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The focus of this paper is on complex systems, and it presents a theoretical study of the design

of complex engineering systems. More particularly, this paper studies the stability of equilibria

in decentralized design environments. Indeed, the decentralization of decisions is often

recommended in the design of complex systems, and the decomposition and coordination of

decisions are a great challenge. The mechanisms behind this network of decentralized design

decisions create difficult management and coordination issues. However, developing efficient

design processes is paramount, especially with market pressures and customer expectations.

Standard techniques to modelling and solving decentralized design problems typically fail to

understand the underlying dynamics of the decentralized processes and therefore result in sub-

optimal solutions. This paper aims to model and understand the mechanisms and dynamics

behind a decentralized set of decisions within a complex design process. Complex systems

that are multidisciplinary and highly nonlinear in nature are the primary focus of this

paper. Therefore, techniques such as response surface approximations and Game Theory

are used to discuss and solve the issues related to multidisciplinary optimization. Nonlinear

control theory is used in this paper as a new approach to study the stability of equilibrium

points of the design space. Illustrations of the results are provided in the form of the study

of the decentralized design of a pressure vessel.
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1. Introduction

The focus of this paper is the design of complex

engineering systems, or those systems that necessitate

the decomposition into smaller subsystems in order to

reduce the complexity of the design problems. Most of

these systems are very large and multidisciplinary in

nature, and therefore have a great number of subsystems

and components. This section presents a literature

review of the area of engineering design, and more

particularly of distributed design.
Over the past years, many different techniques,

algorithms, software, and methods have been

proposed to solve these design problems. They mainly

concentrate on finding a solution which is optimal in

some sense, while keeping the computational cost as

low as possible (Guarino Lo Bianco and Piazzi 2001).

One of these methods, known as decomposition, is

now seen as a necessary step in design. Indeed, these

complex engineering systems are multidisciplinary

in nature, and it is therefore impossible for one

designer, or even a single design team, to consider the

entire system as a single design problem. Typically, in

complex systems, breaking it up into smaller units

or subsystems will make the system more manageable

(Kusiak and Wang 1993, Krishnamachari and

Papalambros 1997).
The decentralization of decisions is unavoidable in a

large organization where having only one centralized

decision-maker is usually not applicable (Lee and

Whang 1999). A more effective way is to delegate*Corresponding author. Email: kelewis@eng.buffalo.edu
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decision responsibilities to the appropriate person, team,
or supplier. In fact, decentralization is recommended
as a way to speed up product-development processes
and decrease the computational time and the complexity
of the problem (Prewitt 1998).
While the decomposition of complex problems cer-

tainly creates a series of smaller, less complex problems,
it also creates several challenging issues associated with
the coordination of these less complex problems. The
origin of these problems is the fact that the less complex
subproblems are usually coupled. Systems are said to be
coupled if their solution is dependent upon information
from other subproblems. The ideal case would be a
system that could be broken up into subsystems without
interdependence. Unfortunately, design variables and
parameters usually have an influence on several sub-
problems. Design variables and parameters that are
controlled within a subsystem are called local, while
non-local information is controlled by another sub-
system. A formal definition and discussion of coupled
subsystems can be found in Balling and Sobiezczanski-
Sobieski (1994).
Previous work has been done on the decomposition of

the system into smaller ones using Design Structure
Matrices (McCulley and Bloebaum 1996), or a hierarch-
ical approach (Sobieszczanski-Sobieski et al. 1985),
or by effectively propagating the desirable top-level
design specifications to appropriate subsystems
(Michelena et al. 2002). The efficiency of these decompo-
sition schemes has also been compared (Braun et al.
1996).
Also, previous work has concentrated on solving

coupled design problems with interacting subsystems
using Game Theory. The main goal is to try to improve
the quality of the final solution in a multiobjective, dis-
tributed design optimization problem (Vincent 1983).
Previous work in Game Theory includes work to
model the interactions between the designers if several
design variables are shared among designers (Lewis
and Mistree 1997). In Marston and Mistree (2000),
Game Theory is formally presented as a method to
help designers make strategic decisions in a scientific
way. In Hernandez et al. (2002), distributed collabora-
tive design is viewed as a non-cooperative game, and
maintenance considerations are introduced into a
design problem using concepts from Game Theory. In
Allen (2001), the manufacturability of multi-agent pro-
cess planning systems is studied using Game Theory
concepts. In Rao et al. (1997), non-cooperative proto-
cols are studied, and the application of Stackelberg
leader/follower solutions is shown. The distinction
between cooperative and non-cooperative scenarios is
made using the notion of cooperation degree in order
to characterize competitive situations quantitatively
(Xu 1999). Also, in Chen and Li (2001), a Game Theory

approach is used to address and describe a
multifunctional team approach for concurrent para-
metric design. This set of previous work has established
a solid foundation for the application of game theory in
design, but has not directly studied the mechanisms of
convergence in a generic decentralized design problem.

Studying the convergence of such processes is para-
mount, and this is done by formally describing the
dynamics and interactions involved in such design
scenarios. The dynamics involved in distributed design
have been studied using a mathematical model (Loch
et al. 2003) or a computer-based system (Whitfield
et al. 2002). The concept of stability has been introduced
in the computer-based management of distributed
system (Lee and Ghosh 2000), and the first rigorous
results for convergence in distributed design have been
presented in Chanron and Lewis (2003), where conver-
gence criteria for simple quadratic decentralized
problems involving two designers were developed. This
paper builds on these results to extend convergence
criteria to more complex problems. The convergence
of these types of complex problems has not been
studied, and to date, no closed-form solution has been
found, leaving room for fundamental work. The main
contribution of this paper is to propose a mathemati-
cally rigorous approach to address these problems.

Lyapunov theory has been extensively used to study
the convergence and stability of control systems (Fink
and Singh 1998, Xu 2002), which are similar in nature
to distributed design problems. The novelty of the
work in this paper is in exploiting concepts from
nonlinear control theory to decentralized design
scenarios in order to study the stability of some highly
nonlinear equilibriums. The next section describes how
we propose to investigate these scenarios using these
new techniques.

2. Design scenarios

In this section, the main game theory scenarios used to
solve large multiobjective design problems are reviewed
and discussed. We assume that the design problem has
already been subdivided into smaller subsystems, either
naturally because several different companies interact
on the design of the same product, or because the
system has been subdivided into smaller subsystems
using one of the techniques described in the previous
section. A good description of the different scenarios
in design can be found in Rao et al. (1997) and Lewis
and Mistree (1998).

As mentioned in the previous section, Game Theory
is usually used as a way to study these design scenarios.
Table 1 presents the Game-Theoretic formulation for
an optimization design problem with two designers
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(also called players). In this table, x1 represents the
vector of design variables controlled by designer 1,

while designer 2 controls design variable vector x2.
We denote x1c and x2c as the non-local design variables,

or variables that appear in a model but are controlled by
the other player.
A complete description of all the protocols can be

found in Lewis and Mistree (1998), but we present
here only the three main types.

2.1. Cooperative protocol

In this protocol, both players have knowledge of the

other player’s information, and they work together
to find a Pareto solution. A pair (x1P, x2P) is Pareto

optimal (Pareto 1906) if no other pair (x1, x2) exists,
such that

Fiðx1, x2Þ � Fiðx1p, x2pÞ i ¼ 1, 2

and Fjðx1, x2Þ < Fjðx1p, x2pÞ for at least one j ¼ 1, 2:

ð1Þ

2.2. Non-cooperative protocol

This protocol occurs when full coalition among players

is not possible due to organizational, information,
or process barriers. Players must make decisions by

assuming the choices of the other decision-makers. In
an iterative approach, the final solution would be a

Nash equilibrium. A strategy pair (x1N , x2N) is a Nash
solution if

F1ðx1N , x2NÞ ¼ min
x1

F1ðx1, x2NÞ

and F2ðx1N , x2NÞ ¼ min
x2

F2ðx1N , x2Þ:
ð2Þ

This solution has the property of being individually
stable but is not necessarily collectively stable.

The Nash equilibrium also has the property of being
the fixed point of two subsets of the feasible space:

ðx1N , x2NÞ 2 X1Nðx2NÞ � X2Nðx1NÞ ð3Þ

where

X1Nðx2Þ ¼ fx1N jF1ðx1N , x2Þ ¼ minx1 F1ðx1, x2Þg
X2Nðx1Þ ¼ fx2N jF2ðx1,x2NÞ ¼ minx2 F2ðx1, x2Þg:

�

X1Nðx2Þ and X2Nðx1Þ are called the Rational Reaction
Sets of the two players. The Rational Reaction
Set (RRS) of a player is a function that embodies their
reactions to decisions made by other players.

2.3. Leader/Follower protocol

When one player dominates another, they have a leader/
follower relationship. This is a common occurrence in a
design process when one discipline dominates the design
(when one discipline plays a large role), or in a design
process that involves a sequential execution of inter-
related disciplinary processes. Player 1 is said to be the
leader if they declare their strategy first, by assuming
that Player 2 behaves rationally. Thus, the model of
Player 1 as a leader is as follows:

Minimize F1ðx1, x2Þ

subject to x2 2 X2Nðx1Þ, ð4Þ

where X2Nðx1Þ is the RRS of player 2.

The focus of this paper is design in decentralized
environments. In that case, even within the same
corporation, perfect information and cooperation are
difficult to achieve due to several factors, including the
complexity of the design, geographic separation or
information privacy, thus leading to limited coopera-
tion. Therefore, we focus on non-cooperative relation-
ships between designers. In other words, we focus on
decentralized design scenarios where full and efficient
exchange of all information among subsystems is not
possible.

In these environments, the goal is to determine
whether the Nash equilibrium is collectively stable or
not. This issue has never been investigated, although
its relevance is noted in several papers (Vincent 1983,
Marston and Mistree 2000). This issue of an unstable
equilibrium is challenging. Indeed, in the case of
instability, designers will never agree on a final design,
since one of the designers will always be able to
change the value of their design variables and improve
their objective function. In this case, the process by
which the two designers might go about choosing
the final design is then difficult to predict, but in the
absence of any additional information or intervention

Table 1. Multi-player optimization problem formulation.

Player 1’s model Player 2’s model

Minimize Minimize

F1ðx1, x2cÞ ¼ fF
1
1,F

2
1 , . . . ,F

p
1 g F2ðx2, x1cÞ ¼ fF

1
2 ,F

2
2 , . . . ,F

q
2 g

subject to subject to

g1j ðx1, x2cÞ � 0 j ¼ 1, . . . ,m1 g2j ðx2, x1cÞ � 0 j ¼ 1, . . . ,m2

h1kðx1, x2cÞ ¼ 0 k ¼ 1, . . . , l1 h2kðx2, x1cÞ ¼ 0 k ¼ 1, . . . , l2
x1L � x1 � x1U x2L � x2 � x2U
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by a third party, choosing the final design will be prob-
lematic. The first steps towards the study of stability
have been laid out for simple design problems with
quadratic objective functions (Chanron and Lewis
2003). The focus of this paper is to study those proper-
ties for more complicated and non-linear problems. The
next section presents the steps to follow for such a study.

3. Equilibriums of the design space

In this section, we describe how to obtain the equilib-
rium points of a specified design space, with objectives,
constraints, and designers. As mentioned in the non-
cooperative protocol in the previous section, the solu-
tion of a noncooperative design scenario is the possible
intersection of the Rational Reaction Sets of every
designer. For highly nonlinear problems, however, the
exact equations of the RRS are seldom possible to
obtain, and approximating functions have to be used.
The most commonly used approximating functions are
polynomial response surface equations (Koch et al.
1998). To be used, the design space of each designer
has to be sampled: this is traditionally done using statis-
tical experimentation (design of experiments—DOE)
(Simpson et al. 1997). A conceptual outline for the
construction of the RRS is illustrated in figure 1.
To approximate the RRS for Player 1, for example,

the following procedure is carried out. First, different
points are sampled in Players 2’s non-linear design
space (composed of n design variables (x21, . . . , x2n))
according to a specific DOE protocol (e.g. central com-
posite design, full factorial, partial factorial). At each of
those specified points, Player 1’s model is solved. Once
these steps are completed, a second-order polynomial
(in our case) is fitted to relate x2 to x1.
Those response surface equations embody the

strategies of the various designers, and their possible

intersection represents the different equilibria of the

design space.
Once again, these equilibria, known as Nash solution

points, are individually stable but not necessarily collec-

tively stable, and it is the aim of this paper to introduce

methodologies to investigate these properties. The next

section presents several methods, derived from non-

linear control theory, that can be used to determine

the stability of equilibria.

4. Stability of equilibria

The focus of control theory is the analysis and the design

of control systems. The analysis part involves the deter-

mination of the characteristics of a given system’s

behaviour, one of which is its equilibrium points and

its stability. Techniques from this field can therefore

be applied to the study of equilibria in engineering

design, after making some changes to adapt them to

this kind of problem. Since the focus of this paper

is highly nonlinear design problems, the techniques

that are used and described in this section are derived

from nonlinear control theory (Slotine and Li 1991).
The previous section described how to obtain approx-

imations for the RRS of each player involved in the

design process. In a sequential approach to design,

information is exchanged back and forth between the

designers before reaching a final agreement. This can

be compared to a discrete time control problem, similar

to the time-series formulation presented in Chanron and

Lewis (2003). The most general discrete time update

equation is shown in equation (5):

xðkþ 1Þ ¼ f ðxðkÞÞ, ð5Þ

X21

Minimize  F1

Subject to
constraints

Rational Reaction Set
X1N = f(X2)

Response Surface equations

X2
1 = {X21

1,...,X2n
1}

P1’s design model and
solution routines

P2’s design space

X2n

X2
2 = {X21

2,...,X2n
2}

X2
3 = {X21

3,...,X2n
3}

X2
4 = {X21

4,...,X2n
4}

X1
1

Response Surface
equations

Minimize  F1

Subject to
constraints

Minimize  F1

Subject to
constraints

Minimize  F1

Subject to
constraints

X1
2

X1
3

X1
4

Figure 1. Construction of Rational Reaction Sets.
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where f is a non-linear function of the states at the
previous time steps, and x is the state vector of all the
design variables of every designer. The function f is
defined easily from the equations of the Response
Surface approximations found using the method
described in figure 1. f is an autonomous function,
since it does not depend explicitly on time. Equation (5)
is the key equation that will be used with every
technique presented next.

4.1. Finding the equilibrium points

The intersection of the response surfaces approximating
the RRS of every designer is an equilibrium point of the
design space. This corresponds to a point where the con-
trol system studied has reached a steady state.
Mathematically, one can solve for these steady-state
points by setting xðkþ 1Þ ¼ xðkÞ in equation (5).
Solving this equation gives us the set of equilibrium
points. This set can be empty (there is therefore no
Nash solution), or can have one or several equilibria,
whose stability needs to be established. First, every
equilibrium studied has to be moved to the origin by a
simple change of variable in the update equation (5),
since the methods derived from nonlinear control
theory study the stability of the origin. By making this
shift, the following techniques can be applied to the
new update equation to study its stability. However,
we first need to define stability, as used in nonlinear
control theory. The definition of stability in the sense
of Lyapunov is given next.

Stability: The equilibrium state x ¼ 0 is said to be stable
if, for any R>0, there exists r>0, such that if
kxð0Þk < r, then kxðkÞk < R for all k� 0. Otherwise, the
equilibrium point is unstable.

Lyapunov stability is definitely an interesting
property for equilibria in decentralized design problems.
However, other relevant information in the study of
the collective stability of the Nash equilibria would be
the properties of the region around the equilibrium. In
other words, valuable information would be the
domain of attraction of the equilibrium, which is the
set of all points such that trajectories initiated at these
points eventually converge to the origin, the equilibrium
point (a trajectory represents the path that a design
variable is taking in the design space).
This also introduces the concept of asymptotic

stability which requires stability and the convergence
of all the states to zero, collectively representing the
origin. This is a stronger statement than the Lyapunov
stability, since it requires stability and convergence.
This distinction is significant, since the focus of this
work is the convergence of the design variables in
decentralized design problems. Using these definitions,

the stability of the equilibria found can now be studied

using the methods presented next.

4.2. Linearization and local stability

Lyapunov’s linearization method is concerned with the

local stability of the equilibrium of a nonlinear system.

It is the formalization of the observation that a non-

linear system should behave similarly to its linearized

approximation in a small range around the equilibrium.

To do so, only the linear terms of the update

equation (5) are retained. Equation (6) shows the

linearization of the original non-linear system at the

equilibrium point 0.

xðkþ 1Þ ¼ AxðkÞ, where A ¼
@f

@x

����
x¼0

: ð6Þ

This equation is similar to the update equation of

a linear system, for which the study of stability is

known. The stability of equilibria for linear decentral-

ized design problems can be found in Chanron and

Lewis (2003, 2004). The stability depends on the posi-

tion of the eigenvalues of the matrix A with respect to

the unit circle (Ogata 1995):

. The system is said to be stable if all the eigenvalues

of A lie within the unit circle. Any eigenvalue outside

the unit circle makes the system unstable.
. The system is said to be marginally stable if a simple

eigenvalue of A lies on the unit circle. Also, the

system becomes marginally stable if a single pair of

conjugate complex eigenvalues lies on the unit circle.

We recommend the linearization to be the first step

to check local convergence properties around the

equilibrium. Indeed, the stability of the linearized

system gives us interesting insights into the initial non-

linear system using the theorem of the Lyapunov’s

linearization method (Slotine and Li 1991).

. If the linearized system is strictly stable, then the

origin is asymptotically stable for the actual non-

linear system.
. If the linearized system is unstable, then the origin is

unstable (for the non-linear system).
. If the linearized system is marginally stable, one

cannot conclude anything about the stability of the

equilibrium point, since high-order terms affect the

stability.

However, linearization gives only local information,

and if more global information is required, other

methods have to be used, and these are presented next.
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4.3. Lyapunov’s direct method

The Lyapunov’s direct method allows conclusions to be
drawn about the stability without using the complex

stability definitions introduced earlier. This gives
necessary conditions for the equilibrium to be stable
and is based on the existence of a Lyapunov function
(Franklin et al. 1998).

Lyapunov function: If, in a ball BR0
, the scalar function

V(k) is positive definite and the function Vðkþ 1Þ � VðkÞ
is negative semi-definite, then V(k) is said to be a
Lyapunov function for the system.

With this definition of Lyapunov functions, the main

Lyapunov theorem for stability can be introduced.

Lyapunov theorem: If there exists a Lyapunov function,
then the origin is stable. If, actually, the function
Vðkþ 1Þ � VðkÞ is negative definite in BR0

, then the
stability is asymptotic.

This theorem can be applied directly once the update
equation (5) is known. The difficulty lies in the process
of searching for the Lyapunov function and in the fact

that the Lyapunov theorem is a sufficiency theorem.
If, for a particular choice of Lyapunov function candi-
date V, the conditions on Vðkþ 1Þ � VðkÞ are not met,
one cannot draw any conclusions on the stability or
instability of the system—the only conclusion one
should draw is that a different Lyapunov function
candidate or a different method should be tried to
determine stability. In some situations, the graphical
method can be used, and this is presented next.

4.4. Graphical method

In some cases, the interdependencies of the subsystems
of the decentralized system offer interesting properties
about the solutions of these problems. One of those
cases occurs when a small number of disciplines are
closely related to one another and independent from
the rest of the design. Equation (7) shows an example
for two interrelated disciplines and with quadratic

update equations,

xðkþ 1Þ ¼ ayðkÞ þ by2ðkÞ

yðkþ 1Þ ¼ cxðkÞ þ dx2ðkÞ:

(
ð7Þ

For those coupled equations, an independent update
equation can be found as xðkþ 1Þ ¼ f ðxðk� 1ÞÞ, or,
written out:

xðkþ 1Þ ¼ acxðk� 1Þ þ ad þ bc2
� �

x2ðk� 1Þ

þ 2bcdx3ðk� 1Þ þ bd 2x4ðk� 1Þ: ð8Þ

This equation can be plotted: xðkþ 1Þ as a function of

xðk� 1Þ, and the stability can be inferred from the posi-

tion of this curve with respect to the quadrants and to

the lines xðkþ 1Þ ¼ �xðk� 1Þ. This is the main idea

behind the graphical method, which allows the visualiza-

tion of the attraction basin. Also called the domain of

attraction, the attraction basin is the set of points such

that trajectories initiated at these points eventually

converge to the origin (Slotine and Li 1991). Three

main scenarios can occur:

. Case 1: The curve lies in the first and third quad-

rants. In this case, there is no sign change from one

iteration to the next, since the update curve lies in

the first and third quadrants: the image of a positive

value design point will be a positive value design

point; the image of a negative one will be another

negative one. Therefore, the stability condition is

that the curve has to stay within the lines of slope

þ1 and �1 of the design space (y ¼ �x) so as to

converge progressively towards the origin. This is

illustrated using an example in figure 2.

. Case 2: The curve lies in the first and second quad-

rants (or, symmetrically, in the third and fourth). In

this case, most of the design points will be positive.

Indeed, if, at one iteration, a design point is negative,

its image at the next iteration will be positive (since the

update curve lies in the second quadrant). Besides,

once a design point is positive, it will always remain

positive in the future iterations as the update curve

is in the first quadrant. Therefore, the upper limit of

stability is when the update curve goes over the line

y¼ x (for similar reasons as in case 1), and the

lower limit is found by finding the antecedent of this

intersection in the second quadrant. This is illustrated

using an example in figure 3.

. Case 3: The curve lies in the second and fourth

quadrants. In this case, the sign of the current

design point is constantly changing from one iteration

to the next due to the position of the update in the

quadrants: a negative design point will have a positive

image, and vice versa. The stability conditions are

now dynamic, as the upper limit of stability depends

also on the relative position of the curve in the nega-

tive side of the design space, and similarly for the

lower limit. Graphically, this is solved by plotting

the symmetric image of the update curve with respect

to y ¼ x. This new curve is represented by a thick

dash-dot line in the example of figure 4. The inter-

sections of this curve with the initial update curve

represent the lower and upper limit of stability.

These are the three main cases of the graphical method.

A combination of these cases can also occur, but the
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stability can always be found by applying the conditions

stated here.
This section presented the main methods adapted

from nonlinear control theory that can be used in

solving the stability of equilibria in decentralized

design. The next section introduces a case study on

which these methods are tested.

5. Design of a pressure vessel

In this section, the design of a thin-walled pressure

vessel with hemispherical ends, shown in figure 5, is

used. The nomenclature for this case study taken from

Lewis and Mistree (1998) is presented in table 2.

The vessel is to withstand a specified internal

pressure P, and the material is also specified. There

are two objectives: to minimize the weight and to

maximize the volume of the cylinder, both subject to

stress and geometry constraints. Although this is not

naturally a multi-player problem, we consider in this

paper that the design involves two design teams: (1)

player VOL who wishes to maximize the volume

and controls R and L and (2) player WGT who wishes

to minimize the weight of the vessel and controls T.

The objectives and constraints of the two players are

shown in tables 3 and 4.
The specific data (problem constants) for this problem

are as follows:

P ¼ 3:89 klb; St ¼ 35:0 klb; � ¼ 0:283 lbs in�3 ð9Þ

As discussed in section 3, the equilibria of the design

space are located at the intersection of the players’ RRS,

and we use Response Surface Methodology to approxi-

mate those RRS. Specifically, for the Volume player,

values of the thickness, T, are sampled between 0.5 in

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(k−1)

x(
k+

1)

Attraction
basin

Figure 2. Solving using the graphical method—first case.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(k−1)

x(
k+

1)

Attraction
basin

Figure 3. Solving using the graphical method—second case.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(k−1)

x(
k+

1)

Attraction
basin

Figure 4. Solving using the graphical method—third case.

L

R

R

T

A-A
Section A-A

Figure 5. Thin-walled pressure vessel.
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and 6.0 in and for each value of thickness, the Volume

model is solved, resulting in values of the radius, R,

and length, L. A second-order response surface is then

developed using this set of input and output points to

approximate R and L as a function of T. These resulting

relationships are shown in equation (10) (Lewis and

Mistree 1998). For the Weight player, values of R and

L are sampled between 0.1 in and 36.0 in and 0.1 in

and 140.0 in, respectively, using a Central Composite,

Face-centred, Design (Myers and Montgomery 1995).

For each value of R and L, the Weight model is

solved for the thickness, T. A second-order response

surface is also developed using this set of input

and output points to approximate T as a function of

R and L, as shown in equation (11) (Lewis and

Mistree 1998).

VOL RðT Þ ¼ 29:29þ 14:75T � 10:01T 2

LðT Þ ¼ 85:45� 34:45T þ 20:10T 2
ð10Þ

WGT TðR,LÞ ¼ 2þ 1:75Rþ 0:2445R 2: ð11Þ

It is interesting to note that the decision of designer

Weight is independent of the value of L (the coefficients

of L and L2 were ð3:15� 10�5R� 2:267� 10�5Þ and

ð8:667� 10�7Þ, respectively, and therefore were

removed). The intersection of these Rational Reaction

Sets give the Nash solution(s). There is only one

intersection here, so there is only one equilibrium

point, given in equation (12):

RN ¼ 28:4 in

LN ¼ 87:5 in

T N ¼ 3:09 in

ð12Þ

In the remainder of the paper, we use normalized

values from �1 to 1 for the three design variables.

Tables 3 and 4 give the range of each design variable,

which allows normalization of equations (10) and (11),

and is shown in equation (13):

Rðkþ 1Þ ¼ 0:626þ 0:822TðkÞ � 0:558TðkÞ2

Lðkþ 1Þ ¼ 0:220� 0:492TðkÞ þ 0:287TðkÞ2

Tðkþ 1Þ ¼ �0:455þ 0:636RðkÞ þ 0:089RðkÞ2:

ð13Þ

As mentioned in section 4, in order to study the

stability of this equilibrium, we first need to move it to

the origin. This is done by substituting ðxþ xNÞ for x,

where x ¼ R,L,T½ �
T is the normalized state vector,

and xN is the normalized state vector evaluated at the

equilibrium. The new update equation is shown in

equation (14):

Rðkþ 1Þ ¼ 0:887TðkÞ � 0:558TðkÞ2

Lðkþ 1Þ ¼ �0:525TðkÞ þ 0:287TðkÞ2

Tðkþ 1Þ ¼ 0:739RðkÞ þ 0:089RðkÞ2:

ð14Þ

Shifting the Nash equilibrium to the origin creates a

change in the bounds of the design variables. In the

new design space, R is in the interval ½�1:5766;
0:4234�, T in ½�0:9418; 1:0582�, and L in ½�1:2495;
0:7505�.

Table 2. Nomenclature of the pressure vessel.

W Weight of the pressure vessel (lb)

V Volume (in3)

R Radius (in)

T Thickness (in)

L Length (in)

P Pressure inside the cylinder (klb)

St Material allowable tensile strength (klb)

� Density of the material (lbs in�3)

�circ Circumferential stress (lbs in�2)

Table 3. Model of player VOL.

Maximize VðR,LÞ ¼ ð4=3Þ�R3
þ �R2L

Design variables R and L

Stress constraint �circ ¼ ðPR=T Þ � St

Geometric constraints 5T � R � 0

Rþ T � 40 � 0

Lþ 2Rþ 2T � 150 � 0

Side constraints 0:1 � R � 36

0:1 � L � 140

Table 4. Model of player WGT.

Minimize

WðR,T ,LÞ ¼ � ð4=3Þ�ðRþ TÞ3
�
þ �ðRþ TÞ2L

� ð4=3Þ�R3
þ �R2L

� ��
Design Variables T

Stress constraint �circ ¼ ðPR=T Þ � St

Geometric constraints 5T � R � 0

Rþ T � 40 � 0

Lþ 2Rþ 2T � 150 � 0

Side constraints 0:5 � T � 6
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5.1. Local stability

The first method to investigate the stability in the neigh-

bourhood of the equilibrium is linearization. In this case,
it is straightforward, as we just need to keep the linear
terms of equation (14), and put them into a matrix
format, as shown in equation (6), to find the state
matrix A,

A ¼

0 0 0:887

0 0 �0:525

0:739 0 0

2
64

3
75: ð15Þ

A simple check of the eigenvalues of A gives us the
stability properties of the linearized system,

Eigenvalues of A ¼ f0, 0:8096, �0:8096g: ð16Þ

The stability is determined by the value of the spectral
radius (maximum absolute value of the eigenvalues of a
matrix), which here is: r�ðAÞ ¼ 0:8096. Since it is strictly
less than 1, the linearized system is strictly stable, and
therefore the initial non-linear system is asymptotically
stable (Chanron and Lewis 2004).

5.2. Lyapunov stability

The Lyapunov direct method, as presented earlier, gives

a simple way to address the issue of stability but does
not provide any coherent methodology for constructing
the Lyapunov function. This is the purpose of the
SOSTOOLS software (Papachristodoulou and Prajna
2002), which uses SeDuMi (Sturm 1999) as the semi-

definite programming solver, and which we use in this
section to find a Lyapunov function.
Equation (14) shows that the design variables R and T

are closely related to each other, while design variable L
is only a function of T. Equation (17) is therefore used
as the new update equation to demonstrate the stability

of the entire system,

Rðkþ 1Þ ¼ 0:887TðkÞ � 0:558TðkÞ2

Tðkþ 1Þ ¼ 0:739RðkÞ þ 0:089RðkÞ2: ð17Þ

SOSTOOLS allows for an algorithmic construction of
Lyapunov functions. We assume the following form for

the candidate Lyapunov function, and use SOSTOOLS
to solve for the coefficients while ensuring the positive
definiteness of V, and the negative definiteness of
Vðkþ 1Þ � VðkÞ,

V ¼ aR2 þ bRT þ cT 2: ð18Þ

The solution given by SOSTOOLS is shown in

equation (19) and put into a matrix form to prove

its positive definiteness.

V ¼ 2:54R2 þ 0:40RT þ 3:96T 2 ð19Þ

V ¼ ½R T � �
2:54 0:2

0:2 3:96

� �
�

R

T

� �
: ð20Þ

The eigenvalues of the matrix are strictly positive

(2.5165 and 3.9870), thus proving the positive definite-

ness of V.
The second necessary condition for V to be a

Lyapunov function is that Vðkþ 1Þ � VðkÞ has to be

negative definite. In the form proposed in equation (18),

negative definiteness cannot be found for R and T in

the entire design space. However, figure 6 shows that

only a small portion of the design space (for small
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Figure 6. Positive definiteness of VðkÞ � Vðkþ 1Þ.

(a) Surface. (b) Contour.
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values of T and large values of R) does not guarantee
stability, given the Lyapunov function proposed here.

5.3. Graphical method

We now use the graphical method on the same case
study to demonstrate its applicability. Starting from
equation (17), an update equation linking Tðkþ 1Þ to
Tðk� 1Þ can be found. This is shown in equation (21)

and plotted in the ðTðk� 1Þ,Tðkþ 1ÞÞ plane:

Tðkþ 1Þ ¼ 0:028Tðk� 1Þ4 � 0:088Tðk� 1Þ3

� 0:342Tðk� 1Þ2 þ 0:655Tðk� 1Þ: ð21Þ

This graph is shown in figure 7, along with the result-
ing quadrants. Studying the stability of this update
equation will determine the stability for the entire
problem, since equation (21) was obtained using the
set of coupled equations shown in equation (17).
Indeed, if T converges to its equilibrium value, then R
and L will also converge based on equation (14).
Effective insight on the stability can be gained by

studying this figure. Indeed, the update curve is in the
first and third quadrants only. We can therefore use

the results found in the first case of section 4.4. The
update curve stays clearly within the lines
Tðkþ 1Þ ¼ �Tðk� 1Þ for the entire design space.
Therefore, the design process is stable around the
origin, and all trajectories that start in this design
space will end at the origin.
Figure 7 also shows two trajectories for two initial

conditions (T0 ¼ 0:4 and T0 ¼ �0:8). It shows the first
iterations of the design process, and the convergence
towards the origin of the design space. The origin of

the space in this figure actually represents the Nash

equilibrium shown in equation (12). Therefore, the

attraction basin of this Nash equilibrium is the entire

design space. Note that it is not necessary for the

entire design space to be in the attraction basin, even

if there is a unique equilibrium, as some initial condi-

tions might create a divergent pattern as noted in

Vincent (1983) and Chanron and Lewis (2003). Also,

the fact that approximations were used to find the

equations of the response surfaces might affect the

quality of the stability prediction. However, these results

are consistent with the stability results presented in

Lewis and Mistree (1998), thus validating the methods

used in this paper.

6. Conclusion

Most engineering systems are multidisciplinary in

nature and therefore require knowledge from several

design teams. This, along with other constraints, forces

the decentralization of decisions. Therefore, the

decision-makers involved in these kinds of design

processes need to understand the dynamics involved in

order to find a final optimal design. This paper develops

a theoretical approach to modelling these dynamics

and, specifically, the stability of the equilibrium points

of the decentralized problem. It extends the existing

results about stability to more complex problems

with highly non-linear objectives and constraints. This

is done by applying concepts adapted from nonlinear

control theory to the study of equilibrium solutions in

engineering design. A case study presents the first direct

applications of these methods on a design example.
By applying the concepts in this paper, design engi-

neers could avoid a great deal of iteration and wasted

resources by determining the convergence and stability

characteristics of their design process. However, the

broader goal of this research is for design engineers to

understand the complications that decentralization

creates, including the possibility of creating a divergent

system. The research strives to give them a broader

vision of the issues created by the decentralization of

decisions and help them make better decisions (e.g.

decisions to avoid divergent processes). This work

should also help the research community to propose

new methods to assist engineers in distributed design

environments. This is part of future work that includes

applying the concepts presented in this paper to other

case studies, generalizing the results to higher-order

approximations, and drawing conclusions that will be

used as a foundation to a comprehensive theory for

decentralized processes.
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Figure 7. Graphical solution of the case study.
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