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Abstract

Repetitive control is useful if periodic disturbances or setpoints act on a control system. Perfect (asymptotic) disturbance rejection is achieved
if the period time is exactly known. The improved disturbance rejection at the periodic frequency and its harmonics is achieved at the expense
of a degraded system sensitivity at intermediate frequencies. A convex optimization problem is defined for the design of high-order repetitive
controllers, where a trade-off can be made between robustness for changes in the period time and for reduction of the error spectrum in-between
the harmonic frequencies. The high-order repetitive control algorithms are successfully applied in experiments with the tracking control of a
CD-player system.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Repetitive control; Compact disc player; Periodic disturbances; Internal model principle

1. Introduction

Control systems subject to periodic disturbances may well
benefit from the use of repetitive control (Hara, Yamamoto,
Omata, & Nakano, 1988; Tomizuka, Tsao, & Chew, 1988).
Repetitive controllers employ the internal model principle
(Francis & Wonham, 1975; Rogers & Owens, 1992; de Roover,
Bosgra, & Steinbuch, 2000) and consist of a periodic signal
generator, enabling perfect (asymptotic) rejection of periodic
disturbances. Applications are for instance known in magnetic
and optical storage devices (Bodson, Sacks, & Khosla, 1994;
Chen, Ding, Xiu, Ooi, & Tan, 2003; Chew & Tomizuka, 1990;
Choi, Oh, & Choi, 1999; Dötch, Smakman, Van den Hof,
& Steinbuch, 1995; Guo, 1997; Li & Tsao, 1999; Moon, Lee,
& Chung, 1998; Messner & Bodson, 1994) and other motion
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systems and mechanics (Choi, Lim, & Choi, 2002; Fung,
Huang, Chien, & Wang, 2000; Gotou, Ueta, Nakamura, &
Matsuo, 1991; Hillerström, 1996; Kim & Tsao, 2000; Manay-
athara, Tsao, Bentsman, & Ross, 1996; Yau & Tsai, 1999).

One of the drawbacks of repetitive control is the require-
ment of exact knowledge of the period time of the external
signals (Luo & Mahawan, 1998; Steinbuch, 2002; Tsao &
Nemani, 1992). This means that in practical applications, either
the period time is required to be constant, or an accurate mea-
surement of the periodicity is necessary. Another drawback is
due to the Bode sensitivity integral: the perfect reduction at the
harmonic frequencies is counteracted by amplification of noise
at intermediate frequencies.

Various solutions have been presented in the literature ad-
dressing this problem. The classical trade-off between robust-
ness, performance and noise sensitivity is discussed in Guo
(1997), Kim, Li, and Tsao (2004), Köroğlu and Morgü (1999),
Lee and Smith (1998), Li and Tsao (1999), Yamada, Riadh,
and Funahashi, (1999) using H∞ and LQ-based repetitive con-
trollers. Time-varying and adaptive repetitive control is intro-
duced in Cao and Ledwich (2001), Köroğlu and Morgül (2001)
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and Xu and Yao (2001). Recently, approaches have been re-
ported in the literature making use of high-order periodic signal
generators (Chang, Such, & Kim, 1995; Inoue, 1990;Schoo-
tstra & Steinbuch, 1998; Steinbuch & Schootstra, 1998; Stein-
buch, 2002). In Steinbuch (2002) an approach is presented to
design a high-order repetitive controller (HORC) such that ro-
bustness for period changes is obtained. In Steinbuch (2002) a
constraint optimization problem is solved such that a desensitiz-
ing effect is obtained for non-repetitive signals. Approaches to
make iterative learning schemes robustly stable with respect to
iteration dependent disturbances and uncertainties have been re-
ported in Chen and Moore (2002) and Moore and Chen (2002).
For systems with multiple periodic signals a solution is pre-
sented in Yamada et al. (2000) and Chang, Suh, and Oh (1998).

In this paper we will generalize the results of Chang et al.
(1995) and show that it can be cast into a convex optimization
problem. We will also show that, using appropriate weight-
ing functions, the same problem formulation can yield both
the results of Steinbuch (2002) and the ones in Chang et al.
(1995). The paper is an extended version of Steinbuch, van den
Eerenbeemt, Weiland, and Singh (2004).

In Section 2 we will introduce the structure of high-order
repetitive controllers, and show how stability can be guaranteed.
In Section 3 the new optimization problem will be formulated.
In Section 4 an application to a CD-player mechanism will
be shown. Main results will be summarized in the form of
conclusions in Section 5.

2. High-order repetitive control

Consider the general repetitive control system shown in
Fig. 1. The repetitive controller is shown in the figure as the
device M(z), which includes a memory loop or delay line
(Steinbuch, 2002). In high-order repetitive control, the total
delay of the memory loop is extended to an integer multiple
p of N samples by connecting multiple delays in series in a
structure as shown in Fig. 2. Note that in this block diagram
a noncausal robustness filter Q and a learning filter L are
incorporated. Their respective delays are compensated by the
structure, making the filtering noncausal, which is realized as
follows. The filter Q is designed as a linear phase filter with
q samples delay, which are then compensated by removing q
samples from the memory buffer (block z(N−g−l)). The total
effect of the filtering with Q is then zero-phase. The filter L is
designed using, for instance, the zero phase error tracking con-
troller (ZPETC) algorithm as proposed in Tomizuka (1987),
with a phase delay of l samples, and l delays are shifted from
the forward path in the memory buffer to the feedback part,
such that the total amount of delays is still correct, but the
ones from L are compensated in the path.

Notice that because of the use of multiple delay lines, the
control signal can be computed as a weighted sum of the signals
of one, two, and more periods ago.

The relation between the input e and the output z of the
HORC of Fig. 2 is described by the transfer function

M(z) = L(z)Q(z)W(z)z−(N−l−q)

1 − Q(z)W(z)z−(N−q)
, (1)
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Fig. 1. Block scheme of the general repetitive controller.

where W is the gain adjusting or high-order repetitive function,
given by

W(z) =
p∑

i=1

wiz
−(i−1)N (2)

with
∑p

i=1wi = 1, which ensures infinite gain at the harmonic
frequencies.

2.1. Stability

Consider the control system of Fig. 1, with M(z) the HORC
of Fig. 2. The corresponding sensitivity function is given by
S=1/(1+PC(1+M)). To analyze the stability of the controlled
system, (1) is used to obtain

S = 1

1 + PC
(
1 + (LQWz−(N−q−l))/(1 − QWz−(N−q))

)
= 1

1 + PC
· MS, (3)

where MS is the modifying sensitivity function (or relative sen-
sitivity error transfer function Chang et al. (1995)). MS is given
by

MS(z) := 1 − QWz−(N−q)

1 − QWz−(N−q)(1 − T Lz+l )
, (4)

where T is the complementary sensitivity T = PC/(1 + PC).
Hence MS modifies the standard sensitivity function as a result
of the repetitive control action.

Using the expression for MS, a sufficient (small gain) crite-
rion for stability now becomes

|W(z)Q(z)z−(N−q)(1 − T (z)L(z)z+l )| < 1 (5)

for all z with |z| = 1.

2.2. Performance

In order to analyze the performance of the repetitive con-
troller for various design choices (i.e. order p and weighting
parameters wi), we will focus within the passband of the ro-
bustness filter Q, and hence assume that Q = 1 and q = 0. Fur-
thermore, we assume that LT ≈ kr , with (kr the learning gain)
and also l = 0. That is, for low frequencies, where the inverse
of T is normally exactly known, kr chosen close to or equal to
one.
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Fig. 2. Block scheme of the high-order repetitive controller M(z).

Under these assumptions, Eq. (4) simplifies to

MS(z) = 1 − W(z)z−N

1 − W(z)z−N(1 − kr)
. (6)

Furthermore, to make the analysis independent of the period
time of the disturbance, the normalized frequency � = �NT s
with Ts the sampling time is introduced. With the substitution
z = ej�Ts or z = esT s , the modifying sensitivity function in
Eq. (6) becomes a function of the normalized frequency � and
is (with some abuse of notation) given by

MS(�) = 1 − W(�)e−j�

1 − W(�)e−j�(1 − kr)
, (7)

where

W(�) =
p∑

i=1

wie
−(i−1)j�.

is the (normalized) high-order repetitive function. Remark that
for the normalized frequency � we have that 2�(k−1)���2�k.
Since the expressing is a periodic function, in the remainder
of the paper we take k = 1, and hence choose the range as
0���2�.

3. Optimization design problem

In Inoue (1990), Inoue proposes the weighting factors in (2)
as wi = 1/p and shows that this choice minimizes the aver-
aged square of |MS(z)| over all frequencies. In Chang et al.
(1995), the authors propose an ‘evolution strategy’ to minimize
the H∞ norm of MS over all weighting factors wi , assuming
the gain kr to be fixed. Here we will extend the approach of
Chang et al. (1995) in two ways: first we will omit the unneces-
sary constraint (Inoue, 1990) that each weighting factor wi �1
(but we retain the condition on the sum!), and secondly we will

show that the design optimization problem can be rephrased
and solved by a linear programming algorithm. The weighting
factors of the high-order repetitive function W defined in (2) are
determined in such a way that the infinity norm of the modify-
ing sensitivity function is minimized. That is, we consider the
problem

min
wi

‖G(�)MS(�)‖∞ (8)

subject to

p∑
i=1

wi = 1.

Here, G(�) is a shaping function that is used to determine
the effort of the H∞ minimization on typical frequencies. The
constraint on the weights is required in order to meet the internal
model principle: to have high gain at the harmonics, see also
Eq. (7), its numerator should be zero at these frequencies.

To analyze this problem, consider the case where the learning
gain kr = 1. In this case, the modifying sensitivity function
(7) simplifies to MS(�) = 1 − W(�)e−j� and the optimization
criterion becomes

min
wi

‖G(�)(1 − W(�)e−j�)‖∞,

where W(�) = ∑p
i=1wie−(i−1)j� is subject to the constraint∑p

i=1wi = 1.
Observe that in this case, for any given G and fixed �, the

function G(�)MS(�) is affine in the weighting parameters wi .
That is, we can write

G(�)MS(�) = G(�) −
p∑

i=1

wiGi(�),
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where Gi(�) = G(�)e−ij�. Hence, the optimization amounts to
solving

min
wi

sup
0���2�

∣∣∣∣∣G(�) −
p∑

i=1

wiGi(�)

∣∣∣∣∣
subject to

p∑
i=1

wi = 1

and its computationally tractable approximation is

min
wi

max
�∈�

∣∣∣∣∣G(�) −
p∑

i=1

wiGi(�)

∣∣∣∣∣
subject to

p∑
i=1

wi = 1,

where � = {�1, . . . , �K} is a (uniform) finite grid of the inter-
val [0, �] (we take half of the period because of symmetry).
Equivalently, we wish to solve

min
wi,t

{
t

∣∣∣∣∣
∣∣∣∣∣G(�) −

p∑
i=1

wiGi(�)

∣∣∣∣∣ � t,

for all � ∈ �,

p∑
i=1

wi = 1

}
(9)

which is a conic quadratic optimization problem in the real and
imaginary parts of the complex variable

z = G(�) −
p∑

i=1

wiGi(�)

by employing that the expression |z|� t is equivalent to√
Re2(z) + Im2(z)� t .
As an alternative for the conic quadratic optimization, one

may convert the latter problem into a linear programming prob-
lem by approximating the inequality |z|� t in (9) by a number,
say 2n, of linear inequalities in the real (a) and imaginary
(b) part of the complex number z = a + bj . The idea is to
inscribe the unit circle in the complex plane by a 2n vertex
polygon and using that

|z| cos(�/2)�pn(z)� |z|,
where n is an integer, � = �/n, and

pn(z) := max
i=1,...,n

|a cos(i�) + b sin(i�)|

is the polyhedral norm consisting of the maximum of absolute
values of n linear forms of a and b. The optimization (9) is then

effectively approximated within accuracy 1 − cos(�/2n) by

min
wi,t

{
t

∣∣∣∣∣pn

(
G(�) −

p∑
i=1

wiGi(�)

)
� t,

for all � ∈ �,

p∑
i=1

wi = 1

}
.

This is a linear programming problem. See, e.g., Ben-Tal and
Nemirovski (2001) for details. This can be solved in Matlab
using the linprog routine, achieving an arbitrary high accuracy
of the minimal value of (9).

In the remainder of this section, two cases are distinguished
considering the frequency range where low system sensitivity
is desirable.

3.1. Robustness for changes in the period time

To achieve robustness for changes in the period time, the
magnitude of the modifying sensitivity function is forced to be
small in the frequency region close to the periodic frequency,
i.e., for frequencies � ∈ [0, �1]. This can be attained by choos-
ing the shaping function G(�) as

G(�) =
{

1 if 0�� < �1,

0 if �1 ����.

A graphical interpretation is shown in Fig. 3.
With kr = 1, �1 = �/5, a polyhedral approximation order

n= 2 and various orders p of the high-order repetitive function
W, the following optimal sets of weighting factors

Wopt(p, kr) = (w∗
1, . . . , w∗

p)

for the corresponding linear programming problem are ob-
tained:

Wopt(2, 1) = (1.85, −0.85) ≈ (2, −1),

Wopt(3, 1) = (2.93, −2.93, 1) ≈ (3, −3, 1),

Wopt(4, 1) = (4.01, −6.01, 4.02, −1.02) ≈ (4, −6, 4, −1),

Wopt(5, 1) = (4.97, −9.96, 10.09, −5.16, 1.07)

≈ (5, −10, 10, −5, 1). (10)

It can be observed from (10) that the obtained weightings are
equal to the analytically derived ones in Steinbuch (2002), see
also Singh and Vadali (1993).

The results are shown in Fig. 4. Indeed the sensitivity is
made lower near the harmonics (i.e. �1 = �/5), at the cost of
an amplification of the sensitivity at intermediate frequencies.

3.2. Reduction of sensitivity at intermediate frequencies

To improve the system sensitivity at intermediate frequen-
cies, the modifying sensitivity function is minimized over all
frequencies: � ∈ [0, �]. This can be attained by choosing the
shaping function G(�) = 1, for 0����. We call this solution
the noise robust HORC.
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Fig. 3. Minimization of the modifying sensitivity function.
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For kr =1, polyhedral approximation order n=2 and various
orders of p, the following optimal sets of weighting factors
Wopt(p, kr) are obtained:

Wopt(2, 1) = (0.62, 0.38) ≈ ( 2
3 , 1

3

)
,

Wopt(3, 1) = (0.49, 0.33, 0.17) ≈ ( 3
6 , 2

6 , 1
6

)
,

Wopt(4, 1) = (0.37, 0.28, 0.22.0.13) ≈ ( 4
10 , 3

10 , 2
10 , 1

10

)
,

Wopt(5, 1) = (0.31, 0.25, 0.20, 0.15, 0.09)

≈
(

5
15 , 4

15 , 3
15 , 2

15 , 1
15

)
. (11)

The obtained weights are in correspondence with those obtained
in Chang et al. (1995). The results are shown in Fig. 5. Indeed,
non-repeatable errors will be less amplified when compared
with a standard repetitive controller.

The previously described situations are two extremes.
A trade-off between robustness for changes in period time on
one hand and sensitivity at intermediate frequencies on the
other can be achieved by choosing an appropriate shaping
function G(�).

4. Application to a compact disc drive

In Fig. 6 a schematic view of a compact disc mechanism is
shown. The mechanism is composed of a turn-table DC-motor
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Fig. 5. |Ms| for the noise-robust high-order repetitive controller.

for the rotation of the compact disc, and a radial arm for track-
following. An objective lens, suspended by two parallel leaf
springs, can move in a vertical direction to give a focusing action.

The difference between the radial track position and the spot
position is detected by the optical pick-up (Stan, 1999); it gen-
erates a radial error signal (Steinbuch, van Groos, Schootstra,
Wortelboer, & Bosgra, 1998).

The radial actuator frequency response has been measured
(under closed-loop conditions) and used to fit a stable sixth
order parametric model. The results are plotted in Fig. 7. The
low-frequent deviations between measurement and model are
due to wrong measurements (low coherence), whereas above
2000 Hz modelling errors occur due to under-modelling. This
means that the modelling information used for the design of
the learning filters (i.e. based on the complementary sensitivity
function) is valid up to a few kHz. We will later see that we
restrict learning upto 200 Hz, and not beyond.

The tracking control loop has a cross-over frequency of
600 Hz. The feedback controller is a lead filter with integral
action (PID controller Steinbuch & Norg (1998)). The disc is
assumed to rotate at a frequency of 12.5 Hz.
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4.1. Design of the repetitive controller

A straightforward choice for the learning filter L would be

L = krT
−1, (12)

where T is the complementary sensitivity function and kr the
learning gain. However, in many applications, as is the case
here, T −1 is not proper and also T will be non-minimum phase.
As a result, the computation of T −1 will lead to a non-proper
or unstable L-filter. To overcome this problem, Tomizuka and
others (Tomizuka, 1987) developed the so-called ZPETC al-
gorithm, in which the non-minimum phase (or ‘unstable’)
zeros in T are approximated by stable poles in L. This has

Fig. 6. Schematic view of a rotating arm compact disc mechanism.
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Fig. 7. Frequency response of the CD-player system.

been applied and in Fig. 8 the frequency response is shown
of a proper and stable learning filter L. The present design is
therefore not limited to systems in which the complementary
sensitivity function is bi-proper or non-minimum phase.

As robustness filter Q a symmetric and even order (type I)
FIR filter is constructed (low computational complexity). The
cut-off frequency of Q is specified at 200 Hz. This implies that
up to 16 (200/12.5) harmonics will be suppressed. Raising the
bandpass frequency results in disturbance rejection at higher
harmonics, but then instability may occur, because L does not
match the inverse of T well at high frequencies. Furthermore,
the Q-filter order is set to 200. For lower orders the cut-off fre-
quency did not correspond to the desired value. This is probably
due to the high sample frequency of the filter (fs = 25 kHz).

The magnitude of the resulting sensitivity function is plotted
in Fig. 9, for the system with and without repetitive control.
From these figures it can be concluded that the repetitive con-
troller provides a better disturbance rejection at the repetitive
frequency and its harmonics at the cost of a degraded perfor-
mance at intermediate frequencies, as expected.

4.2. Experimental results

When the actual rotation period of the turntable motor is
measured, it turns out that the number of revolutions per second
is not a constant. The variation is in the range of ±0.05 Hz.

The measurements are performed for a HORC of order three
(p = 3), with the following set of weighting factors:

W1 = (0, 0, 0) standard PID,

W2 = (1, 0, 0) single delay repetitive control,

W3 = (3, −3, 1) period-time-robust HORC,

W4 = ( 3
6 , 2

6 , 1
6

)
noise-robust HORC. (13)
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In Fig. 10 the measured power spectrum of the error for the
different configurations of the repetitive controller is depicted
for a rotational frequency of 12.50 Hz. It can be seen that for
the system without repetitive controller, W1, the spectrum of
the error has large peaks at the rotational frequency of 12.50 Hz
and its harmonics. The noise level between the harmonics is
relatively low. This merits the application of the period-robust
HORC method. The repetitive controller effectively reduces
this peak. But looking at the different configurations, it can be
seen that the W3 configuration almost perfectly reduces the dis-
turbance at the periodic frequency, while for W2 and W4 there
is still some power left. According to theory and simulations,
the reduction at the repetitive frequency should be equal for all

repetitive configurations. This difference can be related to the
variation in the rotational frequency of the CD-player turntable
(±0.05 Hz). Even small deviations of the disturbance period
time from the delay time of repetitive controller result in a
degradation of the sensitivity of the W2 and W4 configuration,
while it does not affect the sensitivity of the W3 configuration.

Looking in Fig. 10 at the frequency range between two suc-
cessive harmonics, it can be seen that for the W2 and W3
configuration, the system sensitivity at intermediate frequen-
cies is degraded due to the repetitive control action. Here the
‘noise proof’ repetitive controller, W4, shows its effectiveness.
For this configuration the disturbance rejection between two
harmonics is not noticeably deteriorated with respect to the
system without repetitive control. These observations are in ac-
cordance with the magnitude plots of the modifying sensitivity
function of Figs. 4 and 5: the improved robustness for changes
in the period time for W3 goes along with a reduced system
sensitivity at intermediate frequencies. The W4 configuration
is less robust for period time changes, but provides better dis-
turbance reduction at intermediate frequencies. With respect to
these properties, the single delay configuration lies between
both high-order configurations.

5. Conclusions

The use of memory loops is beneficial in systems with repet-
itive disturbances or tasks. In order to improve the capabilities
of repetitive controllers for those cases where the periodicity is
hard to measure and is subject to variation and/or where off-
harmonics (or noise) occur, the possibility of high-order repet-
itive control is investigated. A new design algorithm has been
developed, which uses simple linear programming techniques
to design the repetitive controller. Both a noise-robust and a
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period-time-robust high-order repetitive controller have been
implemented successfully in a digital control setup of a com-
pact disc player.

The design of high-order repetitive controllers clearly de-
pends on the noise models which can be developed for a cer-
tain application. This issue needs further attention, especially
in the case where disturbance characteristics are time-varying.
In such cases adaptive versions can be designed in which the
coefficients of the filters are changing as a function of the signal
properties as they are measured on-line. However, stability and
convergence issues need further research for such solutions.

Another interesting extension is the use of such high-order
structures in iterative learning control, in order to decrease the
sensitivity of the solution for the specific trajectories. Also this
is subject for further research.
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