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approach for state estimation of road-constrained targets is

addressed. The multiple models are designed to account for target

maneuvers including “move-stop-move” and motion ambiguity at

an intersection; the time-varying active model sets are adaptively

selected based on target state and local terrain condition. The

hybrid state space is partitioned into the mode subspace and the

target subspace. The mode state is estimated based on random

sampling; the target state as well as the relevant likelihood

function associated with a mode sample sequence is approximated

as Gaussian distribution, of which the conditional mean and

covariance are deterministically computed using a nonlinear

Kalman filter which accounts for road constraints in its update.

The importance function for the sampling of the mode state

approximates the optimal importance function under the same

Gaussian assumption of the target state.
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I. INTRODUCTION

A notable characteristic of ground target tracking
is that prior nonstandard information such as target
speed constraints, road networks, and so forth can
be exploited in the tracker to reduce the uncertainty
of target motion and provide better estimates of the
target state [1]. A tracker that ignores or is unable
to make use of this additional source of information
can only attain limited performance. In the cases
of low signal-to-noise ratio, the incorporation of
such constraint information is essential to successful
tracking.
Multiple-model estimation is widely used in the

tracking community to tackle motion and environment
uncertainty. The interacting multiple-model estimator
[2] based on (extended) Kalman filtering is one of
the best known multiple-model estimators. Recent
applications of multiple-model estimators to ground
target tracking were presented in [1], [3]—[11]. The
multi-model structure in ground target tracking is
a result of dynamics motion uncertainties, varying
terrain conditions, road segment constraints, and road
intersections. The underlying filtering techniques of
the multiple-model estimators include the nonlinear
filter that solves for the probability distribution using
an alternating direction implicit finite difference
method [3], the (extended) Kalman filter [4—8], and
the particle filter [1, 8—11].
Multiple-model estimation falls into the category

of nonlinear filtering even if every single model is
a linear system with Gaussian noise. A sufficient
statistic of the hybrid state distribution with a
fixed dimension is thus impossible. Moreover,
the complexity of the optimal multiple-model
estimator increases exponentially with time [1]. Both
the interacting multiple-model estimator and the
multiple-model particle filter are suboptimal nonlinear
filtering algorithms that maintain constant complexity
and computational expense. The former maintains
a constant number (i.e., the number of models) of
Kalman filters while the latter maintains a constant
number of (the most likely) particle trajectories. Such
suboptimality is inevitable in practical applications.
Kirubarajan and Bar-Shalom noted that for ground

target tracking a fixed-structure multiple-model
estimator has to consist of a large number of
models, owing to the many possible motion modes
and various road constraints, which is not only
computationally undesirable but also potentially
results in highly degraded estimates (due to the
excessive “competition” among the many models)
[4]. In order to overcome this problem, they
proposed an adaptive or variable-structure interacting
multiple-model estimator for ground target tracking
[4]. The basic idea is that the active model set varies
in an adaptive manner and thus only a small number
of active models need to be maintained at each time.
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Another variable-structure interacting multiple-model
estimator improving state estimation through the use
of road information was proposed in [7]. A feature
of the estimator in [7] is that the road network is
modeled as having both length and width. A variety
of motion models were considered in [7], including
the stopped model, the stationary moving model, the
constant velocity model, and the maneuver model.
In [8], the predicted probability distribution of the
road-constrained target is approximated as a Gaussian
sum on road segments, and roads with different
characteristics are treated within the interacting
multiple-model scheme.
Following the same idea of the variable-structure

interacting multiple-model estimator, a
variable-structure multiple-model particle filter
was proposed for ground target tracking in [1].
Particle filters comprise a very broad class of
suboptimal nonlinear filters based on sequential
Monte Carlo simulations in which the distributions
are approximated by weighted particles (random
samples) that are generated using pseudorandom
number generators. The specific particle filter
employed in [1] is known as the bootstrap filter.
Simulation results showed that the particle
filtering based approach has remarkably better
error performance. The reason for the superiority
of this particle filtering based approach to the
interacting multiple-model estimator, as noted
in [1], is that with particles or random samples
the simulation-based particle filter is able to
incorporate more accurate dynamics models and
estimate non-Gaussian distributions (e.g., an on-road
target at an intersection) more accurately than the
Kalman-filtering-based interacting multiple-model
estimator. It was also pointed out in [1] that while the
target is off-road the performance of the two filters is
comparable because the posterior distribution in the
off-road region, under no explicit hard constraints,
tends to be nearly Gaussian. The superiority of
multiple-model bootstrap filter to the interacting
multiple-model estimator within the fixed structure
multiple-model framework was demonstrated in
[12]. The applications of the bootstrap filter in
road-constrained target tracking were also proposed
in [8], [10], [11].
One of the major concerns of the application of

particle filtering to target tracking is its efficiency and
computational expense. The convergence rate of ideal
Monte Carlo sampling is of the order of O(1=pN),
where N is the number of particles [12]. The actual
convergence rate of a particle filter depends on the
choice of the importance function (also known as the
proposal distribution) and the size of the state space.
The bootstrap filter for multiple-model target tracking,
as given in [1], [8], [10]—[12], is simple to implement
but is also known for its inefficiency. A large number
of particles and therefore high computational expense

are usually required in order to attain certain accuracy
and robustness.
The main objective of this paper is to derive an

efficient particle filter for road-constrained target
tracking. The basic idea is to reduce the whole
sampling space of the multiple-model system to the
mode subspace by marginalization over the target
subspace and to choose better importance function for
mode state sampling. The design of such an efficient
particle filter is based on optimal particle filtering
for ideal jump Markov linear Gaussian systems, as
given in [13], [14]. Of particular interest is that for
jump Markov linear Gaussian systems, the target state
conditioned on a mode sample sequence (as well
as the observation time history) is exactly Gaussian
and therefore can be analytically determined using
a standard Kalman filter; the mode state is the only
part that needs to be estimated using particle filtering;
because the mode state only takes on a finite number
of discrete values, the optimal importance function
for the mode state based on marginalization can be
used. Stated in another way, for jump Markov linear
Gaussian systems, the variance reduction techniques
such as Rao-Blackwellization and optimal importance
function can be applied.
For variable-structure multiple-model-based

road-constrained target tracking, the assumption of
jump Markov linear Gaussian system is not exactly
met because of the nonlinearity of the observation
model, the use of variable-structure multiple models
for motion uncertainty and road ambiguity, and the
road constraints in target motion. (Strictly speaking,
the target mode is not an exact jump Markov process;
the transition of the target mode may depend on the
target position and velocity as well.) Our proposed
efficient particle filter is based on the Gaussian
approximation about the conditional target state
and likelihood function associated with each mode
sample sequence. The mean and covariance of the
conditional target state and the likelihood function
is computed using a nonlinear Kalman filter known
as the unscented filter [15]. This particle filter is
a combination of the sampling approximation of
the mode subspace and the analytic approximation
of the target subspace, and may outperform those
particle filters that are solely based on sampling
approximation, when the Gaussian approximation
holds to a satisfactory degree. Were the Gaussian
approximation of the target state severely violated, a
more general framework purely based on sampling
approximation [16] would be desired. As an aside,
we note that when applied to nonlinear models,
the interacting multiple-model estimator makes
the same Gaussian approximation about the target
states. Furthermore, the interacting multiple-model
estimator approximates a Gaussian mixture with a
single Gaussian distribution in the merging step.
An application of a similar efficient particle filter
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was proposed in [9] to solve the problem of ground
target tracking in [4]. An analogous particle filter
with similar algorithmic structure and Gaussian
approximation was successfully applied in a very
different context of multiple target data association
[17].
The ground moving target indicator (GMTI) radar

can provide detections on moving ground targets over
a large region and has become an extremely useful
sensor for surveillance of ground targets [1]. A special
problem with GMTI tracking of ground targets is
that when a target’s radial velocity (along the line
of sight from the sensor) falls below the minimum
detectable velocity, the target cannot be detected by
the sensor [5]. Note that the above statement is only
approximately true. A more realistic GMTI sensor
model characterized by the minimum detectable
velocity was discussed in detail in [18], which
includes a quantitative treatment of the probability
of detection as a continuous function of the target
kinematic state and relative target-sensor geometry.
In [8], [18], the dependence of the probability of
detection on the target state is used as a fictitious
measurement in the update of the target state. An
evasive target can use the so-called “move-stop-move”
strategy, in which it deliberately stops or moves at
a very low speed for some time before accelerating
again, to avoid detection by the sensor [5]. When
the target is actually stopped, prediction with a
constant velocity model or maneuver model leads to
large errors. The inference of target stop from the
event of lack of detection can at best be done in a
probabilistic manner because multiple causes exist
for the lack of detection. For example, in addition to
target stop, the target may not be detected due to the
less-than-one probability of detection. In [5], a simple
strategy to tracking the move-stop-move maneuver
by augmenting the mode set with a stopped target
model was proposed. More complex strategy that
takes data association into account was presented
in [6]. Assuming that the correct data association is
known, we apply the strategy of [5] in the context of
particle filtering.
The organization of the paper proceeds as follows.

First, the dynamics and observation models for
road-constrained target are presented. Then the
particle filtering theory for jump Markov systems
is reviewed. Finally, an efficient particle filter for
road-constrained target tracking is derived and
compared with the bootstrap filter within the variable
structure multiple-model framework.

II. DYNAMICS AND OBSERVATION MODELS

A. Target Dynamics Model

A road is assumed to be represented in the road
database by organized endpoints connected with

Fig. 1. Global and local coordinate systems.

straight line segments. Also assumed is that the
knowledge of the road network in terms of the
endpoint positions and the directions and lengths
of the road segments is available to the tracker. For
sake of simplicity, no road errors are considered in
this study. The road information incorporated in the
dynamics models imposes constraints on position and
moving directions of on-road targets and thus greatly
reduces motion uncertainty.
Although the full position and velocity of a

road-constrained target or ground moving target
is three dimensional, the fact that the target can
only move on the terrain surface clearly imposes
constraints in the components of the three-dimensional
position and velocity. Given the two-dimensional
target position on the horizontal plane and the
three-dimensional positions of the adjacent points
provided by the road database, the three-dimensional
position of the target can be constructed using
interpolation techniques. The vertical component of
the target velocity, though oftentimes insignificant,
can also be derived from the horizontal components
and the local slope information. Hence, we only
need to consider the two-dimensional motion of the
target in filter design. The road-constrained target is
modeled as a point mass moving in a road network on
the horizontal plane. Its acceleration is modeled as a
stochastic process.
1) Along- and Perpendicular-to-Road Propagation:

Two kinds of coordinate systems are employed in
order to describe the target motion on the horizontal
plane, as shown in Fig. 1. The global coordinate
system is predetermined. The local coordinate systems
are road-segment based. Each local coordinate system
is associated with a road segment. The origin (or the
reference point) of a local coordinate system is an
endpoint of the corresponding segment, and the x-
and y-axes of it are aligned along and perpendicular
to the road, respectively. Since the global coordinates
of the endpoints of the road segments are immediately
available from the road database, the relation between
global and local coordinates in terms of translation
and rotation can be derived with ease. For example,
for the local coordinate system fixed on road segment
¡!
AB of Fig. 1, the two-dimensional rotation matrix
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C(Ã) relating the global and local coordinate systems
is defined by

C(Ã) =
·
cosÃ ¡sinÃ
sinÃ cosÃ

¸
(1)

with Ã being the angle between the road direction
and the x-axis of the global coordinate system and
satisfying

tanÃ =
yB ¡ yA
xB ¡ xA

(2)

where xA, xB , yA, and yB are the global coordinates of
the two endpoints of the road segment.
A natural decomposition of the road-constrained

target motion is the motion along the road and
the motion perpendicular to the road, with the
dominant motion being the former. The transverse
motion (perpendicular to the road) is comparatively
insignificant. Roughly speaking, the road-constrained
target has only one degree of freedom because of
the road constraints. The target is free to cruise,
accelerate, or stop along the road, whereas the
controlled motion perpendicular to the road is tightly
constrained within the boundaries of the road or
lanes. Because of the heterogeneous nature of the
motion in the two directions, the road-constrained
target motion is best described in local coordinate
systems. The motion along the road and the
motion perpendicular to the road can be respectively
modeled as

ẍL(t) = wLx (t) (3)

and
ÿL(t) +2»!n _y

L(t)+!2ny
L(t) = wLy (t) (4)

where xL and yL are the local coordinates along and
perpendicular to the road, respectively. The noise
wLx »N (wLx ;0,¾2wx) and wLy »N (wLy ;0,¾2wy ) are assumed
to be Gaussian and white. The notation N (x; x̂,¾2)
denotes a Gaussian distribution of x with mean x̂
and variance ¾2. Large noise levels correspond to
high maneuvers. When the damping factor » and the
frequency !n vanish, (4) reduces to

ÿL(t) = wLy (t): (5)

The reduced model is critically stable. However,
the propagated variance of yL(t), ¾2y , as well as ¾

2
x

increases with time. The idea of (4) is to better
restrict the motion perpendicular to the road by
system dynamics. The two stable poles given by
reasonable choice of !n and » ensure that the off-road
displacement and variance owing to initialization,
measurement update, and driving process noise is
always well bounded. The stationary value of ¾2y
is a function of », !n and the process noise level
¾2wy . From the requirement that when there is no
measurement update, the stationary standard deviation

¾y should be of the order of meters (the width of
road), the values of ¾2wy and » can be determined
accordingly.
Note that different second-order models are

used for the two orthogonal directions. In a more
general setting, the models may even be of different
orders. Higher order models for xL may be used,
for example, when the target is deemed highly
maneuverable. On the other hand, reduced order
models for yL may be used, for example, when the
off-road motion is considered much less significant,
the observation accuracy is modest, or the road map
data are imprecise. In the limiting case, simply setting
yL = 0 for all the time would be sufficient.
Because sensor observations are only available

at discrete time instants, discrete-time dynamics
models are derived. The continuous-time model
given by (3) and (4) is a linear system with Gaussian
noise and thus its discrete-time counterpart can be
determined analytically. In the conversion we use
the approximation that the process noise is piecewise
constant over a sampling interval, denoted by T. The
resultant discrete-time dynamics model for xLk is given
by

xLk =©
LxLk¡1 +G

LwLk¡1 (6)

with the state vector consisting of the position and
velocity components given by

xLk =
·
pLk
vLk

¸
=

26664
xLk

yLk
_xLk
_yLk

37775 (7)

and

©L =

26664
1 0 T 0

0 Á22 0 Á24

0 0 1 0

0 Á42 0 Á44

37775 (8)

and

GL =

26664
T2=2 0

0 g22

T 0

0 g42

37775 : (9)

The constants Á22, Á24, Á42, Á44, g22, and g42 are
functions of » and !n and are computed off-line.
When » = !n = 0, that is, the same model is used
for both orthogonal directions, the aforementioned
matrices become

©L =

26664
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

37775 (10)
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and

GL =

26664
T2=2 0

0 T2=2

T 0

0 T

37775 : (11)

The covariance matrix Q of the anisotropic process
noise wLk is defined by

Q =
·
q11 0

0 q22

¸
: (12)

Roughly speaking, q11 = ¾
2
wx
T and q22 = ¾

2
wy
T. The

parameter q11 is of the order of the square of the
maximum acceleration of a dynamics model, while
q22 is chosen such that the stationary variance of y

L
k

is well within the square of the road width. Further
tuning may be needed.
Define the state error covariance matrix

PLk
¢
=Ef(xLk ¡ x̂Lk )(xLk ¡ x̂Lk )Tg where E denotes the

conditional expectation operator and x̂Lk the conditional
mean. The dynamics model for the state error
covariance matrix PLk is given by

PLk+1 =©
LPLk (©

L)T +GLQ(GL)T (13)

where the superscript T denotes matrix transpose. As
an aside, the stationary covariance matrix Py1 for the
direction perpendicular to the road satisfies (ignoring
possible correlation between xL and yL directions)

Py1 =

·
Á22 Á24

Á42 Á44

¸
Py1

·
Á22 Á42

Á24 Á44

¸
+ q22

·
g22

g24

¸
[g22 g24]:

(14)

This is used to determine from Py1 the parameters for
the motion perpendicular to the road. The solutions
are not unique though.
2) Local versus Global Coordinates: To convert

between the local coordinates xLk and the global
coordinates xk ´ [pTk ,vTk ]T, the following relations are
used:

pk ¡pOk = C(Ãk)pLk (15)

vk = C(Ãk)v
L
k (16)

and

pLk = C
T(Ãk)(pk ¡pOk ) (17)

vLk = C
T(Ãk)vk (18)

where pOk is the global coordinates of the reference
endpoint of the current road segment and Ãk
corresponds to the angle between the current
associated road segment and the x-axis of the
global coordinate system. The relation between
the covariances in global coordinates and local
coordinates is given by

Pk = C(Ãk)P
L
k C

T(Ãk) (19)

PLk = C
T(Ãk)PkC(Ãk): (20)

The conversion between local and global coordinates
can only be carried out after road association is
resolved. The road association problem is discussed
later in the section.
3) Multiple Models: In order to account for the

motion uncertainty of the target, multiple models are
used for the motion along the road. Only one model is
used for the motion perpendicular to the road because
the off-road motion uncertainty is tightly controlled
and a single model for that direction is adequate.
Three modes of the target are considered: cruise,

maneuver, and stop [4]. They are all described using
the same form, given by (6). The difference among
the motion modes is only quantitative. Large variance
q11 is used in the maneuver mode; the variance q11
in the cruise mode is assigned a small value. For
the stopped mode, the velocity is set to zero. In the
following, we assume the motion mode state r = 1
corresponds to the cruise mode, r = 2 corresponds
to the maneuver mode, and r = 3 corresponds to
the stopped mode. According to the idea of the
variable-structure multiple-model approach in [5], the
cruise and the maneuver modes are active all the time,
but the stopped mode is active only when there is no
detection. Thus, the stopped mode is added to the
active mode set when the target is no longer detected
and removed after the target is detected again.
Now assumptions of the mode transition have

to be made. The transition of the motion mode r is
assumed to occur only at sensor sampling instants and
is governed by the transition probability matrix P,
whose elements are defined by

pij = p(rk = j j rk¡1 = i) (21)

where pij satisfy
PS

j=1pij = 1, with S the number
of active modes (also the number of columns of
the matrix P). The active mode set may be f1,2g
or f1,2,3g. Hence, four transition matrices are
needed. For sake of simplicity, they are assumed to
be constant. These matrices are calculated based on
the sojourn time of the modes [5].
4) Road Association: The multiple-model

propagation based on (6) only determines how far
the target travels along the road (measured from a
reference endpoint) and perpendicular to the road for
a given sampling period. This process is independent
of the road database. It is the road association process
that yields the position and velocity of target relative
to the road network. The objective of road association
is to determine which road segment the target is on.
Road association is nontrivial when the target track is
not exactly on any road segment and multiple adjacent
road segments exist in the neighborhood of the target.
Unique road association solution may not exist in
difficult cases. Road association is first run at the
initialization time, and then performed after every
dynamical propagation and measurement update. For
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Fig. 2. Along-road propagation.

sake of simplicity, only the two-dimensional position
estimate of the target (no three-dimensional position,
no velocity) is used in road association.
The initial road association is complex but the

basic idea of it is quite simple: given the target
position, find all admissible road segments in the
neighborhood and then associate the closest road
segment(s) to the target. Here the target is treated
as a point instead of an uncertainty ellipse and the
vector from the target to the road segment is given
by d. The standard distance is then given by kdk. The
covariance information about the position may also

be used to form a weighted distance
q
dTP¡1d d, where

k ¢ k denotes the vector norm and Pd the covariance
matrix of d. The orientation of the error uncertainty
characterized by Pd can preferentially weigh one
direction against another.
The road association following dynamical

propagation or measurement update is relatively easy.
Suppose the target is correctly associated with a road

segment
¡!
AB, and after propagation the along-road

coordinate of the target (with respect to endpoint
A) is xL. Then the target is said to remain on the

road segment after propagation if 0· xL · j¡!ABj; it
is said to leave the segment via the endpoint A if

xL < 0 and via the endpoint B if xL > j¡!ABj. When
the target leaves the road segment, the new segment
or segments (when A or B is an intersection) it
enters is determined by examining the adjoining
segment or segments. For a new road segment, the

new coordinate xL is adjusted to jxLj or xL¡ j¡!ABj,
depending on whether the target leaves the previous
segment via A or via B. The adjustment of xL will be
repeated until the target is located within a new road
segment. More than one road segment may be passed,
especially when the road segments of the database
are of small length or high resolution. Because of
the road ambiguity at an intersection, the target will
end up with more than one destination point after
passing the intersection. The along-road propagation
incorporating motion uncertainty and road ambiguity
is illustrated in Fig. 2 (assuming only one intersection
is crossed). Clearly, owing to multiple hypotheses, a
single target trajectory is split into several after each
sampling period.
The measurement update of the Kalman filter

employed in the efficient particle filter corrects the

target position and velocity estimates and may change
the associated road segment as well. Because the
covariance components for transverse direction are
small, the correction in that direction is small too.
The along-road correction, however, may be large,
for example, as a result of high intensity of the
process noise, and may force the target off the current
road segment. Therefore, a similar road association
procedure based on the along-road correction needs
to be performed after the measurement update. More
details of the measurement update of the Kalman filter
are given in a later section.
The road association result is stored as an auxiliary

pointer pk pointing to the road segment the target is
on at time tk. All the information about the current
road segment, such as its endpoints, directions, and
neighbors, is indexed in the road database via the
pointer pk. When there is only one new segment
to enter, the pointer is updated without ambiguity.
However, at an intersection where more than one road
meets, all the road hypotheses have to be considered.
If no prior knowledge about the route or destination
of the target is available, then it is reasonable to assign
identical probability to each hypothesis. Suppose the
number of roads to enter is L, the probability to enter
any road segment is 1=L. The ambiguity can only be
eliminated after new observations are available.

B. Observation Model

A simple GMTI sensor model is used throughout
the article. The observations are assumed to be
obtained from a GMTI sensor with known position
pSk (in terms of global coordinates). It is assumed the
data association problem is correctly solved and only
the valid tracks are processed. The observation model
of a detected target is given by [1]

yk = h(x
0
k)+ºk (22)

h(x0k) =

264½kμk
_½k

375=
2666664

q
(x0k)2 + (y

0
k)
2

ATAN2(y0k,x
0
k)

x0k _x
0
k + y

0
k
_y0kq

(x0k)2 + (y
0
k)
2

3777775 (23)

where x0k = xk ¡ [(pSk )T 01£2]T is the relative position
from the sensor to the target, and ½k, μk, and _½k denote
range, azimuth, and Doppler, respectively. Note that
xk is the global coordinates of the target state. The
function ATAN2 is the four-quadrant arc tangent
function. For sake of simplicity, the observation
noise is assumed to be Gaussian and white: ºk »
N (ºk;03£1,R). For the above model, the likelihood
function p(yk j xk) = p(yk j x0k) =N (yk;h(x0k),R). Also
note that the GMTI observations are functions of
the two-dimensional position and velocity only. The
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vertical position and velocity components cannot be
inferred from the above measurements directly.
A problem associated with the GMTI radar is that

the target will not be detected when it is stopped or its
radial velocity is smaller than the minimum detectable
velocity. (The GMTI radar alone would have difficulty
tracking a very slow, undetectable target for a long
time.) Another important cause for the lack of
detection is that the probability of detection PD of
the sensor is less than one. That is, even if the target
moves at a velocity above the minimum detectable
velocity, it is possible that the target is not detected
due to the imperfectness of the detection process.
While the first cause is deterministic, the second
occurs randomly.
In addition to the stopped mode, there are other

deterministic causes of lack of detection. When a
single GMTI sensor is the sole information source
and the target moves perpendicular to the line of
sight (LOS) from the sensor at the sampling instants,
the motion cannot be detected due to the relative
geometry. The target is also impossible to be detected
when it is hidden from the field of view of the sensor,
for example, the target entered a tunnel and stays
there. The moving target not being detected due to
small radial velocity or terrain obscuration will be
referred to as singular cases.
The event of no detection can be regarded as a

generalized observation in the sense that the mode of
the target can be inferred in a probabilistic manner
even if the target is not detected. A generalized
likelihood function incorporating the detection event
is then used [5]. The probability associated with the
detection event is summarized as follows

Pr(detected j stopped) = 0
Pr(detected jmoving normally) = PD
Pr(detected jmoving perpendicular to LOS) = 0
Pr(detected j hidden from the sensor) = 0

(24)
and

Pr(undetected j stopped) = 1
Pr(undetected jmoving normally) = 1¡PD
Pr(undetected jmoving perpendicular to LOS) = 1
Pr(undetected j hidden from the sensor) = 1:

(25)

According to this model, the probability of detection
is either 0 or PD (assumed to be constant in the
simulations). In [8], [18], a refined model of the
probability of detection PD is given:

PD = pd

"
1¡ exp

Ã
¡ log2

μ
nc
vm

¶2!#
(26)

where pd includes the directivity pattern and
propagation effects, nc is the difference of the radial
velocities of the target and the surrounding mainlobe
clutter relative to the sensor, and vm is the minimum
detectable velocity. Here PD is a continuous function
in [0,pd]. When ncÀ vm, PD = pd; when jncj< vm,
PD < pd=2; when jncj= 0, PD = 0. This model is
different from the former model mainly in the low
radial velocity region. In the particle filters of this
paper, PD is only used to update the associated weights
of the particles. Thus, the difference due to different
models of probability of detection is quantitative. In
the analysis below and the simulations, the simpler
model given by (24) and (25) is used.
Of most interest is how to infer from “no

detections” whether the target is stopped. Under our
assumptions, the target cannot be stopped if detected
by the sensor. When lack of detection is observed
for n consecutive sampling intervals, it is very
unlikely that the target is in “normal” motion because
(1¡PD)n, the probability of a “normally” moving
target not being detected for n consecutive intervals,
is very small (assuming PD is close to one). In contrast
with that, the probability that the target is stopped is
1n = 1. The difference between (1¡PD)n and 1 helps
distinguish between nondetection due to less-than-one
probability of detection and nondetection due to target
being stopped. In the singular cases, however, the
stopped mode is not distinguishable from the moving
modes in general.
The first singular case can be eliminated if more

than one GMTI sensor or other sensors are available.
In practice, the probability of the occurrence of this
case is not high because of the motion of the GMTI
sensor [5]. When the target enters a long tunnel,
however, there is no way to predict whether it will
be stopped or keep moving on. The only thing the
tracker can do is wait until the target reappears. When
multiple targets are involved in this singular case, the
previous tracks are likely to get lost. Very limited
information about the target motion is contained in
the events of no detection alone. When the singular
cases cannot be eliminated and both moving and
stopped mode hypotheses have to be maintained,
the ambiguity about the target mode dramatically
increases and the inference becomes much more
inaccurate.

III. PARTICLE FILTERS FOR JUMP MARKOV SYSTEMS

A general jump Markov system can be described
by the following state-space model:

xk » p(xk j xk¡1,rk) : xk = f(xk¡1,rk,wk¡1) (27)

yk » p(yk j xk,rk) : yk = h(xk,rk,ºk) (28)

rk » p(rk j rk¡1) (29)
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where the hybrid state vector consists of the base state
xk and the mode state rk. The base state vector xk
and the observation vector yk are continuous-valued;
the mode state rk is discrete-valued and the discrete
values are denoted by f1,2, : : : ,Sg. The dynamics
function f(¢) and the observation function h(¢) may be
nonlinear. The process noise wk and the observation
noise ºk are assumed to be white noise. When f
and h are linear and wk(rk)»N (wk(rk);0,Q(rk)),
ºk(rk)»N (ºk(rk);0,R(rk)) as well as the initial base
state x0 »N (x0; x̂0,P0) are Gaussian noise, the general
jump Markov system reduces to the jump Markov
linear Gaussian system, given by

xk =©(rk)xk¡1 +G(rk)wk¡1(rk) (30)

yk =H(rk)xk +ºk(rk) (31)

rk » p(rk j rk¡1): (32)

The Markov transition model rk » p(rk j rk¡1) may
be generalized to rk » p(rk jRk¡1,Yk¡1), where Rk ´
fr1, : : : ,rkg and Yk ´ fy1, : : : ,ykg.
The objective of particle filtering for jump Markov

systems is to estimate recursively the joint posterior
distribution p(Xk,Rk jYk) or p(xk,rk jYk) with Xk ´
fx1, : : : ,xkg. Of practical interest is the marginal
distribution p(xk jYk), obtained from p(xk,rk jYk) by
standard marginalization. With N weighted particles
fr(i)k ,x(i)k ,w(i)k gNi=1, they are approximated as [14]

p(xk,rk jYk)¼
NX
i=1

w(i)k ±x(i)
k
,r(i)
k
(dxk,rk) (33)

and

p(xk jYk)¼
NX
i=1

w(i)k ±x(i)
k
(dxk) (34)

where ± is the point-mass delta function.
The particles and their associated weights are

recursively updated by 1) sampling r(i)k and x(i)k from
a certain importance function q(xk,rk jX(i)k¡1,R(i)k¡1,Yk)
and 2) updating the importance weights according to

w(i)k / w(i)k¡1
p(yk j x(i)k ,r(i)k )p(x(i)k j x(i)k¡1,r(i)k )p(r(i)k j r(i)k¡1)

q(x(i)k ,r
(i)
k jX(i)k¡1,R(i)k¡1,Yk)

:

(35)

A resampling step that eliminates particles with low
importance weights and multiplies particles with high
importance weights should be added in the filter cycle
in order to suppress the degeneracy problem [1].
The bootstrap filter for jump Markov systems

corresponds to the special choice of the importance
function

q(xk,rk jX(i)k¡1,R(i)k¡1,Yk) = p(xk j x(i)k¡1,rk)p(rk j r(i)k¡1):
(36)

The importance weights are then updated using

w(i)k / w(i)k¡1p(yk j x(i)k ,r(i)k ): (37)

The bootstrap filter makes few assumptions about the
state-space model and employs little of the structure
of jump Markov systems. The sampling scheme
as shown above is simple to implement but can be
inefficient. The efficient particle filter for general
jump Markov systems presented in [16] greatly
improves the efficiency of sampling r(i)k and x(i)k by
using an importance function that makes better use
of the Markov structure. That is, because rk can only
take on a finite number of values and therefore the
mode transition from r(i)k¡1 to rk can only have a finite
number of possibilities, the marginalization over the
mode subspace as required by a better importance
function that can be implemented with summation.
When the system is a jump Markov linear

Gaussian one, the benign structure makes it possible
to design more efficient particle filter based on
Rao-Blackwellization. The idea of Rao-Blackwellized
particle filtering is to reduce the sampling space as
much as possible by analytic marginalization. For
jump Markov linear Gaussian systems, the technique
is based on a partition of the joint distribution, given
by [14]:

p(Xk,Rk jYk) = p(Xk jRk,Yk)p(Rk jYk): (38)

Because p(Xk jRk,Yk) is exactly Gaussian in this case,
it can be sufficiently represented by its mean and
covariance. (This statement does not hold any more
when rk is dependent on xk¡1.) Given Rk and Yk, the
conditional mean and covariance can be determined
in closed form using Kalman filtering. Thus, only the
mode distribution p(Rk jYk) needs to be estimated
using particle filtering. The marginal distribution
p(Rk jYk) satisfies a recursion [14]:

p(Rk jYk) =
p(yk jYk¡1,Rk)p(Rk jYk¡1)

p(yk jYk¡1)

=
p(yk jYk¡1,Rk)p(rk j rk¡1)

p(yk jYk¡1)
p(Rk¡1 jYk¡1)

(39)

where p(Rk jYk¡1) = p(rk j rk¡1)p(Rk¡1 jYk¡1) is used.
The density p(yk jYk¡1,Rk) can be regarded as the
“likelihood” of a mode state sequence and can be
analytically determined. Based on the recursion, a
particle filter scheme for p(rk jYk) can be designed,
in which the filtering distribution p(rk jYk) is
approximated with the weighted particles fr(i)k ,w(i)k gNi=1
as

p(rk jYk)¼
NX
i=1

w(i)k ±r(i)
k
(rk) (40)
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and the filtering distribution p(xk jYk) is then
approximated as a Gaussian mixture

p(xk jYk)¼
NX
i=1

w(i)k p(xk jR(i)k ,Yk)

=
NX
i=1

w(i)k N (xk; x̂(i)k ,P(i)k ) (41)

where p(xk jR(i)k ,Yk), the posterior distribution of
xk for an individual mode sequence R

(i)
k , is exactly

Gaussian and the associated mean x̂(i)k and covariance
P(i)k are determined using Kalman filtering. Since
the distribution p(xk jR(i)k ,Yk) is exactly determined
(equivalent to using an infinite number of samples of
xk), the approximation of the filter only comes from
the particle representation of p(rk jYk).
For jump Markov linear Gaussian systems,

samples of rk can be drawn from the optimal
importance function, given by [14]

p(rk jRk¡1,Yk) =
p(yk j rk,Rk¡1,Yk¡1)p(rk j rk¡1)

p(yk jRk¡1,Yk¡1)
:

(42)

Then the associated normalized importance weights
are [14]

w(i)k / w(i)k¡1
p(yk j r(i)k ,R(i)k¡1,Yk¡1)p(r(i)k j r(i)k¡1)

p(r(i)k jR(i)k¡1,Yk)
= w(i)k¡1p(yk jR(i)k¡1,Yk¡1) (43)

where

p(yk jR(i)k¡1,Yk¡1) =
SX
j=1

p(yk j j,R(i)k¡1,Yk¡1)p(j j r(i)k¡1):

(44)

The running variable j in the above equation refers to
rk = j. In the summation,

p(yk j j,R(i)k¡1,Yk¡1)
=N (yk;H(j)x̂¡(i,j)k ,H(j)P¡(i,j)k HT(j)+R(j))

(45)

with x̂¡(i,j)k and P¡(i,j)k being the mean and covariance
of the prediction p(xk j j,R(i)k¡1,Yk¡1), respectively.
Because the importance weights p(yk jR(i)k¡1,Yk¡1)
do not depend on rk, it is possible to select the fittest
particle trajectories R(i)k¡1 based on yk before samples
of r(i)k are drawn.
Because random samples are used to represent

p(rk jYk) while exact means and covariances are
used to represent p(xk jRk,Yk), the full representation
for the distribution of the hybrid state is composed
of fr(i)k , x̂(i)k ,P(i)k ,w(i)k gNi=1, where x̂(i)k and P(i)k are
deterministically updated given r(i)k .

IV. EFFICIENT PARTICLE FILTER FOR
ROAD-CONSTRAINED TARGET TRACKING

In this section, two variable-structure
multiple-model particle filters for road-constrained
target tracking are presented. The bootstrap filter
serves as the baseline algorithm and the proposed
efficient particle filter is compared with it. Both filters
are designed based on the same assumptions and
models.

A. Bootstrap Filter

The joint distribution of xk and rk is approximated
by weighted particles fr(i)k ,x(i)k ,w(i)k gNi=1. The pointers
p(i)k to the present road segment are also assigned to
particles. Thus, the full particle representation is given
by fr(i)k ,x(i)k ,p(i)k ,w(i)k gNi=1. The outline of a filter cycle of
the bootstrap filter for road-constrained target tracking
is given in Table I. The mean of the target state is
given by

x̂k =
NX
i=1

w(i)k x
(i)
k : (46)

It provides limited information about the position and
velocity of the target when the particles are associated
with road segments of different directions.

B. Efficient Particle Filter

1) Particle Filtering Algorithm: The efficient
particle filter for road-constrained target tracking is
designed based on the optimal particle filtering theory
for jump Markov linear Gaussian systems. Analytic
approximation is made for the target state distribution:

p(xk jR(i)k ,Yk)¼N (xk; x̂(i)k ,P(i)k ) (47)

where the mean x̂(i)k and covariance P(i)k are updated
using unscented Kalman filtering. For nonlinear
filtering problems, when the parameters of the
unscented transformation are appropriately tuned, the
unscented Kalman filter can yield better estimation
results than the extended Kalman filter. The details
of the unscented Kalman filter can be found in
[15]. Approximation is needed mainly because
the observation model is nonlinear and hence the
conditional distribution p(xk jR(i)k ,Yk) is not strictly
Gaussian. The road constraints may also make the
distribution non-Gaussian. The likelihood p(yk j
rk,R

(i)
k¡1,Yk¡1) used for recursive sampling of rk is also

calculated based on Gaussian approximation. That is,

p(yk j rk,R(i)k¡1,Yk¡1)¼ p(yk j rk, x̂(i)k¡1,P(i)k¡1)
¼N (yk; ŷ(i)k ,P(i)yk ): (48)

Given rk, x̂
(i)
k¡1, and P

(i)
k¡1, the mean ŷ

(i)
k and covariance

P(i)yk of yk are estimated using standard unscented
transformation.
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TABLE I
Bootstrap Filter for Road-Constrained Target Tracking

For i = 1, : : : ,N,
determine the active motion mode set for ith particle at tk
determine the transition probability matrix P(i)

k

sample
r(i)
k
» p(rk j r(i)k¡1)

propagate x(i)
k¡1 through the model specified by mode r

(i)
k
and road segment p(i)

k¡1 to generate x
¤(i,l)
k

, where l = 1, : : : ,L(i), with L(i) the
number of feasible road segments at time tk . (if the target does not cross an intersection, L

(i) = 1; if the target crosses an intersection,
L(i) > 1.)
if L(i) > 1, draw x(i)

k
from x¤(i,l)

k
randomly (the probability of x¤(i,l)

k
is 1=L(i)).

determine the road pointer p(i)
k
according to x(i)

k
.

For i = 1, : : : ,N,
evaluate the likelihood ¤(i)

k
:

if the target is not detected
if r(i)

k
= 3, ¤(i)

k
= 1

if r(i)
k
= 1 or 2 AND the target is hidden or moves perpendicular to the line of sight, ¤(i)

k
= 1

if r(i)
k
= 1 or 2 AND the target is in normal motion, ¤(i)

k
= 1¡PD

if the target is detected
if r(i)

k
= 3 OR the the target is hidden or moves perpendicular to the line of sight, ¤(i)

k
= 0

if r(i)
k
= 1 or 2, ¤(i)

k
= p(yk j x(i)k ,r(i)k )

evaluate and normalize the importance weights
w(i)
k
/ w(i)

k¡1¤
(i)
k

Resampling: multiply/discard particles fr(i)
k
,x(i)
k
,p(i)
k
,w(i)
k
gN
i=1 with respect to high/low importance weights w(i)

k
to obtain N new particles

fr(i)
k
,x(i)
k
,p(i)
k
,w(i)
k
gN
i=1 with equal weights.

The full particle representation is given by
fr(i)k , x̂(i)k ,P(i)k ,p(i)k ,w(i)k gNi=1, where x̂(i)k and P(i)k are
deterministically updated given r(i)k and p(i)k . The
outline of a filter cycle of the efficient particle filter
for road-constrained target tracking is given in
Table II. The mean of the target state is given by

x̂k =
NX
i=1

w(i)k x̂
(i)
k : (49)

It provides limited information about the position and
velocity of the target when the particles are associated
with road segments of different directions.
2) Kalman Measurement Update: The efficient

particle filter for road-constrained target tracking is
an efficient particle filter for motion mode estimation
coupled with multiple Kalman filters (unscented
filters) for conditional target state estimation, with
each Kalman filter corresponding to a mode sample
sequence. In the Kalman filter, the time update starts
with the propagation of the mean and covariance
in local coordinates, followed by road association.
Because the dynamics model is linear, the time update
given by (6) and (13) is identical to that of the linear
Kalman filter. No unscented transformation is needed.
Unscented transformation is used in measurement
update to deal with the nonlinearity in the observation
model. Before measurement update is performed,
the mean and covariance in local coordinates are

converted into global coordinates in order to apply
the Kalman measurement update formulae. It is in
the local-to-global conversion that road association
is required. The Kalman measurement update based
on the unscented transformation is essentially an
approximation to linear minimum mean-square error
estimation [2]. The approximation here comes from
the nonlinearity of the observation model.
To put the measurement update as an optimization

problem, the cost function the Kalman measurement
update attempts to minimize may be written as [2]

Jk(xk) =
1
2 (xk ¡ x̂¡k )T(P¡k )¡1(xk ¡ x̂¡k )
+ 1

2 (yk ¡h(xk))TR¡1k (yk ¡h(xk)) (50)

where all quantities are expressed with respect to
the same global coordinate system. The Kalman
measurement update works well in many cases but
may be problematic when the consecutive road
segments change directions sharply (not necessarily
at an intersection), because the update does not
automatically satisfy the road constraints.
A more reasonable measurement update that takes

road constraints into consideration is formulated as an
unconstrained minimization problem that minimizes
an alternative cost function, given by

Jk(xk,x
L
k ) =

1
2 (x

L
k ¡ x̂L¡k )T(PL¡k )¡1(xLk ¡ x̂L¡k )

+ 1
2(yk ¡h(xk))TR¡1k (yk ¡h(xk)) (51)
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TABLE II
Efficient Particle Filter for Road-Constrained Target Tracking

For i = 1, : : : ,N,
determine the active motion mode set for ith particle at tk
determine the transition probability matrix P(i)

k

For j = 1, : : : ,S, where S is the number of active motion modes (hypotheses),
propagate x̂(i)

k¡1 and P
(i)
k¡1 through the model specified by mode j and road segment p

(i)
k¡1 to generate x̂

¤(i,j,l)
k

and P¤(i,j,l)
k

, where
l = 1, : : : ,L(i,j)(if the target does not cross an intersection, L(i,j) = 1; if the target crosses an intersection, L(i,j) > 1); determine the
road pointer p¤(i,j,l)

k
according to x̂¤(i,j,l)

k
and P¤(i,j,l)

k

For j = 1, : : : ,S and for l = 1, : : : ,L(i,j), evaluate the likelihood ¤(i,j,l)
k

:

if the target is not detected
if j = 3, ¤(i,j,l)

k
= 1

if j = 1 or 2 AND the target is hidden or moves perpendicular to the line of sight, ¤(i,j,l)
k

= 1

if j = 1 or 2 AND the target is in normal motion, ¤(i,j,l)
k

= 1¡PD
if the target is detected
if j = 3 OR the target is hidden or moves perpendicular to the line of sight, ¤(i,j,l)

k
= 0

if j = 1 or 2, compute ¤(i,j,l)
k

= p̂(yk j x̂¤(i,j,l)k
,P¤(i,j,l)
k

) based on Gaussian approximation

For i = 1, : : : ,N, compute

w(i)
k
/ w(i)

k¡1

SX
j=1

L(i,j)X
l=1

¤
(i,j,l)
k

p(j j r(i)
k¡1)=L

(i,j)

Resampling: multiply/discard the particle set fr(i)
k¡1, x̂

¤(i,j,l)
k

,P¤(i,j,l)
k

,p¤(i,j,l)
k

,¤(i,j,l)
k

gN
i=1 with respect to high/low importance weights w(i)

k
to

obtain N new fr(i)
k¡1, x̂

¤(i,j,l)
k

,P¤(i,j,l)
k

,p¤(i,j,l)
k

,¤(i,j,l)
k

gN
i=1 with equal weights.

For i = 1, : : : ,N, sample
(r(i)
k
, l(i))» p̂(yk j x̂

¤(i,rk ,l)
k

,P¤(i,rk ,l)
k

)p(rk j r(i)k¡1)=L(i,j)

where p̂(yk j x̂¤(i,j,l)k
,P¤(i,j,l)
k

) = ¤(i,j,l)
k

; set

x̂¡(i)
k

= x̂
¤(i,r(i)

k
,l(i))

k
, P¡(i)

k
= P

¤(i,r(i)
k
,l(i))

k
, p(i)

k
= p

¤(i,r(i)
k
,l(i))

k

For i = 1, : : : ,N, update x̂(i)
k
, P(i)
k

from x̂¡(i)
k
, P¡(i)
k

based on Gaussian approximation, and update p(i)
k
according to x̂(i)

k
and P¤(i,j,l)

k

where xLk and xk are the local and global
representations of the same target state vector. The
conversion between them is available given correct
road association.
The difference (xLk ¡ x̂L¡k ) is not defined as the

usual straight line vector pointing from x̂L¡k to xLk .
The position part of the difference is a curved line
consisting of perpendicular-to-road and along-road
segments and determined from the road-based route
connecting the two points. The velocity part is
given by the difference between the along-road and
transverse velocities. (We assume that the route is
unique.) The relations kxLk ¡ x̂L¡k k= kxk ¡ x̂¡k k and
(xLk ¡ x̂L¡k )T(PL¡k )¡1(xLk ¡ x̂L¡k ) = (xk ¡ x̂¡k )T(P¡k )¡1
¢ (xk ¡ x̂¡k ) hold when xk (or xLk ) is associated with the
same road as the prediction x̂¡k (or x̂

L¡
k ).

No explicit inequality constraints are included
in the above minimization problem, although the
target is “road constrained.” With those inequality
constraints, a complicated programming problem
has to be solved. Explicit road constraints in terms
of inequality constraints are not required in general,
as long as the prediction xLk and P

L¡
k is a faithful

representation of a road-constrained target, i.e., the
position estimate is on or very close to the road,

Fig. 3. One-dimensional measurement update example.

the velocity estimate is almost parallel to the road
direction, and the off-road variance is small. Tight
control provided by the prediction covariance over
corrections in the off-road direction ensures that
the main correction to the predicted position and
velocity is along the road. The minimization problem
is complex because the road as well as the target
route may include road segments with very different
directions and thus cannot be treated as a straight line.

Take the road
¡¡¡¡!
ABCD in Fig. 3 as a simplified

example, in which the global coordinates of A,
B, C, and D are (0,¡l), (0,0), (l,0), and (l,¡l),
respectively, where l is comparable to the prediction
and measurement covariances. For sake of simplicity,
a one-dimensional, linear estimation problem is
considered. Suppose the target is always exactly on
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the road and the observation is the target Cartesian
position converted from the range and azimuth
measurements. The Doppler measurement is not
used. When the transverse displacement is small
compared with the along-road displacement and the
covariance constraint for that direction is tight, the
reduced problem is a reasonable approximation. Now
suppose the target prediction in local coordinates (x̂, _̂x)

is associated with road segment
¡!
AB, and the global

coordinates of the observation are (xm,ym). Obviously,
the observation does not obey any road constraints.
The prediction covariance matrix in local coordinates
and the measurement covariance matrix in global
coordinates are given by·

p11 p12

p12 p22

¸
and

·
r11 r12

r12 r22

¸
respectively. We have the following.

1) The cost function (51) for
¡!
AB is given by

JAB =
1
2
[x¡ x̂ _x¡ _̂x]

·
p11 p12

p12 p22

¸¡1·x¡ x̂
_x¡ _̂x

¸

+
1
2
[¡xm x¡ ym¡ l]

·
r11 r12

r12 r22

¸¡1 · ¡xm
x¡ ym¡ l

¸
(52)

where x is measured from A and _x is along
¡!
AB.

2) For
¡!
BC the cost function is given by

JBC =
1
2
[x¡ x̂+ l _x¡ _̂x]

·
p11 p12

p12 p22

¸¡1 ·x¡ x̂+ l
_x¡ _̂x

¸

+
1
2
[x¡ xm ¡ ym]

·
r11 r12

r12 r22

¸¡1·x¡ xm
¡ym

¸
(53)

where x is measured from B and _x is along
¡!
BC.

3) For
¡!
CD the cost function is given by

JCD =
1
2
[x¡ x̂+2l _x¡ _̂x]

·
p11 p12

p12 p22

¸¡1 ·x¡ x̂+2l
_x¡ _̂x

¸

+
1
2
[l¡ xm x¡ ym]

·
r11 r12

r12 r22

¸¡1 · l¡ xm
x¡ ym

¸
(54)

where x is measured from C and _x is along
¡!
CD.

In the second and third cost functions, the first terms
contributed by the prediction are written as if the

predicted target is on the extended line of
¡!
BC and¡!

CD, respectively. The Kalman measurement update
formulae provide “local” solutions to the above
minimization problems. The globally optimal update
is one of the three local solutions.

1) For AB:

x̂+ = (r¤x̂+p11x
¤
m)=(r

¤+p11) (55)

_̂x
+
= _̂x+(x̂+¡ x̂)p12=p11 (56)

JminAB = (x̂¡ x¤m)2=(r¤+p11) (57)

x¤m = ym+ l¡ r12=r11xm (58)

r¤ = r22¡ r212=r11: (59)

2) For BC:

x̂+ = [r¤(x̂¡ l)+p11x¤m]=(r¤+p11) (60)

_̂x
+
= _̂x+(x̂+¡ x̂)p12=p11 (61)

JminBC = (l¡ x̂+ x¤m)2=(r¤+p11) (62)

x¤m = xm¡ r12=r22ym (63)

r¤ = r11¡ r212=r22: (64)

3) For CD:

x̂+ = [r¤(x̂¡ 2l)+p11x¤m]=(r¤+p11) (65)

_̂x
+
= _̂x+(x̂+¡ x̂)p12=p11 (66)

JminCD = (2l¡ x̂+ x¤m)2=(r¤+p11) (67)

x¤m = ym¡ r12=r11(xm¡ l) (68)

r¤ = r22¡ r212=r11: (69)

For this example, the following comments are made.

1) Although expected to be in the neighborhood
of the prediction, the globally optimal update is not
always associated with the same road segment the
prediction is associated with. The global minimum
of the cost function is determined by comparing the

local minima for
¡!
AB,

¡!
BC, and

¡!
CD. The multiple local

minima are a direct result of the road constraints,
not of nonlinearity of the observation model (in this
example, the observation model is exactly linear). If
the three road segments are almost parallel to one
another, then there is only one minimum, which is
given by the Kalman measurement update.
2) Because a road segment is of finite length, the

unconstrained local minimum for a road segment
provided by the Kalman measurement update may
be beyond the endpoints. A local minimum outside
the road segment cannot be used as it violates the
road constraints. Because the cost function of this
linear example monotonically increases from the
unconstrained local minimum to the points on the
road, the on-road minimum is located at the closer
endpoint to the unconstrained minimum. (If the
Doppler is also used, which is nonlinear in x or
_x, then the statement may not strictly hold. The
endpoint, however, can still serves as a reasonable
approximation to the local minimum.)
3) The search for the global minimum of the

cost function involves all possible road segments
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in the neighborhood (in the example, three). The
procedure can be complex. If one is satisfied with a
local minimum that obeys the road constraints, the
measurement update can be much simplified. The
outline of the approximate scheme is as follows.
Suppose the state update will be associated with the
same road segment as the prediction, and use the
standard Kalman measurement update to compute the
state update. Then based on the along-road position
component, check if the result is really within the road
segment. If the update is within the road segment,
then it is qualified as a local minimum. If not, choose
the closer endpoint as the interim minimum, select the
adjoining road segment, and rewrite the prediction
mean and covariance for the new road segment.
Again, compute the local minimum using the Kalman
measurement update and check if the solution is
admissible. The procedure is repeated until a local
minimum satisfying the road constraints (which can
be an endpoint) is obtained.

For the original two-dimensional measurement
update problem, a similar scheme for global or local
minimum can be used.

V. SIMULATION RESULTS

The main objective of this section is to
demonstrate the feasibility and efficiency of the
proposed efficient particle filter. The main simulation
parameters are given as follows: the sampling
interval is 5 s; the standard deviations of the range,
azimuth, and Doppler are 20 m, 0.01 rad, and 1 m/s,
respectively; the probability of detection is PD = 0:85;
the minimum detectable velocity is 2 m/s. For sake
of simplicity, the GMTI sensor is assumed to be
stationary at [¡1000 m,1000 m], denoted by the
circle in Fig. 4. A road network used for simulation
is illustrated in Fig. 4. The route of the target is from

segment
¡!
AB to segment

¡!
DE via

¡!
BC and

¡!
CD. The

points B, C, and D are intersections. The modes of
target motion alternate between acceleration, cruise,
deceleration, and stop. Only one target is considered.
If the correct data association is known, the tracking
of multiple targets reduces to the separate tracking
of individual targets. The equivalent target positions
in Cartesian coordinates directly converted from the
range ½k and azimuth μk observations of a typical run
are plotted in Fig. 4 as the dots in the neighborhood
of the road. At positions where the velocity of the
target is smaller than the minimum detectable velocity,
the target is not detected for deterministic reasons.
The target may still be undetected at other points due
to PD < 1.
The results of a typical run of the efficient particle

filters with 50 particles are presented in Figs. 5 and 6.
The filter shows good tracking ability. The rms error
of the estimated position over this run is about 20 m.

Fig. 4. Road network.

The rms velocity error is about 2.4 m/s. In Fig. 5,
the position errors (relative to the true positions) of
the position observations and the position estimates
given by the particle filter are also compared. Among
others, it can be seen that in the position observations
the errors perpendicular to the road are quite large,
with the peak value around 180 m. For this reason, the
position estimates in the off-road direction are tightly
constrained from tracking the off-road observations
too closely. In our particle filters, such constraint is
imposed with dynamics models that are strictly stable
in the direction perpendicular to the road, for example,
with » = 1 and !n = 0:2, so that the particle cloud
is restricted well within the road. The spikes in the
position and velocity errors are unlikely to be avoided
because a tracker only works well in the mean sense.
Here are some typical cases.

1) The filters are usually tuned so that a target
stop can be quickly detected from lack of detection.
However, if during a number of (e.g., 3) consecutive
sampling intervals the target is accelerating from the
stopped mode but no observations are available due
to PD < 1, the tracker tends not to respond and the
delayed response gives rise to spikes.
2) If at a sampling point the target is crossing the

intersection but no observations are available or the
observations are close to the intersection, the tracker
cannot effectively eliminate the road ambiguity around
the intersection until more postcrossing observation
data are processed. But before that it has to maintain
all the hypotheses of the road segments around the
intersection, which again leads to spikes in estimation
errors. The spike around time t= 590 s corresponds to
this case.
3) Observation outliers and the singular cases can

also lead to imprecise judgment on target maneuvers.

Now the performance of the efficient particle
filter with 50 particles is compared with that of the
bootstrap filter with 1000 particles. The estimation
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Fig. 5. Time history of position errors.

Fig. 6. Time history of true and estimated velocities.

accuracy is measured by rms errors over 50 runs. The
MATLAB function CPUTIME that “returns the CPU
time in seconds that has been used by the MATLAB
process since MATLAB started” is used to roughly
measure the computational expense of the algorithms.
The rms errors of the efficient particle filter with 50
particles are 18.4 m and 1.91 m/s. The rms errors of
the bootstrap filter with 1000 particles are 19.5 m and
1.96 m/s. The efficient particle filter outperforms the
bootstrap filter in position estimation in 36 runs, in
velocity estimation in 32 runs, and in both in 25 runs.
The average CPUTIME for the efficient particle filter
is about 42 s and that for the bootstrap filter is about
150 s. The average CPUTIME taken by the bootstrap
filter with 1000 particles is about four times longer
than that taken by the efficient particle filter with
50 particles. From the above comparisons, a modest
conclusion can be drawn that the efficient particle

filter with 50 particles can achieve performance
similar to that of the bootstrap filter with 1000
particles with much less computational expense.

VI. CONCLUSIONS

For road-constrained targets, the incorporation
of road information into the dynamics models can
greatly reduce the target motion uncertainty. A
variable-structure multiple-model framework is used
to address target maneuvers along the road. The
proposed efficient particle filter is an approximation
to the optimal particle filter for jump Markov linear
Gaussian systems. The main approximation of the
filter is the Gaussian assumption about the conditional
target state distribution given a mode sequence
and observations. The efficient particle filter with
50 particles yields satisfactory simulation results.
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Compared with the standard bootstrap filter, the
proposed efficient particle filter involves much less
computation for similar accuracy and robustness.
Future work should investigate the data association
and filtering problems simultaneously.
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