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State Uncertainty Propagation
in the Presence of Parametric
Uncertainty and Additive White
Noise
The focus of this work is on the development of a framework permitting the unification of
generalized polynomial chaos (gPC) with the linear moment propagation equations, to
accurately characterize the state distribution for linear systems subject to initial condi-
tion uncertainty, Gaussian white noise excitation and parametric uncertainty which is
not required to be Gaussian. For a fixed value of parameters, an ensemble of moment
propagation equations characterize the distribution of the state vector resulting from
Gaussian initial conditions and stochastic forcing, which is modeled as Gaussian white
noise. These moment equations exploit the gPC approach to describe the propagation of
a combination of uncertainties in model parameters, initial conditions and forcing terms.
Sampling the uncertain parameters according to the gPC approach, and integrating via
quadrature, the distribution for the state vector can be obtained. Similarly, for a fixed
realization of the stochastic forcing process, the gPC approach provides an output distri-
bution resulting from parametric uncertainty. This approach can be further combined
with moment propagation equations to describe the propagation of the state distribution,
which encapsulates uncertainties in model parameters, initial conditions and forcing
terms. The proposed techniques are illustrated on two benchmark problems to demon-
strate the techniques’ potential in characterizing the non-Gaussian distribution of the
state vector. [DOI: 10.1115/1.4004072]

1 Introduction

In applications from hurricane forecasting to robust control of
cranes on ships transferring freight on the high seas, to predicting
the probability of an asteroid path intersecting the path of the
earth, one is confronted with the problem of dealing with approxi-
mate models and unmodeled disturbances. The benefits accruing
from efficient deployment of assets and evacuation of populations
in the case of a hurricane landfall are tremendous, if the landfall
uncertainty has been accurately characterized. These examples
lucidly illustrate the need for algorithms that can accurately fore-
cast dynamic system states and characterize the associated uncer-
tainties. The importance of quantifying the effects of uncertainties
is reflected by the formulation of challenge problems by Ober-
kampf et al. [1] for an algebraic problem and an ordinary differen-
tial equation representing the dynamics of a spring–mass–dashpot.

The mathematical models used to represent physical processes
often reflect the many assumptions and simplifications required to
permit determination of a tractable model. The solution state x of
these models is therefore uncertain and may be described by a
time-dependent probability density function (pdf) pðt; xÞ. The
uncertainty inherent in these models is either due to a lack of com-
plete description of the system, i.e., model truncation, or due to the
uncertainty in model parameters and input to the system. Such
models may be characterized by uncertain model parameters and
stochastic forcing terms. Together these factors cause overall
accuracy to degrade as the state evolves. The uncertainty in the so-
lution of the models could also arise due to the uncertainty in initial
and boundary conditions driving the models. Robust modeling of
the propagation of these uncertainties is important to accurately
quantify the uncertainty in the solution at any future time. A naive

approach to account for all uncertainties is to sample all possibil-
ities using the model and have some mechanism for averaging the
outputs appropriately. Unfortunately for many classes of realistic
models, the computational cost of this approach makes it infeasible.

Uncertainty propagation in various kinds of dynamical systems
and physical processes has been studied extensively in various
fields of engineering, finance, physical, and environmental sciences
[2–6]. The exact propagation of the state pdf for linear dynamical
systems subject to initial condition and temporal stochastic disturb-
ance generally modeled as a white noise process is given by a finite
number of moment propagation equations [7,8]. On the other hand,
methods based on generalized polynomial chaos (gPC) have
emerged as powerful tools to propagate time-invariant parametric
uncertainty through an otherwise deterministic system of equations,
to predict a distribution of outputs [9–14]. Nagy and Bratz [13] use
power series expansion and polynomial chaos expansion to quantify
the uncertainty in the output of nonlinear systems, and illustrate it
on a batch crystallization process. Hover and Triantafyllou [12] use
Polynomial Chaos to analysis the transient response and stability of
nonlinear systems due to uncertainties in model parameters. Fisher
and Bhattacharya [14] provide a framework for designing infinite
time horizon Linear Quadratic Regulator (LQR) controllers in the
presence of probabilistic uncertainties in the model parameters, and
Singh et al. [15] uses the gPC method to design robust input shapers
for precise control of mechanical systems. While gPC can effi-
ciently characterize the state uncertainty due to time-invariant ran-
dom parameters having arbitrary probability distributions, using
gPC series expansion for the time-varying stochastic forcing terms
is computationally expensive. For stationary stochastic processes,
which are correlated in time, a smaller set of terms in the expansion
may be enough to model the random processes to keep the compu-
tation feasible [11,16]. However, for a model driven by white noise,
an infinite number of terms is required to model the process [11].
The computational costs increase exponentially with the increase in
the number of time steps, due to the increase in the stochastic
dimensionality even for a linear dynamical system.
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While these methods work very well and even provide exact
description of the uncertainty propagation for linear dynamical
systems subject to either initial condition and temporal stochastic
disturbance modeled as white noise process or time-invariant
parametric uncertainty, the main challenge lies in characterizing
the uncertainty in the system states due to both parametric and
temporal stochastic uncertainties simultaneously. A multiple-
model estimation method involving a bank of Kalman filters with
prior probabilities assigned to each filter has been proposed in
Ref. [17] to manage both uncertainties. The main limitation of
this method is that it assumes the uncertain parameters belong to a
discrete set. The uncertain parameter vector is quantized to a finite
number of grid points with known prior probabilities. The state
conditional mean and covariance are propagated for each model
corresponding to a grid point, and the first two moments of system
states are computed by a weighted average of the moments corre-
sponding to various prior models. Alternatively, the uncertain pa-
rameters are appended to the system state vector to characterize
the effect of their uncertainty, which results in a nonlinear dynam-
ical system even in the case that the original system dynamics
were linear. Several approximate techniques may be used to study
the uncertainty propagation problem through the resulting nonlin-
ear dynamical systems, the most popular being Monte Carlo (MC)
methods [18], Gaussian closure [19], equivalent linearization [20],
and stochastic averaging [21,22]. Except for the Monte Carlo
approach, most of the methods are similar in several respects,
incorporating linear approximations to the nonlinear system
response, or involving the propagation of only a few moments (of-
ten, just the mean and the covariance) of the pdf. These methods
have been shown to work well if the amount of uncertainty is
small and there is adequate local linearity. Another class of meth-
ods, often used with models involving many uncertain parameters,
are the various sampling strategies [23]. The uncertainty distribu-
tions are taken into account by appropriately sampling values
from known or approximated prior distributions, and the model is
run repeatedly for those values to obtain a distribution of the out-
puts and estimate the posterior pdf. Monte Carlo or other sampling
based methods require extensive computational resources and
effort, and become increasingly infeasible for high-dimensional
dynamic systems [24].

In short, although many algorithms exist in the literature to
accurately characterize the uncertainty propagation problem for
linear and nonlinear dynamical systems, none of them is able to
incorporate both parametric and temporal stochastic uncertainties

simultaneously with scalable computational costs, even for linear
dynamical systems. In this work, we focus on developing analyti-
cal means to accurately characterize the state pdf of a linear sys-
tem subject to initial condition uncertainty, white noise excitation,
and possibly non-Gaussian parametric uncertainty. The Bayesian
framework is used to characterize the effect of uncertainty due to
stochastic forcing, while the gPC framework is used to character-
ize the effect of parametric uncertainty.

The remainder of this paper is organized as follows: first the
theory which integrates the Bayesian framework with the gPC
framework to characterize the uncertainty in parameters, initial
conditions and due to white noise excitation is presented, followed
by the details on the proposed approaches. The proposed methods
are illustrated on benchmark examples, and the results are com-
pared with the Monte Carlo solutions. Finally, the conclusions
and directions for future work are presented.

2 Hybrid Bayesian-gPC Uncertainty Propagation

In conventional deterministic systems, the system state assumes
a fixed value at any given instant of time. However, in stochastic
dynamics, it is a random variable and for linear time-invariant sys-
tems driven by Gaussian white noise, its time evolution is given
by the following stochastic differential equation:

_x ¼ AðHÞxþ BðHÞuþGðHÞg; xðt0Þ ¼ l0 (1)

where, xðtÞ 2 Rn represents the stochastic system state vector at
time t, H 2 Rm the uncertain time-invariant system parameters, u
the deterministic forcing terms, g 2 Nðt;x; 0;QÞ the stochastic
forcing zero mean Gaussian white noise process with the correla-
tion function Qdðt1 � t2Þ, and l0 the random initial state modeled
as Gaussian. The Gaussian white noise process g is assumed to be
uncorrelated in time and with other uncertainties in model param-
eters and initial conditions. The uncertain parameters H are
assumed to be functions of a random vector n having a known pdf
pðnÞ, with common support X. The uncertainty associated with
the state vector x is usually characterized by time parameterized
state pdf pðt; x;HÞ. In essence, the study of stochastic systems
reduces to finding the nature of time evolution of the initial sys-
tem-state pdf pðt0; x0;HÞ generally assumed to be Gaussian with
mean l0 and covariance R0. A key idea of this work is to replace
the time evolution of state in the dynamic model by the time evolu-
tion of state probability distribution as shown in Fig. 1. By

Fig. 1 State and pdf transition
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computing the full probability density functions, we can monitor
the evolution of uncertainty, represent multimodal distributions,
incorporate complex prior models, and exploit Bayesian belief
propagation, both through space and time.

It is well-known that for any fixed value of H, the system state
pdf of the linear model described by Eq. (1) is Gaussian. The
propagation of uncertainty in the stochastic model of Eq. (1) for a
given value of parameter Hi can be described using the state
mean and covariance propagation when the forcing term is addi-
tive white Gaussian noise (AWGN) and initial conditions are
Gaussian. Notice that if one appends the state vector x with
unknown parameter vector H, the resulting state-space model will
be nonlinear in nature and propagation of just mean and covari-
ance would not suffice to accurately propagate the uncertainty. On
the other hand, the uncertainty propagation of Eq. (1) can be effi-

ciently described using polynomial chaos series expansion for a
given realization gi of the input. Since the stochastic forcing terms
are independent random variables at different times, using gPC
expansion to model the stochastic forcing terms is computation-
ally intractable.

The main idea of this work is to marry gPC with linear moment
propagation equations, to properly integrate the conditional distri-
bution function and thence determine the posterior distribution of
the full system. Owing to the independence of parametric and
forcing uncertainties, the posterior state distribution can be
obtained by conditioning first on either of these uncertainties as
shown in Fig. 2.

For a fixed value of parameter H ¼ Hi, an ensemble of moment
propagation equations provides an output distribution owing to
stochastic forcing. This approach can be further combined with

Fig. 2 Proposed ideas for uncertainty propagation through a stochastic linear
dynamical system: (a) method 1: conditioning first on uncertain parameters and (b)
method 2: conditioning first on Gaussian stochastic forcing
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polynomial chaos to describe the propagation of a combination of
uncertainties in model parameters, initial conditions, and forcing
terms. Varying the H inputs according to gPC approach, and inte-
grating via quadrature, one can obtain the joint likelihood function
as shown in Fig. 2(a). Similarly, for a fixed realization of the
stochastic forcing process g ¼ gi, the gPC approach provides an
output distribution owing to parametric uncertainty. This approach
can be further combined with moment propagation equations to
describe the propagation of a combination of uncertainties in
model parameters, initial conditions, and forcing terms, as shown
in Fig. 2(b).

3 Uncertainty Propagation

3.1 Method 1: Conditioning First on Uncertain Parameters.
For a particular realization of the uncertain model parameters, the
system states of the linear model described by Eq. (1) are Gaus-
sian due to AWGN and Gaussian initial condition. The condi-
tional state pdf pðxjHÞ is a normal distribution with mean l and
covariance R, i.e., pðxjHÞ ¼ N ðx; l;RÞ. The two conditional
moments of the model states x are given by the following
equations:

_l ¼ AðHÞlþ BðHÞu (2)

_R ¼ AðHÞRþ RATðHÞ þGðHÞQGTðHÞ (3)

These conditional moment propagation equations are exact and
depend only on the initial moments and the model parameters.
These expressions can be used to obtain different realizations for
l and R, by Monte Carlo sampling of the random vector H. Each
realization of l and R represents the mean and covariance of the
conditional distribution of x corresponding to a particular realiza-
tion of the uncertain model parameters. As noted earlier, for a
given realization of the model parameters, the distribution of x is
Gaussian due to the additive white Gaussian forcing term. The
complete distribution of the original state vector x at any time t,
can thus be estimated from its realizations obtained by independ-
ent Monte Carlo sampling of the various Gaussian distributions
resulting from the various samples of HðnÞ as

pðt; xÞ ¼
ð

X
pðt; xjHðnÞÞpðnÞdn (4)

¼
ð

X
Nðt; x; lðt;HÞ;Rðt;HÞÞpðnÞdn (5)

It is well-known that the Monte Carlo sampling requires extensive
computational resources and effort, and become increasingly
infeasible for high-dimensional dynamic systems [24]. To avoid
Monte Carlo sampling, we make use of gPC to obtain the distribu-
tion for l and covariance R in terms of the random variable n.

3.1.1 Polynomial Chaos. Polynomial chaos is a term origi-
nated by Norbert Wiener in 1938 [9] to describe the members of
the span of Hermite polynomial functionals of a Gaussian process.
According to the Cameron–Martin Theorem [25], the Fourier–
Hermite polynomial chaos expansion converges, in the L2 sense, to
any arbitrary process with finite variance (which applies to most
physical processes). This approach is combined with the finite ele-
ment method to model uncertainty in Ref. [11]. This has been gen-
eralized in Ref. [10] to efficiently use the orthogonal polynomials
from the Askey-scheme to model various probability distributions.

The basic goal of the approach is to approximate the stochastic
system states in terms of a finite-dimensional series expansion in
the infinite-dimensional stochastic space. The completeness of the
space allows for the accurate representation of any random
variable, with a given pdf, by a suitable projection on the space
spanned by a carefully selected basis. The basis can be chosen for

a given pdf, to represent the random variable with the fewest num-
ber of terms. For example, the Hermite polynomial basis can be
used to represent random variables with Gaussian distribution
using only two terms. For dynamical systems described by para-
meterized models, the unknown coefficients are determined by
minimizing an appropriate norm of the residual.

Combining the state mean and covariance terms into a new
state vector z 2 RN where N ¼ nðnþ 3Þ=2, the propagation equa-
tions represent an augmented model describing the evolution of z
without a stochastic forcing term

_z ¼ LðHÞzþMðHÞw (6)

where LðHÞ 2 RN�N is the augmented system matrix, MðHÞ
2 RN�q is the augmented input matrix corresponding to the trans-
formed input vector w 2 Rq for the augmented model.

Applying gPC, each of the uncertain states and parameters can
be expanded approximately by the finite-dimensional Wiener–
Askey polynomial chaos [10] as

ziðt; nÞ ¼
XP

r¼0

zirðtÞ/rðnÞ ¼ zT
i ðtÞUðnÞ (7)

HjðnÞ ¼
XP

r¼0

hjr/rðnÞ ¼ hT
j UðnÞ (8)

LijðHÞ ¼
XP

r¼0

Lijr/rðnÞ ¼ lT
ijUðnÞ (9)

MijðHÞ ¼
XP

r¼0

Mijr/rðnÞ ¼ mT
ijUðnÞ (10)

where Uð:Þ 2 RP is a vector of polynomials basis functions or-
thogonal to the pdf pðnÞ, which can be constructed using the
Gram–Schmidt orthogonalization process [26]. The coefficients
Lijr and Mijr are obtained by making use of following normal
equations:

Lijr ¼
LijðHðnÞÞ;/rðnÞ
� �

/rðnÞ;/rðnÞh i

Mijr ¼
MijðHðnÞÞ;/rðnÞ
� �

/rðnÞ;/rðnÞh i

where uðnÞ; vðnÞh i ¼
Ð
X uðnÞvðnÞpðnÞdn represents the inner prod-

uct induced by pdf pðnÞ. For linear and polynomial functions, the
integrals in the inner products can be easily evaluated analytically
[11] to obtain the coefficients. For nonpolynomial nonlinearities,
numerical quadrature methods are used to evaluate the multidi-
mensional integrals.

The total number of terms in the gPC expansion is Pþ 1 and is
determined by the chosen highest order (l) of the polynomials /rf g
and the dimension (m) of the vector of uncertain parameters H

Pþ 1 ¼ ðlþ mÞ!
l!m!

(11)

Substitution of the approximate expressions for x and H in Eqs.
(7) and (8), in Eq. (6) leads to

eiðnÞ ¼ _zT
i UðnÞ �

XN

j¼1

lT
ijUðnÞzT

j ðtÞUðnÞ

�
Xq

j¼1

mT
ijUðnÞwjðtÞ; for i ¼ 1;…;N (12)

where eðnÞ represents the error due to the truncated gPC expan-
sions of z. The NðPþ 1Þ time-varying unknown coefficients zir
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can be obtained using the Galerkin projection method. Projecting
the error onto the space of orthogonal basis functions /rf g and
minimizing, it leads to NðPþ 1Þ deterministic equations

eiðnÞ;/rðnÞh i ¼ 0 for i ¼ 1;…;N and r ¼ 0;…;P

_zir /2
r

� �
�

XN

j¼1

lT
ijUzT

j ðtÞU;/r

* +
�

Xq

j¼1

mT
ijUwjðtÞ;/r

* +
¼ 0

(13)

These integrals can be evaluated analytically for linear systems
resulting in a set of deterministic ordinary differential equations
(ODEs) with the coefficients of the gPC series expansions as the
states

_c ¼ Apcþ Bpw (14)

where cðtÞ ¼ ½zT
1 ðtÞ; zT

2 ðtÞ;…; zT
NðtÞ�

T 2 RNðPþ1Þ is a vector of the

gPC coefficients, Ap 2 RNðPþ1Þ�NðPþ1Þ is the deterministic system

matrix, and Bp 2 RNðPþ1Þ�q is the deterministic input matrix cor-
responding to the input vector wðtÞ.

Let Tr 2 RðPþ1Þ�ðPþ1Þ, for r ¼ 0;…;P; denote the inner prod-
uct matrix of the orthogonal basis functions defined as follows:

Trij
¼ 1

h/2
r i
h/iðnÞ/jðnÞ;/rðnÞi; i; j ¼ 0;…;P

¼ 1

h/2
r i

ð
X

/iðnÞ/jðnÞ/rðnÞdn (15)

Then, Ap can be written as an N � N matrix of block matrices,
each block Apij being a ðPþ 1Þ � ðPþ 1Þ matrix the (r)þ)1)th
row of which is given by

Apijðr; �Þ ¼ lTijTr; i; j ¼ 1;…;N (16)

The input matrix Bp can be written as N � q matrix of block mat-
rices, each block Bpij being a ðPþ 1Þ � 1 vector given by

Bpij ¼ mij i ¼ 1; � � � ;N; j ¼ 1;…; q (17)

Equation (14) can then be solved to obtain the time-history of
the coefficients zir . This implies solving a system of nðnþ 3Þ
ðPþ 1Þ=2 simultaneous deterministic ordinary differential equa-
tions. The solution of the stochastic system in Eq. (6) can thus be
obtained in terms of polynomial functionals of random variables ni

ziðt;HÞ ¼
XP

r¼0

zirðtÞ/rðnÞ; i ¼ 1;…;N

This expression can be used to estimate the moments of the aug-
mented state vector z consisting of various components for condi-
tional mean lðt;HÞ and covariance matrix Rðt;HÞ

E½zm
i ðt;HÞ� ¼ E

��XP

r¼0

zirðtÞ/rðnÞ
�m�

; i ¼ 1;…;N (18)

Now, the pdf of state vector x can be computed as follows:

pðxÞ ¼
ð

X
pðt; xjHðnÞÞpðnÞdn

¼
ð

X
Nðt; x; zðnÞÞpðnÞdn

¼
ð

X
N t; x;

XP

r¼0

zirðtÞ/rðnÞ
 !

pðnÞdn (19)

The pdf given by the integral in Eq. (19) and its moments can be
computed by making use of the quadrature integration scheme
corresponding to the polynomial basis /rðnÞf g. For an orthogonal
basis /rf g with /0 ¼ 1, the first two moments of the actual state
vector x can be estimated analytically, as follows:

E½xiðtÞ� ¼
ð

X
E½N ðt; x;

XP

r¼0

zirðtÞ/rðnÞÞ�pðnÞdn

¼
ð

X

XP

r¼0

lirðtÞ/rðnÞpðnÞdn ¼ li0ðtÞ (20)

E½x2
i ðtÞ� ¼

ð
X

E½x2
i ðtÞjn�pðnÞdn ¼

ð
X

l2
i ðt; nÞ þ Riiðt; nÞ

� 	
pðnÞdn

¼
ð

X

XP

r¼0

lirðtÞ/rðnÞ
 !2

þ
XP

r¼0

Riir
ðtÞ/rðnÞ

2
4

3
5pðnÞdn

¼
XP

r¼0

li
2
r ðtÞh/2

r i þ Rii0
ðtÞ (21)

A major advantage of this gPC based approach is that one can
compute the sensitivity of mean and covariance of conditional pdf
pðt; xjHÞ ¼ N ðt; x; zðnÞÞ with respect to unknown parameter vec-
tor HðnÞ while making use of Eqs. (14) and (19). Furthermore,
one can use the sensitivity of conditional pdf to compute the sensi-
tivity of the distribution of state vector x denoted by pðxÞ with
respect to unknown parameter vector HðnÞ. While a detailed
deterministic sensitivity analysis can relate the variations in input
parameters to moments of state vector, uncertainty analysis casts
a much broader net in terms of assessing confidence of predictions
based on all available information.

3.2 Method 2: Conditioning First on Stochastic Forcing.
For a particular realization of the stochastic forcing terms, the
uncertainty propagation in the linear model described by Eq. (1)
can be described efficiently using the gPC approach. For a given
g ¼ gðxÞ, the model is similar to Eq. (6) and is given by

_x ¼ AðHÞxþ BðHÞuþGðHÞgðxÞ (22)

Using the gPC approach, the solution of the system can be
obtained in terms of approximate finite series expansion character-
izing the conditional state pdf pðxjgÞ, as follows:

xiðtÞ ¼
XP

r¼0

xirðt;xÞ/rðnÞ ¼ xT
i ðt;xÞUðnÞ (23)

Realizations of the gPC coefficients xir are obtained for each real-
ization of the Gaussian white noise process g. Each realization of
the gPC coefficients characterizes the conditional distribution of x
corresponding to a particular realization of the Gaussian white
noise process. This conditional distribution is a function of the
distribution pðnÞ of the uncertain model parameters and is gener-
ally non-Gaussian. The moments of this conditional distribution
can be estimated as in Eq. (18). Using the gPC method as
described in Sec. 3.1.1 and following equations Eq. (7) through
Eq. (14), the model in Eq. (22) with uncertain model parameters,
is transformed into a system of equations with deterministic pa-
rameters as follows:

_c ¼ Apcþ BpuþGpgðxÞ (24)

where cðtÞ ¼ ½xT
1 ðtÞ; xT

2 ðtÞ;…; xT
n ðtÞ�

T 2 RnðPþ1Þ is a vector of the
gPC coefficients, Ap 2 RnðPþ1Þ�nðPþ1Þ is the deterministic system
matrix, Bp and Gp are the deterministic input matrices corre-
sponding to the deterministic input u and stochastic input g,
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respectively. These matrices are obtained similarly as in Eqs. (16)
and (17).

The model described in Eq. (24) is a deterministic linear model
driven by a Gaussian white stochastic forcing g. Hence, the sys-
tem states of this model are Gaussian, and the moments are
exactly given by the moment propagation equations

_lc ¼ Aplc þ Bpu (25)

_Rc ¼ ApRc þ RcAT
p þGpQGT

p (26)

where lc ¼ ½lT
1 ;…; lT

n �
T

is the mean, and Rc is the covariance ma-
trix of the vector of gPC coefficients c. These moments character-
ize the Gaussian distribution of the gPC coefficients xir . Equations
(25) and (26) require solving a system of nðPþ 1Þ nðPþ 1Þ½ þ3�=2
simultaneous deterministic ODEs. In terms of these moments, the
pdf of state vector x can be computed as follows:

pðxÞ ¼
ð1
�1

pðt; xjgðxÞÞpðxÞdx

¼
ð1
�1

p
XP

r¼0

xirðtÞ/rðnÞ
 !

Nðt; c; lc;RcÞdc (27)

Quadrature techniques can be used to evaluate the integrals for
estimating the moments of this distribution. For orthogonal basis
/rf g with /0 ¼ 1, the first two moments of the state vector x can

be estimated analytically as follows:

E½xiðtÞ� ¼
ð1
�1

E

�XP

r¼0

xirðt;xÞ/rðnÞjx
�
Nðt; c; lc;RcÞdc

¼
ð1
�1

xi0ðt;xÞN ðt; c; lc;RcÞdc ¼ li0ðtÞ (28)

E½x2
i ðtÞ� ¼

ð1
�1

E

��XP

r¼0

xirðt;xÞ/rðnÞ
�2

jx
�
Nðt; c; lc;RcÞdc

¼
ð1
�1

�XP

r¼0

xi
2
r ðt;xÞh/2

r i
�
Nðt; c; lc;RcÞdc

¼
XP

r¼0

li
2
r ðtÞ þ R2

ir ir
ðtÞ

h i
h/2

r i (29)

3.3 Computational Comparison of the Methods. Method 1
requires solving a system of nðnþ 3ÞðPþ 1Þ=2 simultaneous

deterministic ODEs. Method 2 requires solving a system of
nðPþ 1Þ nðPþ 1Þ þ 3½ �=2 simultaneous deterministic ODEs. A
Monte Carlo approach for the same system requires solving the
original system of equations given by Eq. (1), for many process
noise and uncertain parameter realizations. For N Monte Carlo
runs, the solution requires solving nN differential equations, which
in general turns out to be much larger than the number of equa-
tions required for either of the proposed approaches. The compu-
tational time is expected to be the least for the first method and the
largest for the Monte Carlo approach. Furthermore, it should be
mentioned that the total number of gPC terms, Pþ 1, increases
factorially with the number of uncertain parameters as given by
Eq. (11). This makes the implementation of gPC approach compu-
tationally expansive for systems with large number of unknown
parameters. However, Non-intrusive spectral projection (NISP)
[27–29] or Polynomial chaos quadrature (PCQ) [30] methods can
be used to reduce some of the computational burden associated
with the gPC approach.

4 Results and Discussion

The proposed methods for uncertainty propagation are illus-
trated in this section using two numerical examples. The moments
of the state probability distributions are evaluated using the two
techniques proposed in this paper and are compared with the
Monte Carlo solutions.

4.1 Spring-Mass System. A simple mass–spring–damper
system, shown in Fig. 3(a), with an uncertain spring stiffness coef-
ficient k, which is driven by a zero mean Gaussian stochastic forc-
ing u is considered. The system is described by

m€xþ c _xþ kx ¼ u (30)

The mass, m ¼ 1, is released at x0 ¼ 5, with velocity _x0 ¼ 0. The
system has a known damping constant c ¼ 0:1. The evolution of
the states of the nominal system, for k ¼ 2 and no stochastic forc-
ing, is shown in Fig. 3(b). The spring stiffness k is assumed to be
uniformly distributed between 1:5 and 2:5, while the zero mean
Gaussian stochastic forcing has a standard deviation of 2. The true
propagation of the uncertain states is well estimated by Monte
Carlo solution of the uncertain system described by Eq. (30), with
10000 sample runs of the model, independently sampling the
uncertain parameter k and the stochastic forcing u. The propaga-
tion of uncertainty in this linear dynamic model is estimated using
the proposed approaches and compared with the reference Monte
Carlo solution.

Fig. 3 Spring-mass system: (a) mass–spring–damper system and (b) evolution of nominal states
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In method 1 (Sec. 3.1), the given model is replaced by an aug-
mented model whose states represent the uncertainty of the orig-
inal states due to stochastic forcing. The conditional distribution
of the states given the model parameters is Gaussian character-
ized by its mean and covariance. The conditional mean and co-
variance propagation equations represent the dynamics of this
new augmented model, with the mean and covariance terms
being the states. These states are then approximated by a gPC se-
ries expansion of order 7, accounting for the uncertainty in the
model parameter k. Since k is a uniformly distributed random pa-
rameter, Legendre polynomials are used as the basis functions in
the gPC approximation. The system is then transformed into a
deterministic system of equations with the gPC coefficients of
the conditional mean and covariance, as the new states. Solving
this system involves the propagation of the gPC coefficients of
the conditional mean and covariance of the actual states. In
effect, the solution of this system represents the uncertainty of
the states characterizing the uncertainty due to stochastic
forcing.

In method 2 (Sec. 3.2), the states of the given model are first
approximated by a gPC series expansion of order 7, representing
the uncertainty in the model parameter k. The initial system is
transformed into an expanded system with the gPC coefficients as
the new states. The uncertainty of the gPC coefficients, due to the
stochastic forcing, is then propagated using the moment propaga-
tion equations of the linear dynamic model. Solving this system
involves the propagation of the mean and covariance of the gPC
coefficients of the actual states. In effect, the output obtained rep-
resents the uncertainty of the states characterizing the uncertainty
in model parameters.

The mean, variance (second central moment) and third central
moment of the states, the position, and the velocity of the mass, are
shown in Fig. 4. It can be seen that the estimated moments are con-
sistent with that of the reference Monte Carlo solution. The histo-
grams of the two states of the model at time t¼ 10 s are shown in
Fig. 5, evaluated using the three approaches. Further, the run time
for the Monte Carlo solution on a laptop gPC is 400 s, while the
same for the solutions using the hybrid Bayesian-gPC methods are

Fig. 4 Propagation of moments of the actual states: (a) propagation of mean, (b) propagation of variance, and (c) propagation
of third central moment

Fig. 5 Histograms of the states at t 5 10 s
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both less than 1 s. This illustrates the significant computational
advantage of the proposed approaches over the Monte Carlo solu-
tion, while providing comparable results for this example.

4.2 Hovering Helicopter Model. The example of a hover-
ing helicopter system [32] in the presence of random wind dis-
turbance uwðtÞ and uncertainty in model parameters is considered
to illustrate the significant computational advantage of the gPC
based approaches. The decoupled approximation to the longitu-
dinal motion of the OH-6A helicopter, shown in Fig. 6(a), is
described by

_x ¼ Axþ Bdþ Bwuw

where; x ¼

uh

qh

hh

y

2
6664

3
7775; A ¼

p1 p2 �g 0

p3 p4 0 0

0 1 0 0

1 0 0 0

2
6664

3
7775

B ¼

p5

p6

0

0

2
6664

3
7775 and Bw ¼

�p1

�p3

0

0

2
6664

3
7775 (31)

Fig. 6 Hovering helicopter system: (a) hovering helicopter [31] and (b) evolution of nominal states

Fig. 7 Propagation of moments of the states: (a) propagation of mean, (b) propagation of variance, (c) propagation of third cen-
tral moment, and (d) third central moment with 10,000 Monte Carlo runs
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The state vector x describes the horizontal velocity uh in foot per
second, the pitch angle of the fuselage hh in centiradians, its deriv-
ative qh in centi-radians per second, and perturbation y in foot
from a ground point reference. g corresponds to the acceleration
due to gravity given by 0:322, and uw represents the wind disturb-
ance described as a zero mean Gaussian white noise with a var-
iance of r2

w ¼ 18ðft=sÞ2. The six model parameters are referred to
as the aerodynamic stability derivatives ðp1;…; p4Þ and the aero-
dynamic control derivatives (p5 and p6). Let the unit initial condi-
tion vector of the model be given by

x0 ¼ 0:7929 �0:0466 �0:1871 0:5780½ �T (32)

The evolution of the states of the model is shown in Fig. 6(b), for
the nominal plant parameters

p ¼ �0:0257 0:013 1:26 �1:765 0:086 �7:408½ � (33)

and the control effort given by the longitudinal cyclic stick deflec-
tion d in deci-inches

d ¼ �Kx;where K ¼ 1:9890 �0:2560 �0:7589 1:0000½ �
(34)

The four aerodynamic stability derivatives are assumed to be
uncertain and uniformly distributed within the following bounds:

plb ¼ �0:0488; 0:0013; 0:126; �3:3535½ �T ;
pub ¼ �0:0026; 0:0247; 2:394; �0:1765½ �T

(35)

The true propagation of the uncertain states is estimated by Monte
Carlo solution of the uncertain system described by Eq. (31), inde-
pendently sampling the uncertain stability derivatives p1; p2; p3

and p4, and the wind disturbance uw. In this example, for the gPC
expansion, an order of 5 is chosen for both the approaches. The
propagation of these uncertainties in this linear dynamic model is
evaluated using the gPC based approaches and compared with the
Monte Carlo solution.

The mean, variance and the third central moment of the four
states of the helicopter model are shown in Fig. 7. In Figs. 7(a)–
7(c), the Monte Carlo solution is obtained from 100000 runs. It
can be seen that the estimated moments are consistent with that of
the reference Monte Carlo solution. Further, the run time for the
Monte Carlo solution on a laptop gPC is more than 1 h, compared
to the method 1 run time of less than 5 s and 1 min for the method
2. In Fig. 7(d), the third central moments obtained from the gPC-
based approaches are compared with that of the Monte Carlo solu-
tion obtained from 10000 runs. Comparing this with Fig. 7(c), it
can be seen that the gPC solution is more accurate than the Monte
Carlo solution with 10000 runs. The histograms of the four states
of the model at time t¼ 5 s are shown in Fig. 8, computed using
the three approaches. It can be seen that the histograms obtained
from the different methods are comparable.

5 Conclusion

Two new efficient hybrid Bayesian approaches based on poly-
nomial chaos are proposed in this work for the accurate determi-
nation of uncertainty propagation in linear dynamic models with
parametric and initial condition uncertainties and driven by addi-
tive white Gaussian noise process. The uncertainty due to the
AWGN stochastic forcing is propagated using mean and covari-
ance propagation equations and that due to uncertain model pa-
rameters using polynomial chaos. While the moment propagation
equations are exact only for white Gaussian stochastic forcing in
linear dynamic models, the generalized polynomial chaos
approach can be used for any probability distribution of model pa-
rameters. Both the proposed new methods are less computation-
ally demanding than the standard Monte Carlo, which requires
solving the dynamical model many times for many samples over
the space of uncertain parameters.

These methods can be extended to nonlinear dynamic models,
where the uncertainty due to white noise can be approximately
propagated using model linearization, unscented transform or
related methods. When measurements are available, this addi-
tional information about the distribution of the solution can be

Fig. 8 Histograms of the states at t 5 10 s
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used to update propagation model-based predictions using predic-
tion-correction filtering techniques. This suggests an extension of
this approach to robust filtering problems with dynamical models
having known parametric uncertainty distributions, a task cur-
rently under investigation.
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