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Abstract Extensive use of high frequency imaging in medical applications
permit the estimation of velocity fields which corresponds to motion of land-
marks in the imaging field. The focus of this work is on the development of
a robust local optical flow algorithm for velocity field estimation in medical
applications. Local polynomial fits to the medical image intensity-maps are
used to generate convolution operators to estimate the spatial gradients. A
novel polynomial window function with a compact support is used to differ-
entially weight the optical flow gradient constraints in the region of interest.
Tikhonov regularization is exploited to synthesize a well posed optimization
problem and to penalize large displacements. The proposed algorithm is tested
and validated on benchmark datasets for deformable image registration. The
ten datasets include large and small deformations, and illustrate that the pro-
posed algorithm outperforms or is competitive with other algorithms tested
on this dataset, when using mean and variance of the displacement error as
performance metrics.
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1 Introduction

Optical flow for estimating velocity fields has numerous applications in the
medical field. In Interstitial Laser Therapy (ILT), thermal energy is deposited
via lasers to treat tumors which are accessible via needle insertion. Magnetic
resonance imaging (MRI) provides the ability to locate the target, guide the
optical fiber and monitor the thermal effects [17]. This especially reduces in-
vasiveness of the procedure by making implanted thermic sensors obsolete.
At the same time, spatiotemporal information of the thermal effects can be
obtained and analyzed using optical flow.

In applications such as TAVI (Transcatheter Aortic Valve Implantation)
where a vioprosthetic aortic valve is implanted to replace a severly stenotic
aortic valve, echocardiography and fluoroscopy play an important role today.
Optical flow can be used in this acute illness application for the estimation
of velocity field to assist placement of the guidewire and valve positioning [9].
In addition, when thinking about future applications such as active robotic
surgical devices, it is obvious that highly accurate motion information that
can be computed in real-time is crucial. Optical flow provides a method to
obtain these from imaging modalities that are already in use.

One of the most important factors in successful acute illness intervention
such as TAVI is patient diagnosis and planning of the procedure. Four Dimen-
sional Ultrasound provides an excellent non-invasive source of dynamic cardiac
information. However, the analysis of this data can be time-consuming and is
prone to human error. Optical flow can be used to assist in the derivation of
qualitative and quantitative cardiac information such as Left Ventricular Long
Axis over time [15,8] that could be used for patient selection, therapy plan-
ning and follow-up. With a high accuracy, real-time method, more complex
parameters like stroke volume could be monitored non-invasively.

Deformable Image Registration (DIR) of Computed Tomography (CT)
scans for radiotherapy planning is another area where optical flow has proven
to be an invaluable tool [16,10]. Here, large deformations in the range of 4cm
and artifacts in the image data pose challenges on the estimator. At the same
time, high demands are put on the accuracy of the algorithm, since small er-
rors in the estimated velocity fields can finally lead to severe over irradiating of
healthy tissue when used to create faulty therapy plans. For the application of
optical flow as DIR, an elaborate benchmark problem [4,2] exists, which will
be used in this work. Other objective benchmark problems exist, the interested
reader may find an extensive set of tests and state-of-the-art algorithms in the
”EMPIRE10 Challenge” [13].

The main focus of this paper is to create an efficient optical flow algorithm
that has the accuracy and robustness necessary for medical applications. For
this we propose an optical flow algorithm based on the Lucas/Kanade al-
gorithm, which is a local method [12]. Several improvements to the original
algorithms are made which are described in the paper.
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– Robust gradient calculation:
Early optical flow algorithms used finite difference to determine the spatial
and time gradients. Since smoothness assumptions are integral to optical
flow algorithms, a local polynomial fit to the intensity variations about the
pixel of interest is synthesized. The determination of the spatial gradient
can now can carried out easily.

– Non-Gaussian weighting function:
The Lucas-Kanada algorithm uses a small spatial neighborhood of the pixel
of interest to determine the local flow field. A weighting function is used
to give more importance to the constraint at the center of the local patch
relative to the pixels at the periphery. A recently developed finite support
function where the desired smoothness can be prescribed is used to weight
the pixel in the local patch.

– Tikhonov Regularization: For least squares problem which are ill posed,
preference is given to solution with specific properties such as ones with
small norm of the solution vector, smooth solution. This can be achieved
via Tikhonov regularization which corresponds to including an additional
term to the cost function. The optical flow problem is ill-posed and to favor
small velocity field, Tikhonov regularization is achieved by penalizing the
norm of the velocity field.

– Balanced Optical Flow: There is a desire to minimize the inconsistency in
the velocity field when going from image 1 to image 2 and from image 2
to image 1. To achieve this goal, a simple technique which determines the
two velocity fields, inverts the second, interpolates it to match the original
grid and averaged is proposed in this work.

The resulting algorithm is implemented in MATLAB / C and applied to a set
of benchmark problems [4,2]. In contrast to other non-quadratic optical flow
formulations, the algorithm does not rely on a complex and potentially com-
putational expensive minimization step but on well-posed matrix inversions.

The paper is outlined as follows: Section 2 describes the mathematical
and algorithmic details of the proposed algorithm. Section 3 gives a detailed
description of the benchmark data used to evaluate the performance of the
proposed algorithm. Section 4 presents the results, which are then discussed
in Section 5. In Section 6 conclusions are drawn and future work is proposed.

2 Methods

2.1 Optical Flow

Optical flow methods calculate an approximation of the motion field from time-
varying image intensities. A common assumption in optical flow methods is
that voxel intensities I might translate from one frame to another but their
intensities are constant [11]. If we assume this translations to be small they
can be well approximated by the Taylor series expansion [12]. This leads to
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the gradient constraint equation:

0 = u(x, y, z, t)Ix + v(x, y, z, t)Iy + w(x, y, z, t)Iz + It (1)

Ix =
∂

∂x
I (x, y, z, t) , Iy =

∂

∂y
I (x, y, z, t) , Iz =

∂

∂z
I (x, y, z, t) ,

It =
∂

∂t
I (x, y, z, t)

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) refer to the normalized velocity
components in the x, y, z directions at time t.

2.1.1 Gradient Calculation

For the sake of clarity, the calculation of image gradients is delineated for two-
dimensional images, the three-dimensional implementation is a straightforward
extension. In digital image processing applications, images are represented dis-
cretely both in space and amplitude (grey-value). Spatial gradients are obtain
by convolving the image with a filter kernel hp as given in the equation:

∂

∂p
I (x, y, t) =

k=∞∑
k=−∞

l=∞∑
l=−∞

I (k, l)hp (x− k, y − l) = I (x, y, t) ∗ hp (2)

To increase robustness of the gradient calculation, the intensity distribution
I (x, y, t) will be approximated locally (ÎL) by a polynomial function, in this
example a cubic:

ÎL (x, y, t) = a1 + a2x+ a3y + a4x
2 + a5y

2 + (3)

a6xy + a7xy
2 + a8yx

2 + a9x
3 + a10y

3

Considering a patch of n by m pixels, this can be rewritten in matrix notation:

ÎL = Ma (4)

M =


1 x1 y1 x21 y21 x1y1 x1y

2
1 y1x

2
1 x31 y31

1 x2 y2 x22 y22 x2y2 x2y
2
2 y2x

2
2 x32 y32

...
1 xnm ynm x2nm y2nm xnmynm xnmy

2
nm ynmx

2
nm x3nm y3nm

 (5)

a = [a1 a2 a3 a4 a5 a6 a7 a8 a9 a10]
′

(6)

Here, the number of rows in the matrix M corresponds to the number of pixels
in the patch. If we select a patch IL of 5x5 pixels, the system is overdetermined
and can be solved in the least-squares sense:

a = (M ′wM)
−1
M ′w · IL = W · IL (7)

Here, w is a diagonal weighting matrix that can be used to give more weight on
the central pixels. For example, a Gaussian weighting function could be used.
In our approach, however, we use a novel polynomial weighting function [14].
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This function gracefully ranges from zero to one over the compact support,
unlike a Gaussian with infinite tails.

Examining Equation 7 makes obvious the fact that the matrix inversion
has to be computed only once, after which the parameters can be obtained
by a simple multiplication of the matrix W with the patch IL. Note that this
approach also makes prior image-smoothing obsolete. If we now define the
central pixel of our patch to have the coordinates x = 0, y = 0, the gradients
at this point are given by

∂

∂x
IL (0, 0, t) = a2,

∂

∂y
IL (0, 0, t) = a3 (8)

So, only the second and third row of the matrix W are of interest. If we rear-
range them into a two-dimensional 5x5 array, the calculation of the gradient
can again be calculated by a two-dimensional convolution with the filter kernel
given by Equation 9 :

hx =


W (2, 1) W (2, 2) W (2, 3) W (2, 4) W (2, 5)
W (2, 6) W (2, 7) W (2, 8) W (2, 9) W (2, 10)
W (2, 11) W (2, 12) W (2, 13) W (2, 14) W (2, 15)
W (2, 16) W (2, 17) W (2, 18) W (2, 19) W (2, 20)
W (2, 21) W (2, 22) W (2, 23) W (2, 24) W (2, 25)

 = hy
′ (9)

Figure 1(a) and 1(b) illustrate the filter kernel for the uniformly weighted and
non-uniformly weighted patch.

(a) No weighting (b) Polynomial weighting

Fig. 1 Filter kernel obtained by using a third order polynomial as surface approximation
and (a) no weighting function w (b) a 3rd order polynomial weighting function

For the temporal derivative a simple finite difference was used. Note that
the sampling time is defined to be unity, i.e. δt = 1, resulting in the gradient
equation:

∂

∂t
I (x, y, t) = I (x, y, t+ δt)− I (x, y, t) (10)
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2.1.2 Lucas - Kanade Algorithm

Equation 1 gives one constraint equation for the three velocity components u,
v and w. In order to make the problem solvable, further constraints have to be
imposed. One possibility is to make the assumption that the flow is constant
in a small area Ω around the point (x, y, z). Since there might be no velocity
that exactly satisfies this assumption it is reasonable to find the velocity that
minimizes the quadratic error function [12]:

E (u, v, w, t) =
∑

x̃,ỹ,z̃∈Ω
g (x̃, ỹ, z̃) [uIx + vIy + wIz + It]

2
(11)

Where x̃, ỹ, z̃ correspond to the coordinates of the voxels at x, y, z and g (x̃, ỹ, z̃)
constitutes a weighting function around the point (x, y, z). Traditionally, a
Gaussian function is used. In our approach, however, we use the novel polyno-
mial weighting function as defined in [14] with a compact support. Note that
this quadratic cost function can be minimized analytically, this involves the
inversion of a 3 × 3 matrix.

2.1.3 Pyramidal Implementation & Iterative Optical Flow

A well established multi-scale technique to justify the assumption of linearity
necessary for Equation 1 to hold true and to avoid the minimization algorithm
from converging to a local minima used a coarse-to-fine resampling and warp-
ing to generate the flow field. Two techniques which were implemented in this
work are the Gaussian pyramid approach and an iterative flow calculation [1].
We implemented a three-level pyramid and included a validation step in the
iteration process. Before each iteration, the temporal derivative It of the image
pair is saved. After one iteration is completed, the image is pre-warped using
the calculated, temporary flow field. Now, the resulting derivative Ĩt is calcu-
lated. At every voxel where the absolute value of the derivative has increased,
i.e. the registration has worsened, the optical flow value is set to zero. This
ensures that only flow vectors are accepted that increase similarity between
images. To prevent a ”choppy” flow field, a smoothing step convolving the
image with the filter gs is applied afterwards (see Section 2.2 for details).

2.1.4 Tikhonov Regularization

The assumption of small changes can be further exploited by using the Tikhonov
Regularization: The general least-squares minimization tries to minimize

x̂ = arg min
x
||Ax− b||2 (12)

and the resulting solution is given by

x̂ =
(
ATA

)−1
AT b (13)
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In order to give preference to a specific type of solution, an additional penalty
term is added to the right hand side of Equation 12, leading to

x̂t = arg min
x
||Ax− b||2 + ||Γx||2 (14)

where Γ represents the Tikhonov matrix: This matrix can have any form in
the most general case. Here, it is chosen to be a scalar multiple of the identity
matrix:

Γ = αI (15)

This way, the norm of x is penalized, i.e. smaller solutions are preferred. This
is reasonable since we are expecting only small changes at each iteration at
each pyramid level. The solution to this minimization problem is given by

x̂t =
(
ATA+ ΓTΓ

)−1
AT b =

(
ATA+ α2I

)−1
AT b (16)

2.1.5 Balanced Optical Flow

As described above, the calculation of spatial image gradients is carried out
only in the image at time t = 0. In a perfect world, it would not make a
difference if the flow was calculated from the image at t = 0 to the image
at t = δt or the other way around and then inverted. If the images contain
noise, however, the results would be different. In [6] this is exploited directly by
incorporating a consistency constraint in the deformation field calculation. In
this work, a more simplistic approach is chosen: The optical flow is calculated
by

[u, v, w] = X (I (t) , I (t+ δt)) (17)

Where X denotes the optical flow calculation. Next, the reverse flow-field is
calculated:

[ũ, ṽ, w̃] = X (I (t+ δt) , I (t)) (18)

See also Figure 2. This flow field is then inverted using the following method:
Consider each point has a three dimensional coordinate, denoted x, y, z and
three one-dimensional values indicating its origin, denoted ξ, ψ, ζ. If there was
no deformation between the images (subscript zero), these values are the same
as the respective coordinate:

ξ0 (x, y, z) = x (19)

ψ0 (x, y, z) = y

ζ0 (x, y, z) = z

If, however, there is a deformation between the images (subscript one), these
values are different. To the coordinates, the optical flow values are added:

ξ1 (x+ ũ (x, y, z) δt, y + ṽ (x, y, z) δt, z + w̃ (x, y, z) δt) = x (20)

ψ1 (x+ ũ (x, y, z) δt, y + ṽ (x, y, z) δt, z + w̃ (x, y, z) δt) = y

ζ1 (x+ ũ (x, y, z) δt, y + ṽ (x, y, z) δt, z + w̃ (x, y, z) δt) = z
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(a) Forward Flow (b) Reverse Flow

Fig. 2 Two-dimensional illustration of forward optical flow field u, v, reverse optical flow
field ũ, ṽ and inverted reverse optical flow field ũ−1, ṽ−1

Note that δt = 1. To obtain an inversion of the reverse flow field, Equation 20
is interpolated on the regular grid, leading to

ũ−1 (x, y, z) = ξ1 (x, y, z)− x (21)

ṽ−1 (x, y, z) = ψ1 (x, y, z)− y
w̃−1 (x, y, z) = ζ1 (x, y, z)− z

Note that since the input data to the interpolation is not placed on a regular
grid, a three-dimensional implementation of the Delaunay triangulation, origi-
nally described in [7] is used. The results of Equation 21 can now be combined
with the results from Equation 17 to create an averaged flow field to smoothen
out noise:

ubalanced =
1

2

(
u+ ũ−1

)
, vbalanced =

1

2

(
v + ṽ−1

)
, (22)

wbalanced =
1

2

(
w + w̃−1

)
Instead of including the inversion method at every step of the pyramidal ap-
proach, this method ensures a simple algorithm and allows parallel computa-
tion of forward- and backward-flow.

2.2 Implementation & Experimental Details

The Augmented Lucas-Kanade 3D-optical flow algorithm proposed in this pa-
per was developed using MATLAB and C. Testing at two, three and four
pyramid level resulted in the three pyramid levels with five iterations at each
level, outperforming the other cases. The threshold for convergence was set
to .1 pixel. The weighting function g (x̃, ỹ, z̃) in Equation 11 was chosen as a
9× 9× 9 polynomial window function of first order [14], the smoothing oper-
ator gs in Section 2.1.3 was chosen as a 9× 9× 9 polynomial window function
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of third order. The polynomial derivative kernels hp to acquire Ix, Iy, Iz, see
Equation 1 and 2, was set to be of size 5 × 5 × 5 (the patch size) using a
third order polynomial. The weighting function w mentioned in Equation 7
was decided to be a polynomial windowing function of order 20. All convolu-
tion operations were preceded by a border padding operation mirroring the
data at its borders. The regularization term α (see Equation 15 ) was cho-
sen to be 100. All parameters were tuned using 300 landmark pairs per case
provided for download at http://www.dir-lab.com. Note that the parameters
of the algorithm were constant for all cases, no case-to-case tuning was per-
formed. The calculations were performed on the Xeon X5460-server (32GB
RAM, 8 x Intel(R) @ 3.16GHz with four cores each). For the first five cases,
it took approximately 13 minutes per phase (i.e. T00% → T10%) for the
optical flow calculations and approximately 55 minutes for the optical flow
and inversion calculations (i.e. (T10%→ T00%)

−1
). For case six to ten, a

coarse region-of-interest of 300 × 412 x Z voxels was selected, where Z cor-
responds to the number of voxels in z− direction for the corresponding case.
This bounding box was identical for all cases and data outside the ribcage that
contained no useful information was cut out. This helped to reduce the data
to be processed by a factor of approximately 2. After this, the corresponding
computation times were approximately 40 / 73 minutes for case six to ten.
The execution time of the loop processing Equation 16 could be reduced by a
factor of approximately 70 by writing this function in C, this reduced the over-
all optical flow calculation time by a factor of 2. Note that every calculation
used only one processor core at a time. To increase overall speed, up to ten
optical flow calculations could be run in parallel. The bottleneck turned out
to be the RAM since the inversion of the optical flow field using Delaunay Tri-
angulation in the form of MATLAB’s TriScatteredInterp function consumed
tremendous amounts of memory. To improve this, the implementation of an
approach like the one described in [5] can be used. For each case, a total of
six CT images was processed, with T00% corresponding to the extreme inhale
and T50% corresponding to the extreme exhale phase. The total deformation
field T00%→ T50% was obtained by sequentially synthesizing each phase-to-
phase deformation field (T00%→ T10%, T10%→ T20%, ..., T40%→ T50%).
The resulting displacement fields were sent to The University of Texas M D
Anderson Cancer Center for evaluation1.

3 Benchmark Data

Castillo et. al. published a paper [4] on the objective evaluation of DIR algo-
rithms using a large dataset of expert determined landmarks: For their frame-
work, they used five sets of thoracic 4DCT images that were acquired from
patients undergoing treatment in their facility. The images were cropped and
resampled in the xy plane (transversal plane) to contain the full rib cage at

1 The author would like to acknowledge the help of Richard Castillo, MS who processed
the result of our algorithm and provided feedback regarding its performance.
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a resolution of 256 × 256 pixels. No alteration was done in the z−direction
(Superior-Inferior (SI) direction). This leads to different voxel sizes and image
dimensions. Using this data they manually identified more than 1100 land-
mark pairs in the extreme inhale (T00%) and extreme exhale (T50%) image
of every set. This process was done by the primary reader, an ”expert in tho-
racic imaging” using a software developed for this purpose. From these points,
a subset of 200 points was randomly selected and re-registered by the primary
reader to determine the intra-observer error. The same set of points was then
re-registered by two secondary readers to quantify the inter-observer error.
They then implemented two different DIR algorithms and performed a statis-
tical analysis that showed that ”large sets” of landmarks are indeed necessary
to evaluate DIR accuracy with a certain accuracy. For these test cases and
the optical flow algorithm they implemented, they find that 1000 pairs are
necessary to evaluate the accuracy with 95% confidence.

In another paper by the same group in 2010 [2] , they extend the data
by five more test cases. Here the images were not resampled and only 150
landmark pairs were registered (and re-registered), otherwise the procedure
was the same. All ten test cases are publicly available at http://www.dir-
lab.com after free registration. An overview of the data is given in table 3.
Note that the displacement as well as the observer error is calculated as the
euclidian distance. In the former case it is calculated using the points in the
maximum inhale to the corresponding points in the maximum exhale phase.
In the latter it is calculated between the data obtained by the first registration
of the primary reader to the secondary registration of primary and secondary
readers.

Case Image Dimensions Voxel Dimensions Landm. Displacement Observer Error
[pixel] [mm] # mean (sd) [mm] mean (sd) [mm]

1 256 x 256 x 94 0.97 x 0.97 x 2.5 1280 4.01 (2.91) 0.85 (1.24)
2 256 x 256 x 112 1.16 x 1.16 x 2.5 1487 4.65 (4.09) 0.70 (0.99)
3 256 x 256 x 104 1.15 x 1.15 x 2.5 1561 6.73 (4.21) 0.77 (1.01)
4 256 x 256 x 99 1.13 x 1.13 x 2.5 1166 9.42 (4.81) 1.13 (1.27)
5 256 x 256 x 106 1.10 x 1.10 x 2.5 1268 7.10 (5.14) 0.92 (1.16)
6 512 x 512 x 128 0.97 x 0.97 x 2.5 419 11.10 (6.98) 0.97 (1.38)
7 512 x 512 x 136 0.97 x 0.97 x 2.5 398 11.59 (7.87) 0.81 (1.32)
8 512 x 512 x 128 0.97 x 0.97 x 2.5 476 15.16 (9.11) 1.03 (2.19)
9 512 x 512 x 128 0.97 x 0.97 x 2.5 342 7.82 (3.99) 0.75 (1.09)
10 512 x 512 x 120 0.97 x 0.97 x 2.5 435 7.63 (6.54) 0.86 (1.45)

Table 1 Properties of the evaluation data as used in [2] and downloadable via
http://www.dir-lab.com.

In the same paper, the group proposed two optical-flow based DIR algo-
rithms: 4-Dimensional Local Trajectory Modeling (4DLTM) is an algorithm
that makes use of all six images (T00%...T50%) simultaneously to calculate
a polynomial trajectory for each voxel. For comparison they implement the
same algorithm with the modification that it calculates a linear trajectory be-
tween two consecutive images. This technique is named ”Component Phase-
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to-Phase” (CPP) by the group. They show a clear advantage of 4DLTM over
CPP in mean and standard deviation of 3D Euclidian error.

More algorithms were implemented by the same group in [3] and [10], the
results are also available on-line and proved the superior accuracy of 4DLTM.

4 Results

Figures 3 and 4 illustrate the results for case 2 and 8 in comparison to other
algorithms in terms of mean and standard deviation of the euclidian registra-
tion error as published in [4,2,3,10] and listed on http://www.dir-lab.com (as
of 06/13/2012). The vertical bars include a marker which corresponds to the
mean of the error and the length of the bar is proportional to the variance
of the error. The magenta bar (leftmost bar) illustrates the error statistics of
the human observer and the rest of the bars correspond to various algorithms
used to estimate the motion of the landmarks. The black bar immediately to
the right of the human observer statistics correspond to the results of the al-
gorithm proposed in this paper. It is clear that for both cases (2 and 8), the
algorithm presented in the paper outperform all the algorithms tested by sci-
entists at MD. Anderson who manage the datasets and postprocess the results.
Figure 5 and 6 shows the manually obtained displacement field and the error
vector fields defined as pointing from the manually defined target location to
the predicted location using our DIR-algorithm. These cases were chosen to
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Fig. 3 Mean and standard deviation of the proposed optical flow algorithm in comparison to
other algorithms for case 2: 1described in [4], 2described in [2], 3described in [3], 4described
in [10]

illustrate the performance of ALK for small (case 2) as well as large deforma-
tions (case 8). The numerical results suggest that ALK has the capability of
accurately registering 4DCT data, see Table 2.

It outperforms the CPP and 4DLTM approach presented in [2], although
the differences to the latter are small: Evaluating all landmark pairs of all ten
cases, the mean error of registration was determined to be 1.23 mm (with a
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Fig. 4 Mean and standard deviation of the proposed optical flow algorithm in comparison
to other algorithms for case 8: 2described in [2]

Fig. 5 Manually determined displacement vectors (left) and resulting registration error
(right) for case 2 in the coronal and sagittal view of the surface rendering2 of the lung in
mm.

Fig. 6 Manually determined displacement vectors (left) and resulting registration error
(right) for case 8 in the coronal and sagittal view of the surface rendering2 of the lung in
mm.

standard deviation of 1.42 mm). These values were 1.25 mm (1.43 mm) and
1.44 mm (1.54 mm) for the mean (standard deviation) registration error for
4DLTM and CPP, respectively. Inspecting each case individually, the algo-
rithm proposed here has the lowest mean registration error in six and the
lowest standard deviation in eight of the ten cases.

2 Figure created using renderings provided by Richard Castillo, MS, The University of
Texas M D Anderson Cancer Center
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Case ALK 4DLTM CPP ALK 4DLTM CPP
mean (mm) mean (mm) mean (mm) std (mm) std (mm) std (mm)

1 0.98 0.97 1.07 1.00 1.02 1.10
2 0.83 0.86 0.99 1.02 1.08 1.12
3 1.08 1.01 1.23 1.15 1.17 1.32
4 1.45 1.40 1.51 1.53 1.57 1.58
5 1.55 1.67 1.95 1.73 1.79 2.02
6 1.52 1.58 1.94 1.28 1.65 1.72
7 1.29 1.46 1.79 1.22 1.29 1.46
8 1.75 1.77 1.96 2.40 2.12 2.33
9 1.22 1.19 1.33 1.07 1.12 1.17
10 1.47 1.59 1.84 1.68 1.87 1.90

Table 2 Comparing registration error of ALK, 4DLTM and CPP in terms of mean and
standard deviation error of Euclidian registration error, data for 4DLTM and CPP available
at http://www.dir-lab.com (as of 06/13/2012).
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Fig. 7 Separate analysis of the contribution of polynomial gradient estimation and balanced
optical flow.3

To analyze the contribution of each improvement separately, the 300 land-
marks per case that are publicly available were used. A separate evaluation
of the polynomial gradient calculation and the balanced Optical Flow can be
found in figure 7. Since the problem is inherently ill-posed, Tikhonov regular-
ization was used in all scenarios with α = const. It can be seen that the robust
gradient estimation contributes most to the increase in accuracy, especially in
cases with large displacements like case 8. The balanced optical flow approach,
however, only leads to smaller improvements which are most pronounced in
cases with smaller displacements like case 2.

5 Conclusion & Future Work

3 Note that this analysis was carried out using the publicly available dataset of 300 land-
marks per case. Thus, the numerical values of ”Polynomial Filter + Inverse Flow” differ
from the values of ”ALK” in Table 2 and Figures 3 & 4. Those were obtained in the final,
external analysis using the (non-public) comprehensive dataset.
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We have presented a novel optical flow algorithm and demonstrated its supe-
rior accuracy. Several advancements to the original Lucas/Kanade formulation
have been made that allow the algorithm to outperform state-of-the-art algo-
rithms while utilizing only two images at a time and keeping a simple, compu-
tationally efficient structure. The proposed algorithm can now be used to assist
in the radiation therapy planning process. Due to its superior accuracy and
robustness, an application of the algorithm in acute illness applications such
as TAVI or the derivation of cardiac parameters for diagnosis seems reasonable
and should be evaluated.

To further increase accuracy, we are currently exploring the possibility
of using a L1 cost function (as opposed to a quadratic, see Equation 11),
which reduces the weight of the outlier errors and emphasizes minimizing the
smaller errors. For a potential future real-time application it is conceivable
implementing the whole algorithm in C / using a parallel architecture like
GPU hardware seems reasonable.
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