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Optimal Size and Location of Piezoelectric Actuator/Sensors:
Practical Considerations
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The problem of obtaining the optimal size and location of piezoelectric actuator/sensors is addressed. An op-
timization problem is formulated for a general beam that has arbitrary boundary conditions and may have as
many piezoelectric actuators as desired. The proposed optimization criterion is based on a beam modal cost and
controllability index. If the size of the actuator is unbounded, it frequently is optimal if it covers most, if not all, of
the length of the beam. This is not realistic because there are cost, weight, and space factors to be considered. By
adding a penalty term to the criterion, the size of the actuator/sensor can be reduced to a practical and reasonable
size. Thus, there is no need to preselect the size of the actuator/sensor. The optimal size and location for beams with
various boundaryconditionsare determined for a single pair and for two pairs of actuators. The results are in very
good agreement with those reported by other investigators. A comparison is also made between the performance
of two pairs of actuators and the performance of a single pair for control of the same number of modes. The
improvement in performance with two pairs is quanti� ed.

Nomenclature
a = small and positive constant
b, L = beam width and length, respectively
C = damping matrix
Cdx , Cd Çx = output in� uence matrices
cs = damping coef� cient of the beam material
D = control/disturbance in� uence matrix
dk , dk + 1 = beginning and end locations of piezoelectric patch k
d31 = piezoelectric coupling coef� cient
E = Young’s modulus
H = Heaviside step function
K = stiffness matrix
M = mass matrix
Pj = right eigenvectors
QV = weighting matrix
qi = generalized coordinates
Ri = left eigenvectors
T = kinetic energy of the beam
t = thickness
U = potential energy of the beam
V = cost function
vk = voltage between top and bottom surfaces of each patch

of pair k
w = transverse de� ection of the beam centerline
yd = beam output response
a = objective function
b i = gross measure of controllability
c = scaling fraction; 0 < k < 1
d i j = Kronecker delta
d Wnc = virtual work
´ = modal coordinates vector
h i j = measure of controllabilityof i th mode by j th actuator
q = mass density
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u i = assumed mode shapes
x i = natural frequencies

Subscripts

c = composite
h = host beam
p = piezoelectric patch

Superscripts

¢ = @(¢ ) / @t
0 = @(¢ ) / @x

Introduction

D ISTRIBUTED piezoelectric materials experimentally have
proven to be practical in sensing and controlling the vibra-

tions of � exible structures.1 These materials offer a number of ad-
vantages over conventionalactuators, for example, low energy con-
sumption, fast response, high ef� ciency, and compactness. These
advantages have encouraged researchers to establish models for
� exible structures (plate, beam, shell) that incorporate piezoelec-
tric actuators/sensors.1 ¡ 6

The piezoelectric actuator/sensor has to be of a suitable size
and be located appropriately to ensure maximum effectiveness.
The problem of � nding the optimal size and location of an actu-
ator/sensor is very challenging. The optimal location of the actu-
ator for a particular structure is the position at which the strain
energy of the structure is highest.7 For shape control (static case),
the given structure contains one point of maximum strain energy,
and so the optimal location is obvious. For vibration control (dy-
namic case), however, the structure’s response is a combination of
the contribution of several modes. The highest strain energy for a
given mode may be found at more than one point, and the high
strain energy locations may be different for different modes. For
example, the second bendingmode of a pinned–pinned beam struc-
ture has two points of high strain energy. These issues indicate
the necessity of using patch actuators for the control of � exible
structures.

The � rst authorswho addressedtheoptimizationproblemin smart
structures were Crawley and de Luis.7 They brie� y mentioned the
criterion for � nding the optimal location of a piezoelectric actuator
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for a cantilever beam based on the beam strain energy. Baz and
Poh8,9 solved the problem of location optimizationof a preselected
actuator size. They used beam � nite elements to model a cantilever
beam and included the mass and the stiffness of the actuator in
the model. Devasia et al.10 proposed three optimizationcriteria that
were controller dependent. The resulting actuator size was large,
which ensures high authoritybut invalidatesthe assumption that the
mass and stiffness of the actuator can be ignored.Further, they only
considered the � rst two modes and restricted themselves to pinned–

pinned boundary conditions. Burke and Sullivan11 examined the
optimization problem for determining the location and length of
actuators and sensors to achieve desired modal coef� cients. The
method for the selection of the desired coef� cients is not speci-
� ed, and no effort is made to minimize the actuator area. Sunar
and Rao12 investigated location optimization of a prechosen actu-
ator size. Their example and results were similar to that of Baz
and Poh8,9; however, Sunar and Rao12 used plate � nite elements.
Youse� -Koma and Vukovich13 suggested three optimization crite-
ria, two of which were adopted from Devasia et al.10 Youse� -Koma
and Vukovich13 increased the number of optimizationparameters to
three: the length, the width, and the locationof the actuator.Despite
the inclusionof actuatorstiffness,they excludedthe actuatormass in
the model. Gabbert and Schulz14 suggested controller-independent
criteriabasedon the strainenergyof thebeam.The proposedoptimal
actuator center location was the point at which the strain energy is
highest. For simultaneous control of several modes, they weighted
the modes of vibration and multiplied them by the slope differ-
ence at the end of the actuator to form a new objective function.
Nevertheless, they did not mention how to choose the weighting
coef� cients.

The stiffness and the inertia of the piezoelectric actuator can
greatly alter the natural frequencies and can reshape the mode of
vibration of the smart structure.15 Therefore, the inclusion of the
actuator’s mass and stiffness is necessary for reliable modeling. In
this paper, we modify the optimization criterion given by Kim and
Junkins16 for actuator size and location to � t our requirements.Un-
like most of the early works, our criterion is independentof the con-
trol law and is based on practical consideration.That is, the designer
can constrain the size of the actuator and may choose the modes to
be damped out and their relative importance. Size constraint of the
actuator is important to avoid altering the beam’s weight and stiff-
ness. Whereas the cited researchers equally weighted the structural
modes, the criterion given here weights the modes based on their
contribution to the system output.

In the theory section of this paper, the mathematical model of
a beam structure with surface-bonded piezoelectric patches (seg-
ments) will be developed.A general procedure for the optimization
of location and size of piezoelectric patches is presented consider-
ing all possible boundary conditions. To establish the optimization
criterion, the modal controllability/observabilityand the modal cost
theories are brie� y reviewed. By combining these theories, a real-
istic optimization criterion is formed. In the section on numerical
examples, the optimal size and location of piezoelectricpatches are
determined for beams with six different geometrical boundary con-
ditions and one or two patches.The results are comparedwith other
authors’ results when available.

Theory
Beam Model

Consider a symmetric stepped beam, as shown in Fig. 1, which
consists of a host � exible beam of unspeci�ed boundary conditions
and p pairs of piezoelectric patches that are perfectly bonded on
the top and bottom surface of the host beam. To reduce the num-
ber of optimization parameters, the patches are assumed to have
equal thickness tp and width b. The host beam and the piezoelec-
tric patches both possess rectangular cross section and have the
same width. It is assumed that the patches are of identical poling
direction and can simultaneously sense and actuate the bending vi-
bration, resulting in self-sensing,collocatedactuators.17,18 Because
the bonding layers are very thin, their effects on beam dynamics can
be neglected.

Fig. 1 Geometry of a beam with surface-bonded piezoelectric patches.

To derive the Euler–Bernoulli beam model, the kinetic energy T
and the potential energy U of the stepped beam with p patches in
bending motion can be expressed as
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where w(x , t ) is the transverse de� ection of the beam center-
line, vk(t ) is the actuation voltage supplied to the pair k, and
H (x ¡ di ), i =1, . . . , 2p + 1, is the Heaviside step function. The
properties q h and Eh and q p and E p are the host beam and the
piezoelectric patches’ density and Young’s modulus, respectively.

The extendedHamilton’s principleis used to derive the equations
of motion, that is,

Z t2

t1

d (T ¡ U ) dt +
Z t2

t1

d Wnc dt = 0 (4)

Because there are no nonconservative forces or moments that are
not accounted for in U , the virtual work d Wnc is only due to the
internal (Kelvin–Voigt) damping of the beam and can be expressed
as19

d Wnc = ¡
Z L

0

cs I( @3w

@x2@t

´

( @2( d w )
@x2

´
dx , I =

b
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The assumed modes Rayleigh–Ritz method is the most appro-
priate approximation method for the optimization problem at hand.
The � nite element method normally permits only discrete variation
of the patch length and location if � xed element sizes were used. In
the assumed modes method, the size and the location of the piezo-
electricpatchescan be smoothly changedwith no restrictionson the
step size. Employing the assumed modes method,20 the transverse
de� ection of the beam is approximated as

w (x , t ) =
nX

i = 1

u i (x)qi (t ) (6)

where u i (x) is the i th assumed mode shape, qi (t ) is the i th gen-
eralized coordinate, and n is the number of terms retained in the
approximation.
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Substituting Eq. (6) into Eq. (4) and performing the necessary
integration leads to

Mi j q̈ j + Ci j Çq j + K i j q j = Di kvk(t ), i, j = 1, n (7)

where the mass, damping, and stiffness matrices are

Mi j =
p + 1X
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and the control in� uence matrix of voltage vk on mode i is

Dik = C p[u 0
i (d2k) ¡ u 0

i (d2k ¡ 1)]

Equation (7) alongwith Eq. (8) are appropriatefor any beam bound-
ary conditions. Moreover, the model considers the mass and the
stiffness of the piezoelectric patches. If the assumed mode func-
tions u i (x) are judiciously chosen, better accuracy and more ef� -
cient convergence can be obtained.21 Candidate functions are the
mode shape functionsof a uniformbeam, which are available in the
literature for all boundary conditions.

Measure of Modal Controllability and Observability
The second-order system given by Eq. (7) can be easily written

as a � rst-order system

ÇX = AX + Bv(t ) (9)

where

X = (q

Çq

´
, A =

µ
0 I

¡ M ¡ 1K ¡ M ¡ 1C

¶
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Unlike the Popov, Belevitch, and Hautus (PBH) controllability test
(see Ref. 22), which givesbinary (yes/no) information,Hamdan and
Nayfeh22 proposed a measure of modal controllability/observabilty
that reveals information on how controllable/observableeach mode
is for eachactuator/sensor.This measureexploitstheanglesbetween
the normalized left eigenvectors Ri of the system matrix A and the
control input in� uence matrix B. The measure of controllabilityof
the i th mode by the j th actuator is

cos h i j =
ê
ê RT

i b j
ê
ê

k Ri k k b j k
(11)

with the magnitude notation j ¢ j equal to the magnitude of ¢ and
k ¢ k equal to the Euclidean (root-sum-square) norm of ¢ , where
RT

i Pj = d i j and b j is the j th column vector of matrix B . If the
angle h i j is equal to zero, the maximum controllability of mode i
by actuator j is achieved. However, when the angle is 90 deg, the
i th mode is uncontrollable by the j th actuator. The gross measure
of controllability b i of the i th mode by all actuators is given by the
equation

b i = k fi k (12a)

where

f T
i = [cos h i1 k b1 k , cos h i2 k b2 k , . . . , cos h im k bm k ] (12b)

For a collocated system, note that the measure of modal control-
lability is equivalent to the measure of modal observability. More
details and examples of the Hamdan and Nayfeh22 measure may be
found in Refs. 16, 21, and 22.

Measure of Modal Cost
Modal cost is de� ned as the contribution of the system’s in-

dividual modes to the overall system response under a speci� c
disturbance.21 In other words, the modal cost can be interpreted
as the relative importance of each system mode for a particular in-
put. The disturbance can be introduced in the form of either initial
conditions and/or an impulse force, both of which are widely used
to study the transient response of the system. In this section, a brief
review of the Skelton modal cost21 is presented; this modal cost is
based on unit impulse disturbance only.

The approximated equations of motion [Eq. (7)] of the stepped
beam

Mq̈ + C Çq + K q = Dw u (13)

can be modi� ed to � t the modal cost analysis. Here M and K are
given in Eq. (8) and Dw is the disturbance in� uence matrix. In line
with standardpractice,Rayleighdamping is assumed to avoidmodal
coupling caused by the damping.23 It will be assumed that cs =aE
and, thus, C =aK . Furthermore, because the modal cost is based
on unit impulse disturbance,u is the unit impulse input. Here, u is a
vectorthat permits applicationof an impulsedisturbanceat one of m
locations.Equation (13) can be transformed into modal coordinates
by introducing the normalized modal matrix U of M and K and the
modal coordinatesvector ´(t ) as follows.

Let q(t ) = U ´(t); this leads to

M̃ ΅ + C̃ Ḉ + K̃ ´ = D̃w u (14)

where the transformed (modal coordinates) mass, damping, stiff-
ness, and disturbance in� uence matrices are, respectively,given by

M̃ = U T M U = I

C̃ = U T C U = diag(2f 1 x 1, 2f 1 x 1, . . . , 2f nwn), f i = a x i / 2

K̃ = U TK U = diag
¡
x 2

1 , x 2
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n

¢
, D̃w = U T Dw

The systemmodal cost is evaluatedby consideringa cost function
that represents the performanceof the system. For m unit impulses,
the cost function is given by

V =
mX

i = 1

Z 1

0

y iT

d (t )QV yi
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where the output response yd (t ) due to the unit impulse input ui (t)
is expressed as
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These matrices can be chosen so that the cost function V becomes
a meaningful physical quantity. For example, V can represent the
kinetic and the potential energies of the system if Cdx = Cd Çx = U T

and

QV =

µ
diag

¡
x 2

1 , x 2
2 , . . . , x 2

n

¢
0

0 I

¶

are assigned. Other possible choices can be taken to have a cost
function of importance to the designer.

The i th modal cost combines two parts; namely, the modal cost of
the mode’s displacementand the modal cost of the mode’s velocity,
and it is expressed as21

Vi = Vg i + V Çg i (17)

where the modal cost of the i th mode’s displacement and velocity
are given by the equations

Vg i =
£
X g g U TC T

dx Q x Cdx U
¤
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Equation (17) represents the i th mode contribution to the total sys-
tem cost from a unit impulse disturbance at location(s) that are
speci� ed in the disturbance in� uence matrix Dw . The disturbance
would be at locations at the ends of the piezoelectric patches and
would be in a moment form if Dw = D is assigned.

Optimization Criterion
An attractive optimization criterion for actuator size and place-

ment is based on the degree of modal controllability.The piezoelec-
tric self-sensingactuator should be sized and placed to produce the
maximum controllability/observabilityfor all modes; however, it is
impossibleto � nd such size and location.Fortunately,in practicenot
all modes are of equal importance to the system response; the con-
tribution of some modes is negligible. Therefore, there is no need
to weight the less signi� cant modes equal to the dominant ones.
(Of course, because system response relates input and output, the
modes to be neglectedare con� gurationdependent.) The modal cost
that was presented in the preceding section is a practical method to
rank each mode’s participation in the total system output. Kim and
Junkins16 proposed a controllability index given by

a =
nX

i = 1

Vi

V
b 2

i

The gross measure of controllability b i is always positive and less
than one; hence, squaring it seems unnecessary. The Kim and
Junkins controllability index is modi� ed by removing the square
power of b i to formulate the following optimization problem.

Determine the locations dk (k =1, 2, . . . , 2p) (see Fig. 1) that
maximize the weighted controllabilityof the system’s modes. This
is mathematically written as

maximize obj = a =
nX

i = 1

Vi

V
b i

subject to dk ¡ dk + 1 < 0, d2 p ¡ L · 0

d1 , d2 , . . . , d2p + 1 ¸ 0 (18)

where b i , V , and Vi are given by Eqs. (12), (15), and (17), respec-
tively. L , dk , and dk + 1, in order, are the length of the beam, the
distances from the left boundary of the beam to the left end and to
the right end of the kth piezoelectric patch (Fig. 1). If the modal
weight is known from any other weighting method, these weights
may be used to replace the modal cost in Eq. (18).

Note that in the optimization problem (18) there was no restric-
tion on the length of the actuator. This usually leads to practically
infeasibleactuator length (heavy, too long, very expensive, etc.). To
designa practicallyrealisticactuatorsize, the patch lengthshouldbe
constrainedby adding a penalty term to the objective functiongiven
by Eq. (18). (It is also possible to limit the actuator size directly
through a constraint on the maximum length.) The new proposed
objective function is expressed as

obj = a ¡ penalty (19)

By judicious selection (design dependent) of the penalty, a prac-
tically reasonable patch length can be obtained. For the sake of
demonstration, the penalty term is chosen such that the objective
function reduces drastically in a quadratic manner when the length
of each patch exceeds a particular fraction of the beam length:

obj = a ¡
pX

k = 1 ( d2k ¡ d2k ¡ 1

c L

2́

(20)

where c is a scaling fraction, 0 < c < 1. Equation (18) as well as
Eq. (20) will be employed in the next section.

Numerical Examples
The optimal length and location of piezoelectric actuators are

determined for a number of beam boundary conditions: free–

free, clamped–free, clamped–pinned, clamped–sliding, clamped–

clamped, and pinned–pinned beams (Fig. 2). A � ve-mode model is
used to approximatethe beamde� ection.The assumedmodes, u i (x)
in Eq. (6), are chosen to be those of the uniform Euler–Bernoulli
beams, which are available in many references (for example, see
Inman24 ). The modalcost (weight) is calculatedbyusing themethod
given in the “Measure of Modal Cost” section.

The disturbance matrix Dw and, thus, modal cost is sensitive to
large changes in the location(s) of the unit impulse disturbance but
not to smallchanges.Numericalcalculationsindicateapproximately
11% change in the modal cost for a disturbance location change of
§0.05L. Therefore, the position(s) of the unit impulse disturbance
should be assigned appropriately(in a problem-dependentmanner)
to re� ect the expected system excitation. Once the optimal actua-
tor parameters are obtained for a speci� c disturbance location, the
objective function is relatively insensitive to the disturbance loca-
tion if the location of the disturbance is in the vicinity of the one
used in the optimization.As example, the pinned–pinned beam has
a sensitivity of at most 4% in the objective function for a variation
of §0.05L in the disturbance location. For illustration, the location
of the impulse unit input is selected to excite the modeled modes
of the beam; otherwise, it is chosen based on design requirements.
The Qv , Cdx , and Cd Çx matrices are chosen so that the modal cost
represents the energy contributionof each mode.

We investigated two sets of beam examples: beams with one pair
and beams with two pairs of piezoelectricactuators. In all examples,
the actuators are piezoceramic PZT-4 patches that are attached on
an aluminum host beam of length L = 0.5 m. The beam and the
patchesare of equalwidth, b = 5 mm, and have thickness th = 1 mm
and tp =0.1 mm. The internal modal damping factor of the beam
is assumed to be n =0.001 for all modes.21 The properties of the
aluminumhost beam and of the piezoelectricpatches are as follows.
For the Al beam, the density q h = 2840kg/m3 and Young’s modulus
Eh = 76 GPa. For the PZT-4 (Ref. 25), the density q p = 7500 kg/m3

and Young’s modulus E p =81.3 GPa. The piezoelectriccoef� cient
d31 = ¡ 123 £ 10 ¡ 12 m/V. In the interestof simplicity,only the length
and the location of the patches are considered as the optimization

a) Free–free

b) Clamped–free

c) Clamped–pinned

d) Clamped–sliding

e) Clamped–clamped

f) Pinned–pinned

Fig. 2 Beam con� gurations.
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Table 1 Optimization results of a beam with one pair of actuators for various boundary conditions

Optimal results

Model cost at optimum, % Equation (18) Equation (20)Disturbance
Beam con� guration location 1st 2nd 3rd 4th 5th d1/ L d2/ L d1/ L d2/ L

Free–free 0.4L 65 18 6 9 1 0 0.79 0.29 0.83
Clamped–free 0.7L 78 9 10 2 1 0 1 0 0.6
Clamped–pinned 0.4L 67 25 0 7 1 0.36 1 0.37 0.92
Clamped–sliding 0.4L 49 41 2 4 4 0.06 0.67 0.36 0.75
Clamped–clamped 0.4L 70 20 2 8 0 0.3 1 0.32 0.84
Pinned–pinned 0.3L 72 22 1 2 3 0.25 1 0.23 0.49

Table 2 Optimization results of a beam with two pairs of actuators for various boundary conditions

Optimal results

Equation (20) Equation (18)
Disturbance

Beam con� guration location d1/ L d2/ L d3/ L d4/ L d1/ L d2/ L d3/ L d4/ L

Free–free 0.4L 0.149 0.677 0.677 0.85 0.046 0.735 0.735 0.985
Clamped–free 0.7L 0 0.535 0.58 0.79 0 0.95 0.95 1
Clamped–pinned 0.4L 0.27 0.45 0.45 0.91 0 0.39 0.39 1
Clamped–sliding 0.4L 0.3 0.62 0.67 1 0.159 0.65 0.65 1
Clamped–clamped 0.4L 0 0.15 0.56 0.65 0.06 0.27 0.27 1
Pinned–pinned 0.3L 0.12 0.43 0.43 0.89 0 0.46 0.46 1

Fig. 3 Flowchart of the optimization process.

parameters.If they areof interest,other parameterssuchas thewidth
and the thickness can be easily introduced into the optimization
problem.

The � owchart for � nding the optimal parameters dk and dk + 1 is
given in Fig. 3. Tables 1 and 2 show the optimal results of one and
two pairs, respectively,of patchesforbeams with differentboundary
conditions. The modal costs for the various modes change during
the optimizations because the mass and stiffness of the actuator

alter the modes. In Table 1, we give the modal costs at the optimal
point.Although the objectivefunction that is given in Eq. (18) is not
of practical importance, it is employed to predict the ideal optimal
resultsand to compare the resultsof this paperwith literatureresults,
if available. The practically realistic objective function Eq. (20) is
utilized for all beam cases, and its optimal results are also shown
in Tables 1 and 2. The scaling fraction c =0.25 is selected such
that the objective function reduces drastically when the length of
the actuator exceeds 25% the length of the beam.

For one pair of actuators (Table 1), our optimal results of a
clamped–free beam are identical to those of the overall damping
criteria that are reported by Youse� –Koma and Vukovich.13 Fur-
thermore, the results of pinned–pinned beam agree very well with
those reportedby Devasia et al.10 For the other beam cases, there are
no available results in the literature to compare with. Figures 4a–4f
show surface plots of the objective function of the unconstrained
patch length case for one pair of actuators. These plots are gen-
erated over the permissible domain of the independent variables,
namely, 0 < d1 < L and d1 < d2 < L. It is not unexpected that in the
clamped–free case the optimal length is the beam lengthbecausethe
beam midpoint is not a node of any of the considered modes. For
the free–free beam, the clamped–clamped beam, and the pinned–

pinned beam, the beam midpoint is a node of the even modes; thus,
it is avoidedas an optimal center location for the patch although the
longer the patch the higher the controllabilityof the odd modes.

For two pairs of patches, we found that the objective function is
always higher than that for one pair of patches, indicating higher
modal controllabilitythan that generatedby one actuatorpair. How-
ever, the total length of the two pairs of patches is longer than that
of one patch. In spite of increased length of the two pairs, there is a
great gain in the modal controllability.Thus, for vibration control,
it is recommended to utilize multiple pairs of short piezoelectric
actuators instead of a single pair of a long actuators. Note that in
Table 2 although the optimal locations of the two patches look as if
they were a single patch, their control action is different than that of
a single patch. The two patches can act in phase when their control
voltage is in phase or can act out of phasewhen their controlvoltage
is out of phase, permitting more control authority. In this manner,
symmetric and antisymmetric modes can be controlled by in-phase
and out-of-phasevoltages, respectively.

The sensitivityof theoptimizationresultsto the mass and stiffness
of the piezoelectric patches is investigated for the pinned–pinned
beamwith onepairofPZT patches.Table3 shows theoptimalresults
when the mass, the stiffness,or both are ignored.A comparisonwith
the results of Table 1 is indicated in the error column. Although
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a) Free–free d) Clamped–sliding

b) Clamped–free e) Clamped–clamped

c) Clamped–pinned f) Pinned–pinned

Fig. 4 Surface plot of the objective function of the unconstrained patch length for one pair of actuators.

Table 3 Optimization results of a pinned–pinned beam
with one pair of actuators

Equation (18) Equation (20)

Case d1/ L d2/ L % error d1/ L d2/ L % error

PZT mass ignored 0.26 1 2 0.24 0.5 4
PZT stiffness ignored 0.23 1 3 0.22 0.5 4
PZT mass and stiffness 0.26 1 2 0.235 0.5 4

ignored
PZT mass and stiffness 0.25 1 —— 0.23 0.49 ——

included

ignoring the mass and stiffness of PZT causes a small error in the
results of the examples consideredin this paper, their effects should
not be neglected for relatively thick PZT patches.

Conclusions
We formulated an optimization criterion for actuator/sensor siz-

ing and placement. Both the inertia and the stiffness of the piezo-
electric patches are included in the model. The proposedcriterion is
controller independent and is based on practically realistic consid-
erations. The modal costs (weights) are calculated for each mode
of the � exible beam and are accordingly used to weight the modal
controllability in the objective function. It has been shown that the
length of the actuator can be penalized to achieve a practically
reasonable actuator size. By comparing the results of two beam
examples with other authors’ results, we veri� ed the validity as

well as the accuracy of the criterion. A general procedure for the
optimization of location and size of piezoelectric patches is pre-
sented considering all possible boundary conditions. It should be
mentioned that the results in this paper are suitable for any beam
problem with similar boundary conditions and with similar modal
contributions.

The performance of a single pair and two pairs of actuators are
then compared for several beam examples. The results showed that
two pairs of actuators can control the vibration in beams more ef-
fectively than a single pair. It also suggests that using several short
pairs of actuators is better than using one long pair, although this
requires further con� rmation.
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