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The focus of this paper is on the use of ground target kinematics

to estimate the underlying road network on which the vehicles

are assumed to be travelling. Assuming that the road network

can be represented as an amalgamation of straight line segments,

a Hough transform approach is used to identify portion of road

which correspond to straight line segments. Since multiple tracks

can be associated with one segment of the road and since the

track estimates are inherently uncertain, an iterative approach

is presented to identify a parametric representation of the line

segments of the roads using the total least squares cost function.

Cramér-Rao bounds are identified to characterize the bounds on

the uncertainty associated with the proposed approach. A complex

dataset which include multiple tracks is used to illustrate the ability

of the proposed algorithm to identify the underlying road network

and characterize the uncertainty associated with the parametric

estimate of the road.
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1 INTRODUCTION

Automatic cartographic feature extraction has been
the goal for road network identification given the
tremendous growth in automobiles with navigation sys-
tems, and the interest in driverless cars. In post hurri-
cane disaster scenarios when bridges and roads might
be washed out, there is a need to rapidly update road
network databases for logistics. In regions of conflict or
deserts, there is a need to develop road maps to iden-
tify safe travel routes. Precise road networks can also
be used to enhance the performance of ground vehicle
trackers by restricting the motion of the target to the
road network.
Synthetic Aperture Radar (SAR) and Ground Mov-

ing Target Indicator (GMTI) data is often processed and
analyzed to produce such networks. SAR produces im-
ages of varying intensity which can be processed to
separate buildings, roads, and terrain. However, SAR
is only able to detect prominent existing features [1].
For example, SAR will only detect a road if there is a
distinct outline of such a path. GMTI on the other hand
tracks moving targets and relays the latitude and longi-
tude coordinates as well as the kinematic information.
The disadvantage of GMTI, however, is the necessity of
a moving target. Should the target stop or be obstructed
in any way from the sensors, the tracker will lose the
target for the duration of the obstructions [2]. Many of
the currently available algorithms rely on information
from pre-existing road maps, however, in many scenar-
ios the availability of this a priori information is limited
and inaccurate. In some situations there are no exist-
ing road maps, such as in times of conflict in desert
regions. Therefore the need for an algorithm which can
accurately estimate road networks in a timely manner
is of great importance. Furthermore, there is a lack of
a real quantifiable measure of the accuracy of the ex-
tracted road estimates. Several available algorithms use
a “completeness” and “correctness” measure, which is
a comparison of the extracted road network and the ac-
tual network [3, 4, 5, 6]. However, as previously stated
in many situations there are no available true networks
(i.e., desert regions) so the metrics used to evaluate the
performance of algorithms are not relevant.
Hu, Razdan, Femiani, Cui, and Wonka use a spoke

and wheel method in order to determine the foot-
prints [5]. These footprints or polygons, are road seg-
ments which span in any direction and terminate when
the intensity of the spoke or line segment falls below
a threshold. Then a toe-finding algorithm is used to
determine the number of branches in the footprint. In
this portion of the algorithm, if the angle between two
branches is less than 45 degrees they are merged, in
some cases this will eliminate Y-shaped intersections
and parallel roads. Instead of using centerlines to ap-
proximate the road network they utilize inscribed lines
to define the road structure. Finally the road network
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is trimmed to eliminate noisy data which might con-
tribute to false roads, and also possible gaps between
roads due to obstructions. This algorithm relies heavily
on pre-existing information pertaining to roads such as
the possible shapes of intersections, road widths, and
angle of roads at these intersections.
Tupin, Maitre, Mangin, Nicolas, and Pechersky first

identify linear features in the data and then separate
the true segments by using a Markov random field
(MRF) [1]. Two different line detectors are used to
identify candidate road segments and then the results
of these two detectors are fused together. With the
identification of the candidates, the MRF-based model
fills in large gaps and removes the false detections. This
MRF-based model relies on a priori information of the
road network being developed. The assumption is made
that all roads lead to an initial starting point which can
limit the accuracy of the overall algorithm.
Shackelford and Davis use a pixel-based fuzzy clas-

sifier and an object based classification approach to
identify the road networks [6]. Skeletonization is an ap-
proach in which the image is thinned or eroded away un-
til only the essential lines remain. This method produces
a large amount of false positives in the road network.
The second approach utilized is an iterative approach
in which the longest roads are initially identified and
then shorter and shorter segments are added throughout
the algorithm. The second algorithm proves to be much
better than skeletonization, however, the “completeness”
measure of the road network has decreased in both the
urban and suburban scenarios for the second algorithm
when compared with the first.
Sklarz, Novoselsky, and Dorfan focus on the fusion

of linear segments and curves based on a unified entity
approach rather than a single pixel based approach [7].
The road network can either begin as a blank slate or
already contain roads. As new tracks become available
the curve is associated with an existing curve if one
exists otherwise a new segment of road is added to the
existing network. Should a track already exist, the new
track is cropped into segments to match with the rel-
ative endpoints of the pre-existing road segments. The
optimization of the curve fusion’s computational com-
plexity increases drastically as the curves are discretized
into more finite segments thus limiting the potential of
the algorithm.
Koch, Koller, and Ulmke utilize a Multiple Hypoth-

esis Tracking (MHT) algorithm, which consists of tar-
get track extraction, prediction, filtering, track mainte-
nance, and retrodiction [2]. It is assumed that the pos-
terior probability density function is Gaussian, thus the
Kalman filter is utilized since the algorithm breaks the
road up into linear segments. The pruning removes any
segments, which have a weight smaller than a threshold,
depending on the threshold this could cause some issues
with removing actual tracks. The merging depends on
segments having similar state vectors and covariances.

Fig. 1. Algorithm flow chart.

In this paper, a method for developing road networks
and characterizing the uncertainty in these estimates is
developed. It is assumed that road networks can be bro-
ken down into piecewise linear segments. Figure 1 il-
lustrates the sequence of processing of data to generate
a parameterization of the road network with the asso-
ciated uncertainties. The initial processing of the data
is done by creating a binary image of the track data
and extracting possible line segments using the Hough
transform. This is followed by the clustering of the data
associated with the identified straight lines. Since the
Hough transform does not provide a measure of un-
certainty, the Total Least Squares approach is imple-
mented and the Cramér Rao lower bounds is derived
from this maximum likelihood estimate. The Total Least
Squares solution allows for an iterative estimate, which
is updated in time as additional measurements become
available. The Least Squares solution will be used as
an initial estimate for the recursive Total Least Squares
algorithm. Once the data collection has been terminated
the individual line segments can be merged, extended
or trimmed, and blended to produce a more complete
road network.
Section 2 details the derivation of the Hough trans-

form for identifying straight line edges in an image.
The recursive Total Least Squares solution is presented
in Section 3 along with the corresponding uncertainty
analysis and derivations. In Section 4 the results of the
algorithms outlined are applied to a data set and we
conclude the paper with suggestions for future research
in Section 5.

2 HOUGH TRANSFORM

The Hough transform is a well studied feature ex-
traction technique that has been used extensively in
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Fig. 2. Parameter identification.

image analysis [9]. This transform requires the image
to be binary in nature, where white pixels correspond to
ones and black pixels correspond to zeros. The deriva-
tion of the Hough transform requires basic trigonomet-
ric identities. Suppose we have a line oriented as shown
in Figure 2 then by defining the parameters ½ and
we can derive the Hough transform. The perpendicular
distance from the origin to a line is denoted by ½. The
angle that this distance vector makes with the x-axis is .
We note the definitions of the cosine and sine functions:

cos =
x

½
sin =

y

½
: (1)

Algebraic substitution of a single cosine and sine term
in the Pythagorean trigonometric identity leads to the
equation:

x

½
cos +

y

½
sin = 1: (2)

It is now a simple matter to rearrange Equation (2) to
obtain the conventional form of the Hough transform as
given by the equation:

½= xcos + y sin : (3)

Now if Equation (3) is rearranged into a slope-
intercept form

y =¡cos
sin

x+
½

sin
(4)

we can infer that when approaches zero degrees,
corresponding to a vertical line, the slope tends to

Fig. 3. Collinear points.

infinity, resulting in an poor parameterization of the line.
However, using Equation (3), we avoid this problem.
The principle concept of the Hough transform in the

line identification algorithm can be stated as the follow-
ing: if two points are collinear then they share a pair
(½, ) of commonality in the Hough space. However, in
order to determine this common pair, a Hough matrix
must be constructed, this is done by iterating over a
range of ¡90 to 90 degrees for each white pixel, which
corresponds to the (x,y) coordinates, in the image. Re-
call that is the angle the ½ vector makes with the x-axis.
We can imagine that an arbitrary number of lines (black
solid lines) pass through each coordinate shown by the
solid black lines in Figure 3, which are associated with
a (½, ) given by the normal lines passing through the
origin shown by the dashed lines. The solid blue line
is the line of interest and Figure 3 illustrates two points
which lie on this line. Note that both these points illus-
trated by the solid circle have a coincident (½, ) pair,
which parameterize the dashed blue line.
For each white pixel of the binary image with a

coordinate xi,yi determine the parameter

½( ) = xi cos( )+ yi sin( ) (5)

which corresponds to a sinusoid in the (½, ) space.
Determine the (½, ) pair for every white pixel of the
binary images, round it to the closest discretized value
of (½, ), and augment the appropriate indices of an
array called the accumulator. Since every point on a
line will share a unique (½, ) pair which corresponds
to a line normal to the line of interest passing through
the origin, the accumulator bin with the highest count
will correspond to parameters of a straight line. Figure 4
illustrates the mapping of the Hough accumulator with
the white pixels indicating a higher count compared to
the black pixels. The point highlighted by the square
corresponds to the (½, ) combination associated with a
straight line.
Matlab’s image processing toolbox is used to de-

termine the Hough transform, identify the peaks which
corresponds to the straight lines, identify the points on
the images corresponding to the identified line segments
which are subsequently used to characterize the uncer-
tainty of the identified lines.
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Fig. 4. Hough transform.

3 MAXIMUM LIKELIHOOD ESTIMATORS
In this section we will derive the solutions for the

Total Least Squares (TLS) to estimate the parameters
of a straight line. In this formulation, the measurement
noise covariance matrix is allowed to be populated, i.e.,
the dependent and independent variables are noisy and
can be correlated. The Hough transform presented in
Section 2 will be utilized to identify groups of nearly
collinear points in an image. A best fit line can be
obtained using the TLS solution since there is noise
in both the x and y directions. The TLS solution,
which will be derived, does not have a closed form
solution and therefore requires an initial estimate to
initiate the solver which minimizes the normal distance
of the measurements from the line. This initial estimate
can be given by a transformed version of the Hough
coefficients (i.e., transform from ½ and to slope, m
and intercept b), however if is zero degrees then
we would obtain an infinite slope, which forces the
TLS solution to diverge. Therefore, rather than use
the Hough transform coefficients transformed to the
appropriate slope and intercept we will simply utilize a
Least Squares estimate as the initial guess for the TLS
algorithm.

3.1 Total Least Squares
Consider the problem of a straight line fit where the

true model is given by the equation:

yi =mxi+ c (6)

where yi and xi are the true dependent and indepen-
dent coordinates. m and c correspond to the slope and
ordinate intercept of the line. Assuming that the mea-
surement of both yi and xi are noisy, the measurement
equations and the corresponding pdf of the noise are
given by the equations:

x̃i = xi+ ºx (7)

ỹi = yi+ ºy (8)

p(º1,º2) =N
Ã·
º1

º2

¸
:
·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(9)

permitting the measurement noise in xi and yi to be
correlated. Note that ¾2xx and ¾

2
yy denote the variance

of ºx and ºy respectively and ¾xy represent the cross-
covariance of ºx and ºy. The notation N (º : ¹,§) is a
Gaussian probability density function(pdf) for the ran-
dom vector º with mean ¹ and covariance §. Identifying
the parameters of a line when provided with n measure-
ments, the likelihood function for the measurements is
given by the equation:

p=
nY
i=1

pi (10)

pi = p
·
x̃i

ỹi

¸
jm,c,x1,x2, : : : ,xn

¶

=N
Ã·
x̃i¡ xi
ỹi¡ yi

¸
:
·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(11)

=N
Ã·

x̃i¡ xi
ỹi¡mxi¡ c

¸
:
·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(12)

=N
Ã·
x̃i

ỹi

¸
:
·

xi

mxi+ c

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
: (13)

The Log-Likelihood to be maximized with respect to
the free variables m, c and xi where i= 1,2, : : : ,n is

ln(p) =¡n ln
³
2¼
q
¾2xx¾

2
yy ¡¾2xy

´
¡ 1
2(¾2xx¾2yy ¡¾2xy)

nX
i=1

(¾2yy(x̃i¡ xi)2

¡ 2¾xy(x̃i¡ xi)(ỹi¡mxi¡ c)
+¾2xx(ỹi¡mxi¡ c)2): (14)

There are n+2 variables: m, c, and all the n abscissas
xi. Differentiate the log-likelihood with respect to the
variables and solve the n+2 equations:

@ ln(p)
@m

=¡ 1
2(¾2xx¾

2
yy ¡¾2xy)

£
nX
i=1

(2¾xy(x̃i¡ xi)xi¡ 2¾2xx(ỹi¡mxi ¡ c)xi) = 0

(15)

@ ln(p)
@c

=¡ 1
2(¾2xx¾

2
yy ¡¾2xy)

£
nX
i=1

(2¾xy(x̃i¡ xi)¡ 2¾2xx(ỹi¡mxi ¡ c)) = 0

(16)
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@ ln(p)
@xi

=¡ 1
2(¾2xx¾

2
yy ¡¾2xy)

£ (¡2¾2yy(x̃i ¡ xi) +2¾xy(ỹi¡mxi¡ c)
+2¾xy(x̃i¡ xi)m¡ 2¾2xx(ỹi ¡mxi¡ c)m) = 0:

(17)

Solving for the xi from equation (17) leads to the
equation:

xi =
c(¡m¾2xx+¾xy)¡m¾xyx̃i+¾2yyx̃i+m¾2xxỹi¡¾xyỹi

¾2yy +¾2xxm2¡ 2¾xym
:

(18)
Substituting the expression for xi back into the log like-
lihood function ln(p) of equation (14) and on simplifi-
cation, the final cost function in terms of m and c is:

ln(p) =¡n ln
³
2¼
q
¾2xx¾

2
yy ¡¾2xy

´
¡ 1
2

nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾2xxm2¡ 2¾xym

(19)

or the problem can be stated as

min
m,c

nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾2xxm2¡2¾xym

: (20)

Additionally, the noise covariance parameters can be
specific to each measurement, i.e., ¾xx,¾yy, and ¾xy can
be ¾(i)xx ,¾

(i)
yy and ¾

(i)
xy respectively corresponding to the

measurement (x̃i, ỹi). It can be observed that, when the
noise in the variables is uncorrelated (¾xy = 0) and of
equal variance(¾xx = ¾yy = ¾), the standard Total least
square problem is recovered, which can be identified
as the perpendicular distance of (x̃i, ỹi) to the line y =
mx+ c, and

min
m,c

nX
i=1

(ỹi¡mx̃i¡ c)2
1+m2

is the resulting cost function to be minimized.

3.2 Alternate Equivalent Formulation

The algebraic manipulation involved in arriving at
the cost function of (20) can be avoided altogether.
Consider the truth model where we represent the truth
(xi,yi) in terms of the noisy measurement (x̃i, ỹi) as:

yi =mxi+ c (21)

xi = x̃i¡ ºx (22)

yi = ỹi¡ ºy: (23)

Substituting (22) and (23) into (21) results in the equa-
tion:

ỹi¡mx̃i¡ c= ºy ¡mºx: (24)

Define º 0 as:

º 0 =
ºy ¡mºxq

¾2yy +¾2xxm2¡ 2m¾xy
(25)

whose mean and variance of random variable º 0 condi-
tioned on m are given by the equations:

E[º 0] = E

24 ºy ¡mºxq
¾2yy +¾2xxm2¡ 2m¾xy

35
=

E[ºy]¡mE[ºx]q
¾2yy +¾2xxm2¡ 2m¾xy

= 0 (26)

E[º 02] = E

"
(ºy ¡mºx)2

¾2yy +¾2xxm2¡ 2m¾xy

#

=
E[º2y ] +m

2E[º2x ]¡ 2mE[ºxºy]
¾2yy +¾2xxm2¡2m¾xy

= 1:

(27)

The random variable º 0 has a Gaussian distribution
given by the equation:

p(º 0 jm) =N (º 0 : 0,1): (28)

But from equations (24) and (25), one has

º 0 =
ỹi¡mx̃i¡ cq

¾2yy +¾2xxm2¡2m¾xy
:

Hence, for a set of measurements (x̃i, ỹi), the Maximum
Likelihood Estimator (MLE) requires maximizing the
function given by Equation (10), which can be rewrit-
ten as:

pi =N
0@ ỹi¡mx̃i¡ cq

¾2yy +¾2xxm2¡ 2m¾xy
: 0,1

1A : (29)

The negative of the Log-Likelihood to be minimized
with respect to the free variables m and c is

J =¡ ln(p) =
nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾2xxm2¡2m¾xy

: (30)

Notice that there are no xi variables in the cost func-
tion. Differentiating the cost function J only with the
variables m and c, we arrive at the gradient constraint
equations:

@J

@m
=

nX
i=1

Ã
2(ỹi¡mx̃i¡ c)(¡x̃i)
¾2yy +¾2xxm2¡ 2m¾xy

¡ (ỹi¡mx̃i¡ c)
2(2¾2xxm¡ 2¾xy)

(¾2yy +¾2xxm2¡ 2m¾xy)2
!
= 0

(31)

@J

@c
=

nX
i=1

(¡2(ỹi¡mx̃i¡ c)) = 0 (32)

which is nonlinear in m and c and can be solved nu-
merically. One can use the solution of the least squares
problem to initialize the nonlinear solver. One can also
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estimate the most likely value of the variable xi using
the equation:

xi =
c(¡m¾2xx+¾xy)¡m¾xyx̃i+¾2yyx̃i+m¾2xxỹi¡¾xyỹi

¾2yy +¾2xxm2¡ 2¾xym
(33)

from the resulting solution for the slope m and inter-
cept c.

3.3 Geometric Interpretation

Consider the case of estimating the parameters of
a straight line where the x̃i and ỹi measurements are
contaminated by isotropic noise. Figure 5 illustrates the
true xi and yi and the corresponding contaminated x̃i
and ỹi data. Assuming the parameters ¾xx = ¾yy = 1 and
¾xy=0, the MLE cost function given by Equation (30)
reduces to:

J =
nX
i=1

(ỹi¡mx̃i¡ c)2
1+m2

(34)

which is referred to as geometric distance which is a
gradient weighted algebraic distance. This error referred
to as the Sampson error is the first order approximation
of the geometric distance of the point from the curve.
In Figure 5, one can easily illustrate the line connect-

ing the points (x̃i, ỹi) along the normal to the true line
has a length given by equation (ỹi¡mx̃i¡ c)2=(1+m2),
illustrating that the total least squares cost function cor-
responds to minimizing the geometric distance. Note
that the least squares problem minimizes the distance
(ỹi¡mx̃i¡ c)2 which is referred to as the algebraic dis-
tance and corresponds to the distance along an oblique
projection.

3.4 Least Squares

The least squares problem is a special case of the
total least squares where the independent variable xi is
not random, i.e., ¾xx = 0. This results in the cost function
given by Equation (30) reducing to:

J =¡ ln(p) =
nX
i=1

(ỹi¡mxi¡ c)2
¾2yy

(35)

which has a closed form solution for m and c:½
m

c

¾
=
½Pn

i=1 x
2
i

Pn
i=1 xiPn

i=1 xi n

¾¡1½Pn
i=1 xiỹiPn
i=1 ỹi

¾
: (36)

3.5 Uncertainty Analysis

In this section, we will present the derivation for the
Cramér Rao lower bounds which provides a measure
of uncertainty in the coefficients of the linear fit. The
derivation is based on a fully populated covariance
matrix and the bounds are estimated by the inverse
of the Fisher Information matrix. The derivations are
accompanied by a Monte Carlo simulation to verify the
convergence properties of the solutions. For the straight

Fig. 5. Total least squares minimization.

line we have a total of 2+n unknown parameters, the
slope m, the intercept c, and the true values of x : xt.
After solving for the optimal estimates for the slope

m̂ and y-intercept ĉ, the optimal estimate for x̂i is given
by Equation (33). Assuming the parameters ¾xx = ¾yy =
1 and ¾xy=0, Equation (33) reduces to:

x̂i =
¡ĉm̂+ x̃i+ m̂ỹi

1+ m̂2
(37)

) x̂i =
¡ĉm̂+ x̃i+ x̃im̂2¡ x̃im̂2 + m̂ỹi

1+ m̂2
(38)

) x̂i = x̃i+
m̂ei
1+ m̂2

(39)

where
ei = ỹi¡ m̂x̃i¡ ĉ (40)

is the error associated with the measurement ỹi and the
estimate ŷi at the measured x coordinate x̃i. Figure 6
illustrates the optimal estimates (x̂i, ŷi), which results in
the equation:

ŷi =ỹi¡ ei¡ m̂(x̃i¡ x̂i) (41)

ŷi =ỹi¡
ei

1+ m̂2
: (42)

It can be shown that the generalized solutions for
the estimated values for xti and yti are:

x̂2i = x̃i+
(m̂¾2xixi ¡¾xiyi)ei

m̂2¾2xixi ¡ 2m̂¾xiyi +¾2yiyi
(43)

ŷ2i = ỹi+
(m̂¾xiyi ¡¾2yiyi)ei

m̂2¾2xixi ¡ 2m̂¾xiyi +¾2yiyi
(44)

based on Equation (33).
Recall that ei is the error in the measurement with

the appropriate estimates ei =¡m̂x̃i¡ ĉ+ ỹi. Note that in
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Fig. 6. Optimal estimates of coordinates.

Equations (43) and (44), the estimate for the slope and
intercept must be known in order to calculate x̂2i and
ŷ2i . In our scenario these initial estimates are given by
the basic Least Squares solution rather than the solution
of the Hough transform. This is to preclude singular
estimates for the slope and intercept:

m̂=¡cos
sin

(45)

ĉ=
½

sin
(46)

if the Hough transform returns a line estimate with
exactly zero. Note that the Hough transform is used to
identify the measurements which are associated with the
line which is being estimated.
With the initial estimates for the slope and intercept,

one can update the estimate of the true value x̂i using
Equation (43). In addition to the estimated true value
of x, the line’s coefficients are updated using the Total
Least Squares solution. The next step is to determine the
uncertainty in these estimates. The probability density
function for (xi,yi), given the estimates [m̂, ĉ, x̂i] is:

p(x̃i, ỹi j m̂, ĉ, x̂i)

=
1

2¼
pjQij exp

"
¡1
2

·
ỹi

x̃i

¸
¡
·
m̂x̂i+ ĉ

x̂i

¸¶T
£Q¡1i

·
ỹi

x̃i

¸
¡
·
m̂x̂i+ ĉ

x̂i

¸¶¸
:

(47)

The inverse of the covariance matrix Qi is easily defined
for a 2£ 2 matrix:

Q¡1i =
1

¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi

"
¾2ỹi ỹi ¡¾x̃iỹi
¡¾x̃iỹi ¾2x̃i x̃i

#
: (48)

We expand the exponential term in Equation (47) and
write it as a product of two variables ®i and Ki which

are defined in Equations (49) and (50), respectively:

®i =¡
1

2(¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi
)

(49)

Ki = ¾
2
x̃i x̃i
(ỹi¡ m̂x̂i¡ ĉ)2¡ 2¾x̃iỹi (ỹi¡ m̂x̂i¡ ĉ)(x̃i¡ x̂i)

+¾2ỹi ỹi (x̃i¡ x̂i)2: (50)

With ®i and Ki defined for each measurement we can
then rewrite the likelihood function in a more contracted
form as:

p(x̃i, ỹi j m̂, ĉ, x̂i) =
1

2¼
pjQije®iKi : (51)

For each measurement, there is a corresponding (xi,yi),
independent of one another. Therefore if we assume
there are a total of M measurements, the probability
density function for the matrix of measurements, [x̃, ỹ],
given the parameter estimates, [m̂, ĉ, x̂], where x̂ is now
a vector of estimated x values, is given by the product
of each measurement’s probability density function:

p(x̃, ỹ j m̂, ĉ, x̂) =
MY
i=1

1

2¼
q
(¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi
)
e®iKi (52)

The Fisher Information matrix is defined as the nega-
tive expected value of the Hessian of the log-likelihood
function with respect to the estimated parameters. We
define the log-likelihood function as, f = ln[p(x̃, ỹ j
m̂, ĉ, x̂)], therefore the Fisher Information matrix is de-
fined as:

F =¡E

266666664

@f

@m̂@m̂

@f

@m̂@ĉ

@f

@m̂@x̂

¶T
@f

@ĉ@m̂

@f

@ĉ@ĉ

@f

@ĉ@x̂

¶T
@f

@x̂@m̂
@f

@x̂@ĉ
@f

@x̂@x̂

377777775
(53)

where

@f

@m̂@x̂
=

@f

@x̂@m̂
=
·
@f

@m̂@x̂1
,
@f

@m̂@x̂2
, : : : ,

@f

@m̂@x̂M

¸T
and similarly @f=@ĉ@x̂= @f=@x̂@ĉ. The sub-block
@f=@x̂@x̂ of the Fisher Information matrix is a M £M
diagonal matrix with diagonal elements:

@f

@x̂@x̂
=Diag

·
@f

@x̂1@x̂1
,
@f

@x̂2@x̂2
, : : : ,

@f

@x̂M@x̂M

¸¶
:

First the partial derivatives of f are taken with re-
spect to the estimated parameters. Recall that the prob-
ability density function is a product of the individual
measurement’s and with the properties that the log of
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the product becomes a summation over the M measure-
ments. Thus the partial derivatives are:

@f

@m̂
=

MX
i=1

®i[¡2¾x̃iỹi (¡x̃ix̂i+ x̂2i )
+¾2x̃i x̃i (¡2ỹix̂+i 2m̂x̂2i +2x̂iĉ)] (54)

@f

@ĉ
=

MX
i=1

®i[¡2¾x̃iỹi (¡x̃i+ x̂i)
+¾2x̃i x̃i (¡2ỹi+2m̂x̂i+2ĉ)] (55)

@f

@x̂ti
= ®i[¾

2
ỹi ỹi
(¡2x̃i+2x̂i)

¡2¾x̃iỹi (¡ỹi¡ x̃im̂+2m̂x̂i+ ĉ)
+¾2x̃i x̃i (¡2ỹim̂+2m̂2x̂i+2m̂ĉ)]: (56)

Then the second derivatives, which compose the Fisher
Information matrix, can easily be determined using the
equations:

E

·
@2f

@m̂@m̂

¸
=

MX
i=1

®i(2¾
2
xixi
x̂2i ) (57)

E

·
@2f

@m̂@ĉ

¸
=

MX
i=1

®i(2¾
2
xixi
x̂i) (58)

E

·
@2f

@m̂@x̂ti

¸
= E

h
®i(¡2¾xiyi (¡xi+2x̂i)
+¾2xixi(¡2yi+4m̂x̂i+2ĉ))

i
= ®i(¡2¾xiyi x̂i+2¾2xixi m̂x̂i) (59)

E

·
@2f

@ĉ@ĉ

¸
=

MX
i=1

2®i¾xixi (60)

E

·
@2f

@x̂ti@ĉ

¸
= ®i(¡2¾xiyi +2¾2xixi m̂),

i= 1,2, : : : ,M (61)

E

·
@2f

@x̂ti@x̂ti

¸
= ®i(2¾

2
yiyi
¡ 4¾xiyi m̂+2¾2xixi m̂2),

i= 1,2, : : : ,M (62)

E

"
@2f

@x̂ti@x̂tj

#
= E

"
@2f

@x̂tj @x̂ti

#
= 0, i 6= j: (63)

These equations then give us an estimate of the uncer-
tainty in the estimated parameters. The next step is to
perform a Monte Carlo simulation to show the conver-
gence characteristics of this estimate. We begin the sim-
ulation by choosing a slope, intercept, and range of x
values. These will be the true simulation parameters and
are specified as:

m=¡0:4326 c=¡1:6656 x=¡3 : 0:1 : 3: (64)

Fig. 7. Truth, measurements, TLS line fit.

Furthermore the covariance matrix, Q for all measure-
ments is equal and given to be:

Q=

"
¾2yy ¾xy

¾yx ¾2xx

#
=
·
0:5 0:0

0:0 0:5

¸
: (65)

Since this simulation is to determine the convergence
characteristics and not the capabilities of the Hough
transform, we will use the Least Squares solution from
Equation (36) where the covariance matrix R is ¾2yyIM£M
and M is the number of measurements, which in this
simulation is 61. Since the x truth was already estab-
lished the y truth can be calculated using the given
values for the true slope and intercept. Gaussian white
noise is then added to the truth, which was specified in
Q and finally the estimated values of x and y can be
obtained via Equations (43) and (44) respectively.
A single simulation’s results are shown in Figure 7.

Here the truth is shown by the solid blue line, the
measurements (truth with added noise) are black dots,
and the Total Least Squares line fit is represented by
the dashed red line. The estimated values of the slope
and intercept from the Total Least Squares algorithm,
for this single simulation run are:

m̂=¡0:3775 ĉ=¡1:5871: (66)

We perform 10,000 simulations to determine the conver-
gence characteristics of the Fisher Information matrix.
The measure used for convergence is the determinant of
the difference of the Monte Carlo covariance and the in-
verse of the Fisher Information matrix. The Monte Carlo
covariance is calculated as a difference of the truth and
the averaged estimates. We will denote this covariance
as MCcov and is calculated as:

MCcov =
1
N

NX
i=1

·
m

c

¸
¡
·
m̂i

ĉi

¸¶ ·
m

c

¸
¡
·
m̂i

ĉi

¸¶T
(67)
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Fig. 8. Monte Carlo simulation.

Fig. 9. Sigma ellipses.

where N is the number of Monte Carlo runs and the esti-
mated values mi, ci, are used to estimate the covariance.
Then the convergence measure is given by the equation:

convergence= jMCcov ¡F¡1j: (68)

The Fisher Information matrix is also averaged over
each simulation. Figure 8 shows the value of this con-
vergence measure after each simulation.
Figure 8 shows only a portion of the total number of

simulations and in addition the value of the convergence
parameter has been normalized. The estimated bounds
on the parameters, the inverse of the negative of the
Fisher Information matrix after 10,000 simulations is
given to be:

F¡1 = 1e¡4
·
0:14577 0:00065

0:00065 0:59065

¸
:

Next we examine the estimates and their statistical
properties. Each of the estimated values of m and c are
plotted in Figure 9 along with the sigma ellipses.
Finally we select all combinations of m̂ and ĉ which

fall within one sigma of the average values of the
respective estimates and plot them, where the range is

Fig. 10. One sigma slopes/intercepts.

given as:

m̂=¡0:4326§ 0:00382 (69)

ĉ=¡1:6648§ 0:0077: (70)

The lines defined by all such coefficients are plotted,
in blue, along with the true fit of the line, in red,
in Figure 10 and we can see the uncertainty in the
estimates. As we diverge from the relative midpoint
of the data range the uncertainty grows. This is to be
expected since the variance in the y direction depends
on the variance of the slope, intercept, and estimated
x value. To prove that the variance in the y direction
is dependent on the variance of the slope, intercept,
and estimated x value we can transform the Fisher
Information matrix from the model parameters into a
variance in terms of x and y. This can be done using
the Jacobian transformation. In this transformation the
Fisher Information matrix is left and right multiplied by
the Jacobian of the measurement functions with respect
to the estimated parameters. The Jacobian takes the
form of:

A=

264
dy

dm̂

dy

dĉ

dy

dx̂2i
dx

dm̂

dx

dĉ

dx

dx̂

375= · x̂i 1 m̂

0 0 1

¸
: (71)

Therefore we perform the matrix multiplication to un-
derstand the growing variance in the y direction:"

¾2yyi ¾xyi

¾xyi ¾2xxi

#
= AiF

¡1ATi

=
·
x̂i 1 m̂

0 0 1

¸264¾
2
mm ¾mc ¾mxt

¾cm ¾2cc ¾cxt

¾xtm ¾xtc ¾2xtxt

375
264 x̂i 0

1 0

m̂ 0

375 :
(72)
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Fig. 11. Data set #2 original measurements and extracted road
network.

This results in the covariances taking the form of Equa-
tions (73) through (76)

¾2yyi = x̂
2
i ¾
2
mm+2x̂i¾mc+2m̂x̂i¾mx+¾

2
cc+2m̂¾xc

+ m̂2¾2xx (73)

¾xyi = x̂i¾mx+¾cx+ m̂¾
2
xx (74)

¾yxi = ¾xyi (75)

¾2xxi = ¾
2
xx: (76)

From the above equations we can see that the variance
in the y direction depends on the varying value of x̂i, so
therefore as we diverge from x̂i = 0 in either direction
the variance in y grows.

4 RESULTS

A Graphical User Interface (GUI) was developed,
which allows the user to easily manipulate the processed
data. The automated phase of this process consists of
the Hough transform and the extraction of the linear
features. Several additional operations are allowed by
manual interaction, which include merging, trimming,
extending, blending, removal, and ellipse identification.
The merging option allows the user to select two lines
which identify the same road segment. This is possible
due to the threshold placed on the distance from a
point to the line segment. The trimming and extending
features allow a user to smooth out the road network
and connect each and every segment with another. A
3rd order polynomial is used as the blending function
between two lines which are selected by the user. This
updates the road network with curves which are defined
by the last xx% of each of the two line segments
selected (percentage decided by the user). The final
feature, the ellipse identification, is left up to the user
due to the computational complexity correlated with
automatic identification of an ellipse in an image. The

ellipse identification only requires the user to define
the number of line segments that are associated with
the ellipse and then select each of these segments. This
allows for a fast and simple identification of an ellipse.
The data which has been supplied consists of simu-

lated GMTI tracks generated by the Air Force Research
Labs in Rome, NY. Each track varies in the number of
measurements it contains, however, the structure of each
track is consistent. The data structure is broken down as
follows:

² tracks–main field of the structure.
–tracks(#).loc–N£ 2 matrix of latitude and longi-
tude coordinates.

–tracks(#).cov–4£ 4£N covariance matrices cor-
responding to each measurement of the form.266664

¾2xixi ¾xiyi ¾xi _xi ¾xi _yi

¾yixi ¾2yiyi ¾yi _xi ¾yi _yi

¾ _xixi ¾ _xiyi ¾2_xi _xi ¾ _xi _yi

¾ _yixi ¾ _yiyi ¾ _yi _xi ¾2_yi _yi

377775
–tracks(#).vel–N£ 2 matrix of component veloci-
ties at the same time the measurement is taken.

–tracks(#).update–unix time representation of mea-
surement time (seconds since January 1, 1970).

The data set that was used to test the proposed
algorithm includes 1,675 tracks, where every track had
differing numbers of kinematic data.
The data set was completely processed without man-

ual intervention (i.e., merging or ellipse finding). This
data set contained several areas of interest which may
create issues which include sectors with no track data.
Primarily we expect there to be a significant increase in
the number of extracted segments.
The line extraction portion of the algorithm took ap-

proximately 25 minutes to complete. The extracted line
segment data structure was stored before any additional
functions were implemented. Prior to any removal or
merging of line segments, the data structure contains
150 individual line segments. The merging, blending,
and trimming/extending was complete in approximately
3 hours. This data set consisted of 1,675 tracks with a
total of 88,685 measurements.
The extracted network was converted back to the

latitude longitude coordinate system and the results of
the extracted network plotted on top of the original mea-
surements is shown in Figure 11. Although it appears
that there is a low association due to the lack of identi-
fied segments in certain regions, there are actually very
few data points in these areas, 99.8% of the data has
been associated with geometric features in the image
(88,508/88,685). The final data structure consists of 0
ellipses, 72 third order polynomials, and 131 line seg-
ments. We note that some areas are lacking extracted
features which is due to either the lack of data or the
user removed a feature due to inaccuracy.
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Fig. 12. Data set #2 line CRLB.

First we present the results for the estimated CRLB
matrix corresponding to the line estimate’s parameters.
Figure 12 shows the three sigma bounded region for
the lines, which again due to the number of measure-
ments associated with each of the lines, converges to
small values for most lines. For a few straight line seg-
ments which have very few associated measurements,
the bounds are very lax.
We supplement Figure 12 with an example of a

line’s CRLB estimate. Equation (77) refers to a line
which has 1,034 measurements associated with it:264¾

2
mm ¾mc ¾mx

¾cm ¾2cc ¾cx

¾xm ¾xc ¾2xx

375

=

264 2:2541e¡05 3:5129e¡ 09 ¡1:7855e¡ 09
3:5129e¡09 3:6176e¡ 10 ¡1:2573e¡ 10
¡1:7855e¡ 09 ¡1:2573e¡10 1:4242e¡10

375
(77)

which illustrates a high degree of confidence in the
estimated model parameters. We must then use the
Jacobian transformation to obtain the covariance in
terms of x and y. A single measurement’s covariance
matrix is given by the equation:"

¾2xx ¾xy

¾yx ¾2yy

#
= 1:0e¡ 06£

·
0:3850 ¡0:4209
¡0:4209 0:8059

¸
:

(78)

The Jacobian transformed CRLB is then added to
the measurement covariance defined in Equation (78)
to produce the final covariance in the measurement in-

Fig. 13. Data set #2 error ellipses one sigma.

Fig. 14. Data set #2 mean line uncertainty.

cluding the covariance in the estimate given by Equa-
tion (79):"

¾2xx ¾xy

¾yx ¾2yy

#
= 1:0e¡06£

·
0:3852 ¡0:4209
¡0:4209 0:8089

¸
:

(79)
Figure 13 shows a few measurement’s one sigma el-
lipses with the line estimate.
Using the error ellipses we once again compute the

mean covariance in x and y. This covariance is then
used to represent a mean error in the line using one
sigma we can see from Figure 14 that this encompasses
the majority of the data associated with each of the line
estimates.
There are no ellipses identified in this data set but

there are a significant number of polynomial blends. A
polynomial blend in this data set typical contains from
400 to 1,000 measurements. We present the results for a
polynomial, which contains 1,032 associated measure-
ments in Equation (80):

26664
¾2AA ¾AB ¾AC ¾AD

¾BA ¾2BB ¾BC ¾BD

¾CA ¾CB ¾2CC ¾CD

¾DA ¾DB ¾DC ¾2DD

37775=
26664
3:9162e¡ 12 2:9909e¡10 ¡2:0009e¡ 08 ¡1:5304e¡ 06
2:9909e¡ 10 2:2842e¡08 ¡1:5281e¡ 06 ¡0:0001
¡2:0009e¡08 ¡1:5281e¡ 06 0:0001 0:0078

¡1:5304e¡06 ¡0:0001 0:0078 0:5980

37775 : (80)
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5 CONCLUSION

This paper presents a systematic approach for the
estimation of the road network from ground moving
target data assuming the vehicles to be road based ve-
hicles. The position locations of the multiple ground
vehicles are used to generate a binary images, which
permits using the Hough transform to identify straight
line segments. Having identified the Hough parameters
associated with various straight line segments, the po-
sition data associated with each of these straight line
segments is identified and used by a least squares algo-
rithm to identify the parameters of a straight line, i.e.,
slope and intercept. Since the two dimensional position
data is contaminated with noise in both the dimensions,
the total least squares is deemed the appropriate ap-
proach for the estimation of the slope and intercept of
the straight line segments. A detailed exposition of the
total least squares approach for the estimation of the
model parameters is followed by the determination of
the Cramér-Rao bounds on the estimated parameters. A
multi road network with numerous intersections is used
as a test case to illustrate the potential of the proposed
approach to estimate the road network and character-
ize the associated uncertainty. Currently the proposed
approach is being extended to estimating curved sec-
tion of roads which are assumed to be representable by
arcs of ellipses. This will permit a parsimonious repre-
sentation of the road-network by eliminating numerous
straight line segments which are necessary to represent
curved sections of roads. A graphical user interface was
also developed to permit a seamless estimation of road-
network from ground vehicle kinematic data.
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