t) at y f was shown in Equation (44) to be:

u = ϕ̇2 =−α
k

e−
α
k (t−t f )ϕ2(t f ), (72)

and with the knowledge that:

ϕ2(t f ) = t f =
−k+

√
k2 +2αy f

α
, (73)

the post-actuation control is:

u(t) =
k−
√

k2 +2αy f

k
e−

α
k (t−t f ). (74)



Since this control is valid for maneuvers less than y f ≤ 3k2

2α , it is clear that the coefficient of the exponentially decaying term
in the control is less than -1, satisfying the control constraints.

The transfer function of a time-delay filter to generate the time-optimal post-actuation control profile can be shown to
be:

Gc(s) = 1−
s
√

k2 +2αy f +α
ks+α

exp(−st f ). (75)

Evaluating Gc(s = 0), and dGc
ds (s = 0), we have:

Gc(s = 0) = 1−1 = 0 (76)

and

dGc

ds
(s = 0) = −

√
k2 +2αy f

ks+α
exp(−st f )+ t f

s
√

k2 +2αy f +α
ks+α

exp(−st f )

−k
s
√

k2 +2αy f +α
(ks+α)2 exp(−st f ) = 0 (77)

when t f is given by Equation (61). It can again be noted that the transfer function given by Equation (75) cancels the poles
and zeros of the second order system.

Figure 3 illustrates the variation of the maneuver time and the switch time as a function of varying maneuvers. The next
section will generalize the design of pole-zero zero-pole canceling post-actuation controllers.
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3 Generalization
Consider a stable or marginally stable transfer function of the form

Y (s)
U(s)

= Gp(s) =
∑m

i=0 aisi

sn +∑n−1
j=0 b js j

(78)

where n ≥ m. All the zeros of the plant Gp(s) are assumed to lie in the left-half of the complex plane. For systems which
include non-minimum phase zeros, only the left-half plane zeros are considered in the design.

For the design of a post-actuation time-delay filter, consider the pre-filter parameterization:

U(s)
R(s)

= Gc(s) = 1+
L−1

∑
k=1

(−1)k2exp(−sTk)+ exp(−sTL)
∑m

r=0 crsr

∑m
i=0 aisi . (79)

The parameters of the time-delay filter, i.e., cr, and Tk need to satisfy the constraints:

Gc(s =−p j) = 0,∀p j = roots(sn +
n−1

∑
j=0

b js j) (80)

which guarantees cancelation of all the poles of the system with zeros of the time-delay filter. The poles include the rigid
body poles, i.e., s = 0,0. To ensure that the final values of the desired step input of magnitude y f is achieved, we require:

y f = lim
s→0

1
s

sGcGp =
a0

b0

(
c0

a0
+1+

L−1

∑
k=1

(−1)k2

)
. (81)

If the limit is indeterminate, L’Hôpitals rule is used repeatedly until the limit can be determined. Finally, since the post-
actuation control is required to satisfy the control constraints, constraints which ensure that the control bounds are satisfied
after time TL, which corresponds to the post-actuation phase of the control are added to the optimization problem. The post
actuation part of the control is given by the equation:

U(s) =
1
s

(
±1+

∑m
r=0 crsr

∑m
i=0 aisi

)
, (82)

the inverse Laplace transform of which results in the solution u(t). Since the zeros of the system which are the poles of the
time-delay filter transfer function, are stable, one can ensure satisfaction of the control constraints by determining the time
t = TL+1 when:

du
dt

∣∣∣∣
TL+1

= 0 (83)

and requiring the control to be:

−1 ≤ u(TL+1)≤ 1. (84)

An optimization problem can be posed to determine the parameters of the post-actuation time-delay filter. The statement



of the problem is:

min J = TL (85a)
subject to

1+
L−1

∑
k=1

(−1)k2exp(−sTk)+ exp(−sTL)
∑m

r=0 crsr

∑m
i=0 aisi

∣∣∣∣∣
s=−p j

= 0∀p j (85b)

lim
s→0

1
s

sGcGp =
a0

b0

(
c0

a0
+1+

L−1

∑
k=1

(−1)k2

)
= y f (85c)

−1 ≤ u(TL+1) = L−1
(

1
s

(
±1+

∑m
r=0 crsr

∑m
i=0 aisi

))
≤ 1 (85d)

du
dt

∣∣∣∣
TL+1

= 0 (85e)

TL+1 > TL > TL−1 > .. . > T2 > T1 > 0 (85f)

This is a nonlinear parameter optimization problem which can converge to multiple solutions. To ensure optimality, necessary
conditions for optimality need to be derived.

In output transition problems, the goal is to force the output to the desired value and maintain it there for all future time.
This can be accomplished using post-actuation control for system with minimum-phase zeros. The terminal output constraint
is:

y(t f ) =Cx(t f ) = y f . (86)

To maintain the output at the desired value for all time greater than t f , we require:

dy
dt

∣∣∣∣
t f

=C (Ax(t f )+Bu(t f )) = 0 (87)

If CB = 0, then the next sequence of derivatives need to be tested until u(t) explicitly shows up in the equation:

dqy
dtq

∣∣∣∣
t f

=CAq−1 (Ax(t f )+Bu(t f )) = 0, (88)

which is called the qth order state variable equality constraint. Here the qth total time derivative is the control variable
constraint which can be rewritten as inequality constraints using the limits of u(t):

−CAq−1 (Ax(t f )+B))≤ 0 (89)

CAq−1 (Ax(t f )−B))≤ 0. (90)



The constrained optimal control problem can be represented as:

min J =
∫ t f

0
dt (91a)

subject to (91b)
ẋ = Ax+Bu (91c)
x(0) = 0 (91d)
Cx(t f ) = y f (91e)

CAq−1x(t f ) = 0 (91f)

−CAq−1 (Ax(t f )+B))≤ 0 (91g)

CAq−1 (Ax(t f )−B))≤ 0 (91h)
−1 ≤ u(t)≤ 1 (91i)

To determine the necessary conditions for optimality, the augmented cost function is:

Ja = ν1CAq−1 (Ax(t f )−B))+ν2CAq−1 (−Ax(t f )−B))+β0 (Cx(t f )− y f )

+
q−1

∑
i=1

βiCAix(t f )+
∫ t f

0

(
1+λT (Ax+Bu− ẋ)

)
dt (92)

where the Hamiltonian is defined as:

H = 1+λT (Ax+Bu) . (93)

The necessary conditions for optimality are given by the equations:

ẋ =
∂H
∂λ

= Ax+Bu (94a)

λ̇ =−∂H
∂x

=−AT λ (94b)

u =−sign
(
BT λ

)
(94c)

x(0) = 0 (94d)

λ(t f ) = (Aq)T CT ν1 − (Aq)T CT ν2 +CT β0 +
q−1

∑
i=1

βi
(
Ai)T

CT (94e)

ν1 ≥ 0,ν2 ≥ 0 (94f)
y(t f ) =Cx(t f ) = y f (94g)

CAq−1x(t f ) = 0 (94h)

CAqx(t f )−CAq−1B ≤ 0 (94i)

−CAqx(t f )−CAq−1B ≤ 0 (94j)

The proposed time-optimal post-actuation controller design will be illustrated on the benchmark floating oscillator problem
in the next section.

4 Benchmark Problem
For the two mass spring system shown in Figure 4, the transfer function relating the input to the displacement of the first

mass is:

Y1(s)
U(s)

=
s2 + cs+1

s2 (s2 +2cs+2)
(95)
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where the two masses are equal, the spring stiffness is unity and the damping constant is c. The unit step response of the
system is:

y1(t) =
t2

4
+

1
4
− 1

4
e−ctcos(

√
2− c2t)− c

4
√

2− c2
e−ctsin(

√
2− c2t) (96)

from which the higher derivatives can be calculated in closed form.
To determine the structure of the post actuation control, rewrite Equation (95) as a differential equation:

....y 1 +2c
...y 1 +2ÿ1 = ü+ cu̇+u. (97)

Laplace transform of Equation (97) leads to:

(
s4 +2cs3 +2s2

)
Y1(s)− (s3y1(0)+ s2ẏ1(0)+ sÿ1(0)+

...y 1(0))−2c(s2y1(0)+ sẏ1(0)+ ÿ1(0))

−2(sy1(0)+ ẏ1(0)) =
(
s2 + cs+1

)
U(s)− (su(0)+ u̇(0))− cu(0). (98)

At the initiation of the post-actuation control, we have

y1(0) = y f , ẏ1(0) = 0, or Y1(s) =
y f

s
(99)

which permits rewriting Equation (98) as

−(sÿ1(0)+
...y 1(0))−2cÿ1(0) =

(
s2 + cs+1

)
U(s)− (su(0)+ u̇(0))− cu(0).

or

U(s) =
(s+ c)u(0)+ u̇(0)− (s+2c)ÿ1(0)−

...y 1(0)
s2 + cs+1

=
−as+b

s2 + cs+1
(100)

To arrive at a time-delay filter transfer function which generates the post-actuation control given by Equation (100), we have

1
s
(−1+Gpa) =

(s+ c)u(0)+ u̇(0)− (s+2c)ÿ(0)−
...y (0)

s2 + cs+1
(101)

assuming the control magnitude is −1 prior to the initiation of the post-actuation control. Solving Equation (101) for Gpa,
we have

Gpa =
s(s+ c)u(0)+ su̇(0)− s(s+2c)ÿ1(0)− s

...y 1(0)
s2 + cs+1

+1 (102)



which can be simplified to:

Gpa =
s2

P︷ ︸︸ ︷
(u(0)− ÿ1(0)+1)+ s

Q︷ ︸︸ ︷
(cu(0)+ u̇(0)−2cÿ1(0)−

...y 1(0))+1
s2 + cs+1

(103)

Assuming a three switch time-delay filter corresponds to the time-optimal structure for the output-to-output transition control
profile, the time-delay filter’s transfer function can be parameterized as:

Gc =

(
1−2e−sT1 +2e−sT2 −2e−sT3 +

Ps2 +Qs+1
s2 + cs+1

e−sT4

)
(104)

The post actuation control is given by the step response of system with the transfer function given by Equation (103)
which can be represented as:

u(t) = 1+2

(
b+ ac

2

)
e−

c
2 t sin

(
1/2

√
−c2 +4t

)
√
−c2 +4

−ae−
c
2 t cos

(
1/2

√
−c2 +4t

)
(105)

where

a = Pc−Q, and b = c−P. (106)

The derivative of the post actuation control

u̇(t) =−
(b+ ac

2 )ce−1/2 tc sin
(

1/2
√

−c2+4t
)

√
−c2+4

+
(
b+ ac

2

)
e−1/2 tc cos

(
1/2

√
−c2 +4t

)
+

ac
2 e−1/2 tc cos

(
1/2

√
−c2 +4t

)
+1/2ae−1/2 tc sin

(
1/2

√
−c2 +4t

)√
−c2 +4 (107)

can be used to determine when u(t) reaches it minimum and maximum. We can now constrain the limiting values of u(t) to
be equal to ±1 to satisfy the bounds on the control. For the post actuation problem, the additional constraints which need to
be imposed to ensure that the post-actuation control does not violate the control constraints requires solving the equations:

u̇(T5 −T4) = 0 (108)
u(T5 −T4) =−1 (109)

since u(T5 −T4) = 0 corresponds to the minimum of u(t) which when included as part of the time-delay filter response given
by Equation (104) corresponds to u(T5) =−1.

4.1 Necessary Conditions for Optimality
The state space model of the benchmark problem with the output being the displacement of the mass acted on by the

input is: 
ẋ1
ẋ2
ẋ3
ẋ4

︸ ︷︷ ︸
ẋ

=


0 0 1 0
0 0 0 1
−k k −c c
k −k c −c


︸ ︷︷ ︸

A


x1
x2
x3
x4

︸ ︷︷ ︸
x

+


0
0
1
0


︸︷︷︸

B

u (110)

y =
[
1 0 0 0

]︸ ︷︷ ︸
C


x1
x2
x3
x4

︸ ︷︷ ︸
x

(111)



The costate equation is:


λ̇1

λ̇2

λ̇3

λ̇4

︸ ︷︷ ︸
Λ̇

=−


0 0 −k k
0 0 k −k
1 0 −c c
0 1 c −c


︸ ︷︷ ︸

A


λ1
λ2
λ3
λ4

︸ ︷︷ ︸
Λ

(112)

Since the Hamiltonian is:

H = 1+ΛT (Ax+Bu) , (113)

the time-optimal control is given by the equation:

u =−sign
(
ΛT B

)
. (114)

The terminal constraints are:

y(t f ) = y f =
[
1 0 0 0

]
x1
x2
x3
x4

= x1(t f ) (115)

ẏ(t f ) = 0 =
[
0 0 1 0

]
x1
x2
x3
x4

= x3(t f ) (116)

ÿ(t f ) = 0 =
[
−k k −c c

]
x1
x2
x3
x4

+u(t f ) (117)

The constraint given by Equation (117) can be rewritten as inequality constraints:

[
−k k −c c

]
x1
x2
x3
x4

−1 ≤ 0 (118)

−
[
−k k −c c

]
x1
x2
x3
x4

−1 ≤ 0 (119)

The augmented cost function includes the following terms:

ν1

[−k k −c c
]

x1
x2
x3
x4

−1

+ν2

−
[
−k k −c c

]
x1
x2
x3
x4

−1


+β1(x1(t f )− y f )+β2x3(t f ) (120)



which leads to the terminal costate constraint:
λ1
λ2
λ3
λ4

(t f ) =


−k
k
−c
c

ν1 −


−k
k
−c
c

ν2 +


1
0
0
0

β1 +


0
0
1
0

β2 (121)

When the inequality constraints Equation (118)-(119) are inactive, ν1 and ν2 are both 0. The terminal value of the control
can then be determined from Equation (117) resulting in:

u(t f ) =−
[
−k k −c c

]
x1(t f )
x2(t f )
x3(t f )
x4(t f )

 . (122)

Since the Hamiltonian is 0 at the terminal time, we have:

{
λ1(t f ) λ2(t f ) λ3(t f ) λ4(t f )

}


0 0 1 0
0 0 0 1
−k k −c c
k −k c −c




x1(t f )
x2(t f )
x3(t f )
x4(t f )

+


0
0
1
0

u(t f )

=−1. (123)

Equations (110),(112), (115), (116), (118), (119) and (121) form the necessary conditions for optimality.

4.2 Large Maneuver
Parameterize the time-optimal post-actuation control as a three switch bang-bang control followed by a decaying sinu-

soidal post-actuation control as shown in Figure (5). Note that since the zeros of the system which need to be cancelled are
a pair of complex left-half plane zeros, the poles of the time-delay filter which cancel them will result in a damped harmonic
post-actuation control profile.
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Fig. 5. Three-Switch Post-Actuation Control Profile

The time-delay filter which generates the control profile illustrated in Figure (5) is:

Gc =

(
1−2e−sT1 +2e−sT2 −2e−sT3 +

Ps2 +Qs+1
s2 + cs+1

e−sT4

)
. (124)



The zeros of the transfer function Gc(s) should cancel the poles of the system located at:

s = 0,0,−c± i
√

2− c2. (125)

The parameter optimization problem can be posed as:

min J = T4 (126a)
subject to (126b)

dGc

ds
(s = 0) = 2T1 −2T2 +2T3 −T4 +Q− c = 0 (126c)

1+
3

∑
k=1

(−1)k2e−cTk cos
√

2− c2Tk +(c2 −Qc−1+2P)e−cT4 cos
√

2− c2T4

+
√

2− c2(c−Q)e−cT4 sin
√

2− c2T4 = 0 (126d)
3

∑
k=1

(−1)k2e−cTk sin
√

2− c2Tk − (c2 −Qc−1+2P)e−cT4sin
√

2− c2T4

+
√

2− c2(c−Q)e−cT4 cos
√

2− c2T4 = 0 (126e)

(P−QT4 +
T 2

4
2

−1+ c(T1 −T2 +T3))+
3

∑
k=1

(−1)kT 2
k = 2y f (126f)

u̇(T5 −T4) = 0 (126g)
u(T5 −T4) =−1 (126h)
0 < T1 < T2 < T3 < T4 < T5 (126i)

where u(t) and u̇(t) are given by Equations (105) and (107).
For an output displacement of y f = 3, Figure 6 illustrates the post-actuation time-optimal control, the switching curve

and the corresponding evolution of the displacement of the first mass of the benchmark floating oscillator. It can be noted
that the post-actuation control profile is a damped harmonic which reaches the minimum of -1 at 6.2 seconds.
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Fig. 6. Large Maneuver Three-Switch Post-Actuation



Figure 7 illustrates the variation of the switch times and the maneuver time as a function of the final displacement
y f . It can be seen that the first two switches shown by the dash and dotted line collapse in the vicinity of y f = 1.29. The
parameterization presented in this section corresponds to all maneuvers greater than y f = 1.29. For maneuvers smaller than
y f = 1.29, a new parameterization of the control profile is necessary which is presented in the next section.
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4.3 Small Maneuver

Parameterize the time-optimal post-actuation control as a single switch bang-bang control followed by a decaying sinu-
soidal post-actuation control as shown in Figure 8.

The time-delay filter which generates the control profile illustrated in Figure 8 is:

Gc =

(
1−2e−sT1 +

Ps2 +Qs+1
s2 + cs+1

e−sT2

)
. (127)
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The parameter optimization problem can be posed as:

min J = T2 (128a)
subject to (128b)

dGc

ds
(s = 0) = 2T1 −T2 +Q− c = 0 (128c)

1−2e−cT1 cos
√

2− c2T1 +(c2 −Qc−1+2P)e−cT2 cos
√

2− c2T2

+
√

2− c2(c−Q)e−cT2 sin
√

2− c2T2 = 0 (128d)

−2e−cT1 sin
√

2− c2T1 − (c2 −Qc−1+2P)e−cT2sin
√

2− c2T2

+
√

2− c2(c−Q)e−cT2 cos
√

2− c2T2 = 0 (128e)

(P−QT2 +
T 2

2
2

−1+ cT1)−1T 2
1 = 2y f (128f)

u̇(T3 −T2) = 0 (128g)
u(T3 −T2)<−1 (128h)
0 < T1 < T2 < T3 (128i)

Figure 7 illustrates the variation of the switch times and the maneuver time as a function of the final displacement y f for
maneuvers smaller than y f = 1.29.

Figure 9 illustrates a typical post-actuation time-optimal control profile. For a maneuver of 1 unit, it can be seen that
a single switch bang-bang control transitions the output from an initial state of rest to a terminal state of rest. The post-
actuation control as opposed to the large maneuver case does not reach the control limits in the post-actuation phase of the
control.

Figure 10 illustrates the variation in the maneuver time of the state-to-state transition time optimal control (solid line)
and the time optimal output transition control (dashed line), as a function of the maneuver y f . It can be seen that the
post-actuation time-optimal control consistently requires significantly smaller time to complete the maneuver.

It should be noted that the number of switches for the time optimal control cannot, in most application be prescribed at
the outset. The number of switches as shown in Figures 3 and 7 changes as a function of the maneuver. They also change
for the same maneuver, as a function of varying damping coefficient as shown by Singh [23] for minimum time control.
Consequently, the designer must select a certain number of switches and solve the parameter optimization problem and then
check if all the necessary conditions of optimality are satisfied. If they are not, a different parametrization is selected and the
process is repeated till the right number of switches which satisfy all the necessary conditions of optimality is identified.
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5 Conclusions
An analytical solution to the post-actuation time-optimal controller for a double integrator with a left-half plane zero is

presented to motivate the structure of the post-actuation control profile. A corresponding frequency domain design approach
is shown to equate to cancelling the poles and zeros of the system transfer function with the zeros and poles of a transfer
function of a time-delay filter. The transition of the structure of the time-optimal control profile as a function of maneuver
distance is illustrated for the double integrator problem. The post-actuation time-optimal control profile is generalized
and illustrated on the benchmark floating oscillator problem where it is shown that the post-actuation control profile is a
damped harmonic. The transition phase of the control is shown to be bang-bang with a three switch structure for large



maneuvers and a single switch structure for smaller maneuvers. Comparison with the time-optimal state-to-state transition
for the benchmark problem helps illustrate the reduction in maneuver time of the output transition time-optimal control.
For systems with non-minimum phase zeros, a pre-actuation phase in conjunction with a bang-bang transition phase is the
solution to the time-optimal output transition problem. The proposed post-actuation design approach can be used to solve the
pre-actuation design by reversing time and solving for the transformed post-actuation time-optimal controller. To desensitize
the performance of the post-actuation control to uncertainties in the location of the system poles, multiples zeros of the time-
delay filter can be located at the nominal location of the uncertain poles. When knowledge of the support of the uncertain
poles are known, a minimax optimization problem can be formulated to minimize the worst performance of the controller
over the domain of uncertainty.
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