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This paper addresses the issue of design of a passive vibration absorber in the presence of

uncertainties in the forcing frequency. A minimax problem is formulated to determine the

parameters of a vibration absorber which minimize the maximum motion of the primary

mass over the domain of the forcing frequency. The limiting solutions corresponding to

exactly, are shown to match those available in the literature. The transition of the optimal

vibration absorber parameters between the extreme two cases is presented and the

solutions are generalized by permitting the mass ratio of the absorber mass and the

primary mass to be design parameters. For the specific case where the primary system is

undamped, detailed analysis is presented to determine the transition of the optimal

vibration absorber parameters between three distinct domains of solutions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A vibration absorber is a passive device which is designed to limit the vibration of a main structure and has been used to
retrofit buildings with unacceptable vibrations [1], in reducing the chatter in turning operations [2] and for damping the wind
excited motion of transmission line towers [3]. Since the vibration absorber was introduced in 1909 by Frahm [4], there has
been much work on the optimization of the design and tuning of the vibration absorber. Most optimizations are concerned
with the classic vibration absorber model, which neglects damping in the protected structure.

The first optimization of the single degree of freedom (DOF) classic model vibration absorber was offered in closed form by Den
Hartog [5], where an analytical solution for the frequencies corresponding to the two maxima of the frequency response function is
determined. In an effort to minimize the maximum vibration of the main mass, the frequency response magnitude at these points
is set equal. Warburton [6] extended this work on the classical single DOF vibration absorbers to multiple DOF systems. Current
work has evolved from applying single DOF methodologies to multiple DOF, to unique techniques for multiple DOF systems [7].
Optimization techniques have also been developed for more complex single DOF vibration absorber models. Vigui�e et al. [8]
developed a method of using a frequency energy plot to optimize a damped nonlinear single DOF absorber attached to a damped
main mass with a nonlinear stiffness. The concept of vibration absorbers for lumped mass systems has been extended to
distributed parameter systems, e.g., for the control of beam using piezoelectric patches [9]. Additional flexibility has been added to
traditional vibration absorbers by permitting the coefficient of stiffness and damping to be varied, resulting in a semi-active
vibration absorber [10,11].

Randall [12] developed a method which minimized the maximum vibration magnitude of the damped main mass in a
single DOF system. This method selects the maximum magnitude of the two resonance magnitude peaks and creates a surface
of this magnitude as a function of the vibration absorber design variables. The optimal solution is then found using a Golden
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Section grid search. This method will not arrive at the optimal solution since it cannot create a system where the two
resonance peaks are of the same magnitude. Pennestr�ı [13] exploits the Chebyshev Equioscillation Theorem which states that
the polynomial of the best approximation overestimates and underestimates the function to be approximated at least n+2
times when a nth order polynomial is used as the approximating function. For the two degree of freedom system, the
frequency response function is characterized by three stationary points which correspond to two maxima and one minima.
An optimization problem which minimizes the maximum motion of the primary mass subject to the six constraints derived
from the Chebyshev Equioscillation Theorem is solved to determine the parameters of a vibration absorber which is robust to
uncertainties in forcing frequencies. Kwak et al. [14] developed a steepest descent minimax method for the classical vibration
absorber model. They illustrate the performance of the vibration absorber for three sets of design constraints which include
the rattle space constraint which limits the relative motion of the primary and absorber masses. In contrast to the steepest
descent approach, Viana et al. [15] use the ant colony optimization approach, a probabilistic technique to arrive at the optimal
parameters of a vibration absorber.

The focus of this paper is on the formulation of a minimax optimization problem which minimizes the maximum
displacement of the primary mass over a range of forcing frequencies. Following the presentation of the dynamics of the
vibration absorber in Section 2, an unconstrained minimax optimization problem is formulated in Section 3, which minimizes
the maximum magnitude of motion of the primary mass over a domain of uncertain forcing frequency. In Section 4, the
results of the minimax optimization problem are presented and compared to those presented by Pennestr�ı [13]. In this
section, the damping and the spring stiffness of the absorber are the optimization variables and it is shown that the Pennestr�ı
results are optimal only for systems where the uncertainty in the forcing frequency is large. The optimal absorber parameters
are presented as a function of the range of forcing frequency to illustrate the benefit of using the minimax optimization
problem to determine the parameters of the vibration absorber. In the penultimate section, the inclusion of the mass ratio in
the set of variables to be optimized for and the effect of damping of the primary system on the design of the vibration absorber
are presented which provides a new insight into the design and the performance of the vibration absorbers as a function of
primary mass damping ratio and mass ratio of the primary and absorber masses.

2. Vibration absorber equations of motion

The vibration absorber model used in this paper is shown in Fig. 1. The dynamics of the primary mass (m1) and the absorber
mass (m2), subject to a sinusoidal forcing on the main mass, are given by the equations:

m1 €x1 ¼ b2ð _x2� _x1Þþk2ðx2�x1Þ�b1 _x1�k1x1þF1sinðotÞ, (1)

m2 €x2 ¼ b2ð _x1� _x2Þþk2ðx1�x2Þ: (2)

The sinusoidal response of the two masses after the transients have died out is given by the equations:

x1 ¼ X1sinðotþc1Þ, (3)

x2 ¼ X2sinðotþc2Þ: (4)

The maximum displacement of the vibration absorber relative to the primary mass is

Xr ¼ X2�X1: (5)

The objective of the vibration absorber is to minimize the vibration of the primary mass. The optimization problem
formulated in this work endeavors to minimize the maximum vibration magnitude of the primary mass. From the system
dynamic equations, an expression for the maximum displacement of the main mass, X1, is developed. An expression for the
maximum displacement magnitude between the vibration absorber mass and the primary mass, Xr, is also developed.
Fig. 1. Vibration absorber system.
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In order to make this a general approach, generalized coordinates will be used to describe the displacement of the masses in
the system. Notation used by Pennestr�ı [13] and earlier by Randall [12] is utilized in this development.

a¼ k1X1

F
¼ Z�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b2T�2Þ

2
þ4ðz2bT�1Þ

2
q

, (6)

gr ¼
k1Xr

F
¼ Z�1b2T�2, (7)

where a is the normalized maximum displacement of the main mass, gr is the normalized maximum relative displacement of
the vibration absorber mass, and Z2 and the normalized variables are defined as

Z2 ¼ ½b4T�2�b2T�2�b2
ð1þmÞ�4ðz1z2b

2T�1Þþ1�2þ4½z1b
3T�2þz2b

3T�1ð1þmÞ�z2bT�1�z1b�2, (8)

oi ¼

ffiffiffiffiffiffi
ki

mi

s
, zi ¼

bi

2
ffiffiffiffiffiffiffiffiffiffi
kimi

p , b¼
o
o1

, T ¼
o2

o1
, m¼ m2

m1
: (9)

It can be seen that the displacement magnitude is a function of five variables: b, z1, z2, m and T. The normalized forcing
frequency, b, is an unknown input to the system. The damping ratio of the main mass, z1, is a specified variable of the
protected system. Thus there are three variables which can be selected by the designer to minimize the vibration of the main
mass. The absorber mass ratio, m, is likely to be specified by a design but may be a free variable for the vibration absorber
design. In the very leastmwill have bounds for the vibration absorber design. There are two variables which can be selected by
the vibration absorber designer to tune the performance of the absorber: the vibration absorber damping ratio (z2) and
frequency ratio (T). In some situations the vibration absorber mass ratio (m) becomes a third design variable. In the first part of
this work an optimal T and z2 will be found for a specified mass ratio, for varying normalized forcing frequency ranges. Once
the solution is found for a specific mass ratio, it will be investigated how the vibration absorber mass ratio affects the
maximum displacement magnitude, and optimal designs will be found for each combination of mass ratio and forcing
frequency range. The effects of the main system damping ratio on the optimal vibration absorber will also be studied.

3. Minimax optimization formulation

In most systems, the frequency of the external disturbances are not known exactly. An ideal vibration absorber will
perform well over a range of possible external forcing frequencies. Pennestr�ı [13] has developed a method which uses
Chebychev’s min-max criterion to arrive at the optimal parameters of a vibration absorber. The resulting absorber is the
optimal solution if forcing frequency varies over a large range. The domain of the uncertain forcing frequency is not exploited
in the design process. One can conjecture that if information about the range of forcing frequencies is included in the design of
the absorber, improvements in the performance of the absorber can be attained. A minimax optimization of the maximum
main mass displacement over the range of the uncertain frequency offers this advantage. The minimax optimization finds the
values of design variables which minimize the maximum cost function value over a given range of a set of uncertain
parameters. In this vibration absorber design problem, the uncertain parameter is the forcing frequency and the cost function
is the normalized maximum displacement of the primary mass. The design variables are the damping ratio and frequency
ratio of the vibration absorber subsystem. In some applications it may be desired to constrain the maximum vibration
magnitude of the absorber mass as well. In such applications, the optimization problem will include a constraint on gr .

The minimax method developed in this paper will perform best when the domain of included forcing frequencies is the
smallest (i.e., the uncertainty of the forcing frequency is small). As the range of forcing frequency increases the solution found
by the minimax optimizer will converge toward the same solution as Pennestr�ı’s method. If knowledge about the probability
distribution of forcing frequencies is known, it can be easily incorporated in the minimax cost function resulting in a minimax
problem which minimizes a weighted magnitude of the maximum motion of the primary mass. The optimization problem
proposed in this paper can be posed as the minimax problem:

min
z2 ,T

max
bL rbrbU

a (10)

subject to : jgrðbÞjrgdes: (11)

The solution to Eq. (10) will be the z2 and T which will minimize the maximum a over the domain of interest of b, which also
satisfies the gr constraint.

4. Numerical results

The first example considered is to permit a comparison to a previous work [13] which developed an approximate method
to the damped main mass vibration absorber problem. This comparison will show the advantage of the proposed method over
the frequency range of interest. The second example set illustrates the dependence of the vibration absorber design and
performance on the vibration absorber mass ratio and the main system damping ratio.
Please cite this article as: B. Brown, & T. Singh, Minimax design of vibration absorbers for linear damped systems, Journal of
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4.1. Example 1

Using the problem formulation proposed in this paper, the non-dimensional parameters of the primary system arem¼ 0:1,
z1 ¼ 0:1, and o1 ¼ 100 rad=s. The nominal forcing frequency was selected to be the natural frequency of the main system
ðbn ¼ 1Þ and the frequency range of interest was centered on this frequency. No additional knowledge of the forcing frequency
distribution is utilized in these results. For this set of solutions there was no limit set on the absorber mass vibration
magnitude, gdes. It can be seen in Fig. 3 that the solution to the problem posed in this paper performs better than those
presented by Pennestr�ı [13], when the range of the forcing function frequency is small. When the normalized frequency range
around the nominal frequency remains below 0.405, the method developed offers a significant advantage. The minimax
approach presented in this paper outperforms the previous work [13] below a frequency range of 0.405 since the two
resonance peaks are not included in the domain of interest and consequently the optimizer is not constrained by magnitude
of the resonance peaks. Converting to standard frequencies, a 0.405 normalized range relates to a forcing frequency range of
82:8 rad=sror117:2 rad=s. As the range of the forcing function frequency increases, the solution asymptotically
approaches that presented in the paper by Pennestr�ı [13]. If the frequency range of interest do not include the two
resonance peak frequencies then the proposed method would yield even larger improvements over a non-specific frequency
range method. Notice in Table 1 that the reported gmax value does not exactly match that presented in [13].

Fig. 2 illustrates the optimal parameters of the vibration absorber as the range of the frequency about the nominal forcing
frequency increases. Notice in Figs. 2 and 3 around the frequency range of 0.23, the optimal parameters transition sharply.
These points are where the first resonance peak enters the range of interest of the forcing frequency. It should also be noted in
Figs. 2 and 3 that amax for a normalized frequency range of 0 which corresponds to exact knowledge of the forcing frequency
results in a zero displacement of the primary mass and the corresponding damping ratio of the absorber is zero, which is the
expected result. In Figs. 2 and 3 the Pennestr�ı solution is considered constant. The value for amax was evaluated over varying
ranges of forcing frequency for the Pennestr�ı solution, but the solution varied only slightly. This slight variation can be seen in
Fig. 4, as the small difference between the minima and the maxima over the larger frequency ranges. Fig. 4 illustrates the
evolution of the optimala curve as a function of the forcing frequency range. In this figure the surface is plotted over the range
Table 1
Example 1: Optimal parameters.

Topt f2,opt amax cmax

Pennestr�ı 0.861 0.202 2.6272 6.1883

This investigation 0.8619 0.1986 2.6227 6.2488
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of permitted forcing frequency. It can be seen as the range of normalized frequency range increases from zero, a starts at zero
and saturates at a value which corresponds to Pennestr�ı [13] solution which is valid for an unconstrained range of forcing
frequency. A solid black line is included in the valley of surface to illustrate the movement of the minima of the surface to
smaller values of b as the frequency range is increased.

For all of this study the frequency range of interest varied from 0 to 0.45. The upper limit of 0.45 was selected since this was
larger than the range at which the optimal parameters of the absorber do not change. The lower limit of 0 was selected to
illustrate the behavior of the vibration absorber design at a known frequency. At a known frequency an optimal vibration
absorber will be one which has the same natural frequency as the main system with no damping. This vibration absorber
design will result in exactly zero vibration of the main mass and a m�1 maximum magnitude vibration of the absorber mass.
All of these expected results were confirmed by the results and are shown in Figs. 2 and 3.

5. Example 2

In this section, the proposed minimax approach is used to study the effect of the main mass system damping ratio, z1, and
the mass ratio, m, on the optimal vibration absorber parameters.

5.1. Effect of z1

In this subsection the effects of the main system damping ratio on the optimal design of a vibration absorber are studied.
Results illustrated in Figs. 2 and 3 can be generalized by including an additional dimension which corresponds to the damping
ratio of the primary system. Figs. 5 and 6 show the effects of main mass damping on the optimal maximum values of a and gr .
Figs. 7 and 8 illustrate the sensitivity of the design variables to the main mass damping. The vibration absorber in these figures
has a mass ratio of 0.1 (m¼ 0:1).
Please cite this article as: B. Brown, & T. Singh, Minimax design of vibration absorbers for linear damped systems, Journal of
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Notice in Fig. 5 that the maximum mass vibration magnitude has three distinct sensitivity domains: at small and large
frequency ranges and at a narrow band in between. Fig. 6 shows a spike in the maximum vibration absorber magnitude along
a frequency range ridge of 0.216. This coincides with the inclusion of the first resonance peak in the range of interest. Fig. 7
illustrates the variation of the optimal z2 as a function of frequency range and z1. The relatively smooth transition seen in
Example 1 (Fig. 2) as the frequency range increases for z1 ¼ 0:1, can be seen in Fig. 7. However, as z1 decreases the corners in
the curve become sharper until at z1 ¼ 0, a jump occurs in the optimal value of z2 when the higher resonance peak is included
within the frequency range. The variation of the optimal absorber parameters for z1 ¼ 0 will be analyzed in greater detail later
in this section. The optimal absorber parameters z2 and T surfaces show that in some cases very small changes in the
frequency range magnitude can cause large changes in the optimal design, especially as the main mass damping decreases.

To better comprehend the results of the minimax optimization, the variation in the parameters of the vibration absorber
are studied for systems where the primary system damping ratio z1 = 0. It can be seen from Fig. 9(a) that for systems where
the primary system’s damping ratio is zero, the frequency response function of the vibration absorber system is characterized
by two points P and Q which are invariant to z2. The frequency response function with z2 = 0, always lies below the frequency
response function for any non-zero value of z2. This implies that if the uncertain forcing frequency lies within the frequencies
corresponding to the points P and Q, the optimal magnitude of the parameter z2 is zero. For z1 = 0, this is evident in Fig. 7 which
illustrates the variation of z2 as a function of the normalized frequency range. Fig. 9(a) also illustrates that the slope of the a
Please cite this article as: B. Brown, & T. Singh, Minimax design of vibration absorbers for linear damped systems, Journal of
Sound and Vibration (2010), doi:10.1016/j.jsv.2010.12.002
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curve is greater for frequencies which lie below the notch at b=1 compared to frequencies above b=1. Note that the notch
occurs at b=T. Consequently, for symmetric uncertainty about the normalized frequency of b=1, reducing T permits equating
the worst magnitude ofa at the boundary of symmetric uncertain domain. This intuition is confirmed in Fig. 8 where for z1 = 0,
T gradually decreases with an increase in the normalized frequency range.

Fig. 10 illustrates a sudden change in the frequency response function as the normalized frequency range is increased. This
transition occurs when the high frequency resonance peak lies at the border of the uncertain region. The location of this
transition is found knowing a few of the characteristics of the transition. First, the frequency response function with and
without damping must be equal at both extremes of the range. Second, the slope of the damped frequency response function
must be zero at the right (Q) point. The exact magnitude of the uncertain region can be determined by simultaneously solving
the equations for d, zt , T0 and Tt:

aðb¼ 1þd,z¼ 0,T0Þ ¼ aðb¼ 1þd,z¼ zt ,TtÞ, (12)

aðb¼ 1�d,z¼ 0,T0Þ ¼ aðb¼ 1�d,z¼ zt ,TtÞ, (13)
Please cite this article as: B. Brown, & T. Singh, Minimax design of vibration absorbers for linear damped systems, Journal of
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aðb¼ 1�d,z¼ 0,T0Þ ¼ aðb¼ 1þd,z¼ 0,T0Þ, (14)

d

db
aðb¼ 1þd,z¼ zt ,TtÞ ¼ 0, (15)

where T0 corresponds to the frequency response curve for z1 =0 and Tt corresponds to the curve for z¼ zt . 2d parameterizes
the uncertain frequency range which is symmetric about the nominal forcing frequency of b¼ 1. Using constraint equations,
shown in Eqs. (12)–(15), the parameters characterizing the transition of the two frequency response curves are found to be:
d¼ 0:10781, Tt ¼ 0:94218, T0 ¼ 0:98538, zt ¼ 0:13843. These values correspond exactly to what is seen in Figs. 7 and 8 before
and after the transition to a damped solution. Evaluating the expressions for a and gr at bþd, it is found that amax ¼ 4:20576
and gmax ¼ 20:09770. These values correspond with the evaluations shown in Figs. 5 and 6.

The solid line in Fig. 9(b) illustrates the frequency response curve at the transition for z1 ¼ zt . The dashed line is the
corresponding curve for z1 =0, which illustrates that the magnitude of the two curves are the same the boundary of the uncertain
domain of the forcing frequency. The dash-dot line corresponds to the next transition when the two resonance peaks have the
same value and the low resonance frequency lies at the lower border of the uncertain frequency domain. After this transition the
optimal vibration absorber parameters are invariant to any further increase in the normalized frequency range.

Randall [12] presents analysis of the optimal T for the case where the primary system damping z1 =0. In Fig. 8, it can be seen
for the normalized frequency range greater than 0.3139, the optimal T is a constant when the damping ratio z1 = 0. This
corresponds to the case when the two resonance peaks lie within the normalized frequency range and as shown by Randall
[12], the optimal value of T is determined by forcing the magnitudes of the two resonance peaks to be the same and the
resulting solution is

T ¼
1

1þm
, (16)

which results in T ¼ 0:9091 for m= 0.1. This is exactly what is shown in Fig. 8 for z1 ¼ 0. The closed form expression for the
magnitude of the peak is

amax ¼
2þm
m

, (17)

and the two frequencies which correspond to the resonance peaks are

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þmÞðT2ðmþ1Þþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4ðmþ1Þ2�2T2þ1

qr
Þ

2þm
, (18)

b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þmÞðT2ðmþ1Þþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T4ðmþ1Þ2�2T2þ1

qr
Þ

2þm : (19)

The frequency range symmetric about b¼ 1 which captures both resonance peaks can be found by the equation:

Db¼ 2ðdÞ ¼ 2ð1�b2Þ: (20)

In Eq. (20), b2 is used since the left resonance peak is the farthest from b¼ 1. Evaluating Eq. (20) for m¼ 0:1 at the optimal T,
the range is found to be 0.3139. This is exactly what is shown in the results in Fig. 8.

The optimal damping ratio z2 can be determined from the equation:

aðb1Þ ¼
2þm
m

, (21)

which results in z2 ¼ 0:17779 which is exactly what is shown in Fig. 7 for a damping ratio z1 =0 and for large normalized
frequency range.

5.2. Effect of m

This subsection will present the results when the vibration absorber mass ratio is also a design variable. The results of
the minimax optimization will yield information about the effects of the selection of mass ratio on the maximum main
mass vibration amplitude. Ideally this mass ratio would be as high as possible, but constraints on the system would provide
bounds on the acceptable range of mass ratio. The effect of the mass ratio on amax, gmax, optimal z2 and optimal T is shown in
Figs. 11–14. The system shown in these figures has a main system damping ratio of z1 ¼ 0:1. Notice in each figure that there
are regions where small changes in the frequency domain or mass ratio yield large changes in the response/variables of the
system. For example, in Fig. 11 it can be seen that ifm is increased from 0.1 to 0.25, amax can be reduced by almost a third, from
2.2 to 0.75, if the normalized forcing frequency domain range is 0.2. The grid in Fig. 11 is included to illustrate the variation in
amax for m ranging from near zero to 0.25 in steps of 0.05. The second vertical line and the fifth vertical line correspond to m of
0.1 and 0.25, respectively. Also notice the three distinct domains in Fig. 13, where the optimal z2 responds very differently to
changes in the frequency range and the mass ratio. For small normalized frequency range bn, and large mass ratio m, the
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damping ratio of the absorber is small and grows rapidly with a decrease in mass ratio and an increase in the normalized
frequency range until it hits a ridge. The growth in the damping ratio of the absorber is slower for further increase in the
normalized frequency range and the reduction of the mass ratio. A second ridge highlights the variation of the optimal
damping ratio of the absorber for small mass ratio m and large normalized frequency range bn. The two ridges correspond to
the two resonance peaks of the frequency response function of the vibration absorber system influencing the optimal solution
of the minimax problem. Fig. 14 also shows a distinct change in the sensitivity of optimal T to mass ratio and frequency range
in the same areas as z2 (higher frequency ranges). This suggests that the design of the optimal vibration absorber becomes
more sensitive to design changes as the range of concerned frequencies increases.
6. Conclusions

A minimax problem formulation is presented for the design of parameters for a vibration absorber in the presence of
uncertain forcing frequency. This method offers improvement over results presented in the literature by utilizing knowledge
about the expected forcing frequency range for a damped main mass system. For the primary system damping z1 ¼ 0:1, when
the normalized frequency range about the nominal frequency remained below 0.405, this method minimized the maximum
main mass displacement magnitude to a value lower than methods available in the literature which do not exploit the
frequency ranges of interest in their design. When the range was larger than 0.405 of the normalized frequency, the results of
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the proposed method coincided with those available in published papers, offering the advantage of a generalized design
approach. The influence of the main system damping on the optimal design and the performance of the vibration absorber
was also studied. This study illustrated the extreme sensitivity of the optimal design to slight changes in the forcing frequency
range, especially as the main system damping decreases. Results generated for an undamped main system corresponded to
expected results of a classical system. The effect of the mass ratio on the performance of the vibration absorber was also
studied, illustrating the vibration absorber performance sensitivity to mass ratio, allowing for a more informed decision in the
design process. It should be pointed out that the minimax design approach presented in this paper can be extended to deal
with multiple absorber design for multi-mode systems and will be carried out in the future.
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