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Abstract

This paper presents two techniques for the determination of modal weights for the design of robust input

shapers for multi-mode systems. The weights for the first technique are derived based on the scaling factor

for the potential energy in each mode, such that the modal displacement is the same. The second technique

exploits the modal cost analysis which uses the angle between the right eigenvectors and the row vectors

of the output matrix to determine the contribution of each mode to the output. Two examples are used

to illustrate the improvement in performance of the modal weighted minimax shapers compared to the

traditional minimax shaper which equally weighs all the modes.
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1. Introduction

Parasitic vibrations can decrease the performance of maneuvering structures such as cherry pickers, flexible

arm robot (Remote Manipulator System of the Space Shuttle), cranes [1, 2], etc., where the goal is to move

from one position of rest to another position of rest. There is a large body of work which deals with shaping the

reference input to these dynamical system so as to minimize residual vibrations. The posicast controller [3],

Input Shaper [4], Time-Delay filter [5], use a superposition idea to cancel oscillations. Input Shaping refers to

the process of convolving a series of impulses with a reference profile to generate a shaped input. Time-Delay

filtering refers to the process of modifying the reference input by combining a weighted set of delayed reference

input. The Input shaper and time-delay filter are essentially identical and will be used interchangeably in

this paper. The design of Input Shaper and Time-Delay filters have been extended to exploit knowledge of

the domain of uncertainty to arrive at shaped profiles which generate reasonable performance over the entire

domain of uncertainty. Here, the terminal constraint are not equality constraints, rather they are inequality

constraints that requires the terminal states to lie within a set which include the desired final position. For a

multi-mode system, the traditional approach has been to cascade input-shapers/time-delay filter designed for

each mode to satisfy terminal constraints. For problems which include worst case design (minimax time-delay

filter [6]), residual energy which incorporates all the modes has been used to design the filter to shape the

reference input. The Specified Insensitivity (SI) [8] Input Shaper for the multi-mode case can be designed by
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including SI constraints for each of the modes. This can be represented as:

V (ωi, ζi) = e−ζiωi

√

C2 + S2 < Vtol ∀i = 1, 2, . . . (1)

C =

n∑

j=1

Aje
−ζiωicos(ωi

√

1 − ζ2
i tj) (2)

S =

n∑

j=1

Aje
−ζiωisin(ωi

√

1 − ζ2
i tj) (3)

where Aj and tj are the magnitude and time of application of the impulses of the input shaper. However,

if the goal is to target a specific output which has non-equal contribution of various modes, the Varying-

Amplitude-Contribution SI [9] differentially weights each of the V (ωi, ζi) in the design process. For a two

mode example, the constraints are represented as:

αV 1
tol + (1 − α)V 2

tol < Vtol, α ∈
[

0 1
]

(4)

V (ω1, ζ1) < V 1
tol, ω1 ∈

[

ωlb
1 ωub

1

]

(5)

V (ω2, ζ2) < V 2
tol, ω2 ∈

[

ωlb
2 ωub

2

]

(6)

where α is selected based on the contribution of each mode and ωlb
i and ωub

i correspond to the lower and

upper bounds of ωi respectively. Vtol represents the threshold for the permitted residual energy. V 1
tol is

arbitrarily selected to be some fraction of Vtol and V 2
tol is consequently calculated as:

V 2
tol =

Vtol − αV 1
tol

1 − α
(7)

Experimental results were used to determine V 1
tol and V 2

tol and the resulting input shaper was shown to have

better performance compared to the traditional two-mode SI shaper [8]. One can conjecture that as the

number of modes increases, the selection of the weights αi and the permitted V i
tol can become cumbersome.

This paper endeavors to develop an analytical approach for the determination of weighting factors for

vibratory modes which can subsequently be used to design robust input shapers which minimize the worst

case performance over the entire domain of uncertainty. Consider the three mass-spring system shown in

Figure 1 by the solid lines. The second order model of the system is:
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The three modes of this system
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are shown in the same figure by dashed lines. The frequencies corresponding to the three modes are: ωi =
[

0 1
√

3
]

. If the output of interest is the displacement of the third mass, the output equation is:

z =
[

0 0 1
]
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Figure 1: 3 Mass-Spring Systems and Mode Shapes

The system model and output equation can be rewritten in modal form as:
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and

z =
[

−0.5774 0.7071 0.4082
]
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which clearly indicates that the second mode’s contribution is the largest and the third mode’s is the smallest.

These modal contributions can be used to relatively weight the modal energies to formulate a cost function

whose maximum can be minimized over the uncertain domain.

2. Minimax time-delay control

This section reviews the minimax time delay input shaper design proposed by Singh [6]. Here the goal

is to design a shaped reference profile such that the vibrations at the end of a pre-specified maneuver are

minimized. Consider the second order linear mechanical system of the form

M ẍ + C(p)ẋ + K(p)x = Du (13)

yo = Cox (14)

where the n × n mass matrix M is positive definite, the n × n damping and stiffness matrices C and K are

positive semi-definite. D is the n × m control influence matrix, x ∈ R
n is the configuration vector, u ∈ R

m
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is control vector, Co is the output matrix and yo is the output. p is a vector of uncertain parameters whose

range of uncertainty is:

plb
i < pi < pub

i . (15)

For rest to rest maneuvers from some prescribed initial state to final state, the time delay filter is parame-

terized with the following transfer function:

G(s) = A0 + A1e
−sT1 + A2e

−sT2 + · · · (16)

Figure 2: Block diagram of Time delay / Input shaping based control

Figure 2 shows the block diagram implementing the point-to-point maneuver. For designing a robust

filter i.e., finding the parameters Ais and Tis in equation 16, the minimax optimization procedure proposed

in [6] uses residual energy of the system at the end of maneuver defined as

Vres =
1

2
ẋT M ẋ +

1

2
(x − xr)

T K(x− xr) (17)

as the cost function where xr corresponds to the desired reference position. The following minimax optimiza-

tion problem is solved to find the unknown parameters

min
Ai,Ti

max
pi

Vres (18)

where the knowledge of the distribution of the parameter uncertainties can be incorporated into equation 18

by weighting the cost Vres with the probability distribution function of the uncertain variables [12]. It should

be noted that the minimax optimization problem results in different solutions for different maneuvers. A

lookup table of the solutions of the minimax problem as a function of the maneuver can be used for real-time

implementation.

3. Robust filter design using weighting factors based on modal displacement

In the approach presented in section 2, the contribution to the residual energy of all the modes of the

system are weighted equally. To better control the plant output, we can scale the contributions of each

mode to the residual energy based on their contribution to the output. To determine these scaling factors, we

transform the system described by equation 13 to the modal form by introducing a coordinate transformation

of the form

x(t) = Φy(t) (19)
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where Φ is n×n similarity transformation matrix obtained by solving the eigen value problem associated with

the mass and the stiffness matrices. The residual energy of the transformed system can then be expressed as

V =
1

2
ẏT M̃ ẏ +

1

2
(y − yr)

T K̃(y − yr) (20)

where M̃ and K̃ are the transformed mass and stiffness matrices given by

M̃ = ΦT MΦ = I (21)

K̃ = ΦT KΦ =
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where ω1=0, for systems with rigid body modes. Transferring the system from an initial position of x0 to a

final position of rest xr results in modal boundary constraints of:

y0 = ΦTx0 (23)

yr = ΦTxr. (24)

For controlling the output with high precision, e.g., if the displacement of the final mass of a series of n

mass-spring systems is the output, the output equation for the nth mass in modal space is:

yo =

Co

︷ ︸︸ ︷
[

0 0 . . . 1
]

Φ
︸ ︷︷ ︸

Cm

y (25)

If one is interested in displacement precision, the residual energy of each of the mode is weighted so as to

correspond to the same final displacement. For instance, if the contribution to the output displacement of

the first two modes are the same, we have the constraint:

c1y1 = c2y2 (26)

where ci is the ith component of the modal output matrix Cm. Equation 26 can be transformed to the

potential energy space resulting in the equation:

c2
1

1

2
ω2

1y
2
1 = c2

2

1

2
ω2

2y
2
2

(
ω2

1

ω2
2

)

(27)

which states that the potential energy of the second mode has to be scaled by
ω2

1

ω2

2

to satisfy the displacement

precision constraint. Furthermore, since the output is a linear combination of the modal displacements, the

potential energy of each of the modes has to be rescaled by c2
i to reflect the modal contribution of every

mode.

From the above considerations, we can define indices αi as:

αi =
c2
i ω

2
1

ω2
i

(28)
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to weigh the contribution of each mode in the residual energy equation. The modified cost function for

minimax optimization can be written as:

V =
n∑

i=1

1

2

(

ẏ2
i + ω2

i (yi − yf
i )2

)

αi (29)

where yf
i correspond to the desired final state of the ith mode.

4. Robust filter design using weighting factors based on observability measures

Another approach which can be used for determining the scaling factors for the residual energy based

cost described in the section 3 is by using modal observability measures proposed by Hamdan and Nayfeh

[7]. These observability measures reflect the contribution of respective modes in the desired output and thus

can be used for relative scaling of residual energies of each mode. In this scheme the residual modal energy

of the system is scaled using observability measures defined as follows:

For the linear system of the form

ẋ = Ax + Bu,yo = Cox (30)

A measure of observability of ith mode in the single output defined by Co is given by

γi = cos(φi) =
< Co.pi >

‖Co‖‖pi‖
(31)

where pi is the ith right eigen vector of A and < a.b > is the inner product of vectors a and b. φi is the

angle between Co and pi. This measure gives us the degree to which each mode influences the output. So if

the output matrix Co represents the position of the mass which needs to be precisely controlled then using

the above measure, we can calculate the observable measure, which can be used to scale the modal residual

energies.

wi = γ2
i (32)

We can then weigh the residual energy of each mode using the above factor and use this as the objective

function. For the linear system described by equation 30, the cost function for optimization using the

normalized weighing factors can be written as

V =
n∑

i=1

1

2

(

ẏ2
i + ω2

i (yi − yf
i )2

)

wi (33)

where yi is the configuration coordinate for ith mode and yf
i corresponds to its desired final state.

5. Systems with rigid body modes

For systems with rigid body modes, the technique described in the previous section can be applied after

designing a collocated PD feedback control and then shaping the reference input for robust performance. A

collocated PD feedback controller is a stabilizing control for the system. Consider the second order system

defined in 34 with collocated actuator-sensor pair.

M ẍ + Kx = Du (34)
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where K is positive semi-definite for systems with rigid body modes. Assuming that the null space of the

system input matrix D, is not coincident with the null space of K, we can select a candidate Lyapunov

function

V =
1

2
(ẋT M ẋ + (x − xr)

T K(x− xr) + Kp(x − xr)
T DDT (x − xr)), (35)

where Kp is a positive scalar. The time derivative of V can be written as

V̇ = ẋT (M ẍ + K(x− xr) + KpDDT (x − xr))

= ẋT (Du + KpDDT (x − xr)), (36)

since Kxr =0. This is due to the fact that the final rest position xr lies in the null space of the stiffness

matrix K.

If we select the control law as

u = −KdD
T ẋ − KpD

T (x − xr) (37)

then on substitution of u in 36, V̇ reduces to

V̇ = −KdẋDDT ẋ (38)

which is negative semi-definite since DDT ≥ 0. Consequently, the collocated PD controller given by equa-

tion 37 is a stabilizing control law for the mechanical system.

6. Results

Two examples are used to illustrate the proposed technique. The first is a three mass-spring system which

is similar to the benchmark floating oscillator proposed by Wie and Bernstein [11]. The second examples is

based on the double pendulum crane presented by Tanaka & Kuono [10]. For both these examples, a baseline

maneuver time was selected to permit an unbiased comparison of the optimal shapers derived by optimizing

the modal weighted residual energy cost with the traditional minimax shaped profiles.

6.1. Three mass floating oscillator

Table 1: Reference shaper parameters

Parameter Method
No Modal disp. Modal observability

scaling scaled scaled

A0, t0 0.17,0.00 0.20,0.00 0.18,0.00
A1, t1 0.15,1.93 0.12,3.24 0.14,3.01
A2, t2 0.27,6.19 0.33,5.87 0.28,5.69
A3, t3 0.18,7.97 0.12,8.08 0.16,7.90
A4, t4 0.06,10.26 0.04,9.91 0.07,10.07
A5, t5 0.16,12.00 0.19,12.00 0.16,12.00

Robust pre-filters for the three mass floating oscillator system with uncertainty in spring constant k as

shown in figure 3 were designed using the minimax optimization approach with the scaled residual energy

based objective functions for precise rest to rest positioning of mass m3.7
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Figure 3: Floating Oscillator

The three mass floating oscillator system shown in figure 3 with m1 = m2 = m3 = 1 and knom = 1 is

represented by equation 8. To control the position of the three masses, a PD controller with proportional

gain of 5 and derivative gain of 0.1 is used. For the purpose of positioning all three masses from an initial

position of rest of (x1, x2, x3) = (0, 0, 0), to final position of rest of (x1, x2, x3) = (1, 1, 1) a robust five time

delay reference input shaper was used. With modal coordinate transformation, the closed loop system is

represented as
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where xr is the position reference to first mass.

Parameters for the reference shaper for a user specified maneuver time of 12 sec, were obtained using

minimax optimization based on displacement precision scaled residual energies described in the sections 3 and

4. For comparison purposes the shaper parameters using unscaled residual energy as the objective function

were also calculated. These parameters are shown in table 1.

As the output of the system is the position of the third mass, the performance index F, consists of the

kinetic energy and pseudo-potential energy of the third mass which goes to zero where ẋ3 goes to zero and

x3 equals x3r, the desired final position of mass m3.

F =
1

2

√

ẋ3
2 + (x3 − x3r)2 (40)
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Figure 4: Variation of performance index F over the range of parameter variation

Figure 4 illustrates the variation in performance index F evaluated at the end of maneuver, as a function

of the uncertain coefficient of stiffness k. for the three types of reference shapers. It is evident from this

figure that over the range of parameter variation(0.6 < k < 1.4), the variation of the performance index

F, for the modal displacement based input shaper (dashed line) and observability measure based reference

shaper (dash-dot line) is lower than the unscaled residual energy based reference shaper (solid line). Three

horizontal lines are also presented which represent the average magnitude of the output energy measure over

the uncertain domain for each of the input shaper. This is to permit estimating an average performance over

the uncertain domain.
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Figure 5: Box plot of performance index F

For better analysis of the performance of the reference shapers over the domain of the uncertain variable,
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the domain of the uncertainty is sampled uniformly and a box and whisker plot of performance index F for

each of the sampled uncertain stiffness k is presented in figure 5. The box and whisker plots are traditionally

used to display statistical properties of data using a five number summary (upper and lower quartile, sample

minimum and maximum, and median ). The upper and lower lines of the box represents the upper and

lower quartile respectively. The line at the notch represents the median value and the whiskers extending

from the edge of the box represent the extreme values. It is clear from this plot that modal displacement

and observability scaled controllers perform much better than the original residual energy based controller.

In conclusion, of the three controllers the maximum magnitude and variation of the performance index F, is

the lowest for modal displacement based controller

Figure 6 shows the shaped reference input profile for the three methods which illustrate significantly

different switch times which is reflected in different location of the zeros of the time-delay filter.

Time (s)

S
h
a
p
ed

R
ef

er
en

ce
In

p
u
t

No Scaling
Modal displacement scaling
Observability scaling

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 6: Shaped reference input profile for 3 mass floating oscillator

The response of the third mass at nominal value of spring constant k=1 using the three shaped inputs

is shown in figure 7. As is apparent from the figure, the position of third mass is more precisely controlled

by the scaled energy filters as compared to the traditional minimax filter which does not scale the residual

energy.
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Figure 7: Response of second mass to different types of filters at nominal k

The box plots for scaling factors evaluated using the two approaches are shown in figure 8. The plots

illustrate the variation in these scaling factors with change in the uncertain parameter k. Both modal dis-

placement and observability measures based factors assign large weights to the first mode (lowest frequency)

and small weights to the third mode (highest frequency). Further, the variation of these factors with change

in uncertain parameter is higher for the observability measure based scaling illustrated by the size of the box

and whisker plots.
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Figure 8: Box plot showing the variation of scaling factors over the range of parameter variation

Effect of these scaling factors can also be seen in the placement of controller zeros in figure 9. Controller
11



zeros for the scaled residual energy methods (⋄ and △) are placed to cover the spread of system poles

corresponding to the first and second modes and ignores the third mode whereas the original residual energy

based controller (◦) distributes the zeros around all three modes. The series of dots in Figure 9 illustrate the

root locus of the system poles as a function of the uncertain stiffness coefficient k.
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Figure 9: Zeros of Time-delay Filters

6.2. Gantry crane

As a second example case, a double-rigid-body pendulum gantry crane model proposed by Tanaka &

Kuono [10] shown in figure 10 is considered.

m xu
--

m1

m2

θ2

l
⋄

1

l1

l2

θ1

Figure 10: Double-rigid-body pendulum gantry crane model

12



Table 2: Parameters for Gantry crane model

Parameter Value
m 8kg
m1 0.5kg
m2 6kg
l1 1.5m
l⋄1 0.1m
l2 0.3m
I1 .0008kg m2

I2 0.06kg m2

a 1.0Nm/s

The equations of motion for the system assuming θi and θ̇i(i = 1, 2) to be small can be written as

c11ẍ + c12θ̈1 + c13θ̈2 + aẋ = u (41)

c21ẍ + c22θ̈1 + c23θ̈2 + c24θ1 = 0 (42)

c31ẍ + c32θ̈1 + c33θ̈2 + c34θ2 = 0 (43)

where

c11 = m + m1 + m2, c12 = m1l1 + m2(l1 + l⋄1)

c13 = m2l2, c21 = m1l1 + m2(l1 + l⋄1)

c22 = m1l
2
1 + m2(l1 + l⋄1)

2 + I1, c23 = m2l2(l1 + l⋄1)

c24 = m1gl1 + m2g(l1 + l⋄1), c31 = m2l2

c32 = m2l2(l1 + l⋄1), c33 = m2l
2
2 + I2,c34 = m2gl2

Table 2 lists the crane model parameters. To control the position of the trolley, a PD controller with

proportional gain of 10 and derivative gain of 1 was used. Robust pre-filters for shaping the position reference

when there is uncertainty in the length ratio l1/l2, were designed using the aforementioned methodologies.

The system needs to be positioned from initial value of (x1, θ1, θ2) = (0, 0, 0) to (x1, θ1, θ2) = (1, 0, 0). In this

scenario, we are interested in reducing the sway of the payload at the end of the trolley-positioning maneuver,

yo. So the emphasis is on the precise control of the payload displacement given by equation.

y0 = (l1 + l⋄1)θ1 + l2θ2 (44)

Parameters for the reference shapers designed using the three methodologies for a fixed final time of 6

seconds are shown in table 3

The output of the system here is the position of the payload. So the performance measure, F, used here
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Table 3: Reference shaper parameters

Parameter Method
No Modal disp. observability

scaling scaled scaled

A0, t0 0.098,0.000 0.102,0.000 0.101,0.000
A1, t1 0.248,0.795 0.253,0.815 0.254,0.847
A2, t2 0.214,1.692 0.202,1.669 0.203,1.707
A3, t3 0.184,4.275 0.179,4.265 0.174,4.292
A4, t4 0.194,5.183 0.197,5.137 0.196,5.153
A5, t5 0.064,6.000 0.067,6.000 0.071,6.000

is the total energy of the payload.

F = KE + PE (45)

PE = m2g[(l1 + l⋄1)(1 − cosθ1) + l2(1 − cosθ2)] (46)

KE =
1

2
[m2(ẋ

2
cm2 + ẏ2

cm2) + I2θ̇2

2
] (47)

xcm2 = (l1 + l⋄1)sinθ1 + l2sinθ2 (48)

ycm2 = −(l1 + l⋄1)cosθ1 − l2cosθ2 (49)
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Figure 11: Residual output vibration distribution for Gantry crane model with variation in length ratio (Nominal l1/l2 = 5)

Figure 11 shows the sensitivity measure for the displacement of the payload (l1 + l⋄1)θ1 + l2θ2 to variation

in the length ratio l1/l2, for the three types of reference shapers. We again see that over the range of

parameter variation (2 < l1/l2 < 8) profiles obtained using the modal displacement based scaling (dashed

line) and observability measures based scaling (dotted line) for the cost function show improvement over

the real energy based cost function (solid line). The horizontal line are illustrated to represent the average

performance of each of the input shaper over the uncertain domain.
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Figure 12: Box plot of performance index F at the end of maneuver for Gantry crane system

A box and whisker plot of the performance index F evaluated for uniformly sampled variation of the length

ratio l1/l2, at the final time is presented in figure 12. We again see that the performance of modal displacement

based and observability measures based controllers is much better than the original residual energy based

controller. Out of the three controllers the maximum magnitude and variation of the performance index F,

is lowest for observability measure based controller.

Figure 13 shows the shaped reference input profile obtained using the three methods.
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Figure 13: Shaped reference input profile for Gantry crane model
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Figure 14: Response of payload to different types of filters at nominal length ratio(l1/l2 = 5)

The displacement of the payload for nominal value of length ratio (l1/l2 = 5) using the three kinds of

input is shown in figure 14 in the proximity of the end of the maneuver (6 sec). As is apparent from the

figure, the response corresponding to modal displacement and observability measure based reference filters

is better than the unscaled residual energy based filter.
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Figure 15: Box plot showing the variation of scaling factors over the range of parameter variation

A box and whisker plot showing the scaling factors corresponding to variation in length ratios, l1/l2,

uniformly sampled from the uncertain domain is illustrated in Figure 15. Both scaled energy methods assign

larger weights to the second mode and very small weights to the third mode. Also, the variation in the
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weights is larger for modal displacement based scaling compared to observability measure based scaling.

7. Conclusions

In this paper we proposed two methods of scaling the cost used in the minimax optimization based design

of robust input shapers for multi-mode systems. The weighing factors were derived based on the relative

importance of respective modes in the output. The proposed techniques were then demonstrated on a three

mass floating oscillator and a double pendulum gantry crane model. It was shown that for these examples,

the residual vibration sensitivity measures are lower for reference shapers designed using scaled costs as

compared to the shapers designed using the real residual energy as the cost for optimization.
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