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Shaped Input Control of a System 
With Multiple Modes 
This paper describes a method for limiting vibration in flexible systems that have 
more than one characteristic frequency and mode. It is only necessary to have 
knowledge of the component mode frequencies and damping ratios in order to be 
able to calculate the timing and magnitudes of the impulse sequence used in the 
shaping. Only two impulses, in the nonrobust case, or three impulses in a more 
robust case, are necessary regardless of the number of component frequencies. Simple 
tests are established to determine when this technique can be used and examples are 
presented. 

1 Introduction 
There is a great deal of interest in finding control methods 

that will eliminate vibration from a wide variety of mechanical 
and structural systems. Examples range over satellites, robots, 
ships, aircraft and many more. One particular group of control 
strategies that has received recent attention is the group often 
referred to as shaped input control methods. These are largely 
based on the ideas introduced by O. J. M. Smith (1958) with 
his posicast control scheme where a step input was divided into 
two smaller steps that were delayed in time. This resulted in 
a reduction in the settling time of the system but it was not 
suitably robust for general application. 

The robustness issue was successfully addressed by Singer 
and Seering (1988; 1989; 1990), Singhose et al. (1990), and by 
Hyde and Seering (1991a; 1991b) through the introduction of 
a third impulse to the impulse sequence. This third impulse 
arises from the introduction of the additional requirement that 
the system be insensitive to variations in the natural frequency 
and in the damping ratio. 

The development of these methods is carried out for systems 
with one vibrational mode although Singer and Seering (1988; 
1990) point out that multimode systems can be dealt with by 
convolving the impulse sequences for each individual mode 
with one another. Hence for a system with Nmodes, after the 
necessary convolutions, the control impulse sequence would 
contain 2N impulses in the nonrobust case or 3 impulses in 
the robust case. Clearly it would be most desirable to use the 
more robust three impulse control strategy, but it is also clear 
that the number of impulses will become very large for systems 
that require the inclusion of several modes in their model. 
Also, the higher modes will have higher frequencies, for ex­
ample in the case of a cantilever beam the frequencies increase 
approximately quadratically with wave number (Dugundji, 
1988) (i.e., to, oc (if) and corresponding to these high fre­
quencies are small periods. This means.that the frequency of 
the impulses in the control impulse sequence may be very high 
and may even be outside of the bandwidth of the actuator 
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being used with the result that the high frequency components 
may not be controllable by the method suggested in (Singer 
and Seering, 1988; Singer and Seering, 1990). In a later paper 
Hyde and Seering (1991a) deal explicitly with the multiple mode 
case and show that the requirement for 2N or 3N impulses can 
be reduced to N + 1 impulses or 2N + 1 impulses, respectively. 

Bhat and Miu (1990) have shown that by considering the 
problem in the Laplace domain it may be proved that a nec­
essary and sufficient condition for eliminating residual vibra­
tion is that the finite time Laplace transform of the control 
input have a magnitude of zero at the system poles. This is 
achieved by finding an impulse sequence with the correct spac­
ing and amplitude such that the Laplace transform will have 
zero magnitude in the right places. Solving for these amplitudes 
and time spacings can be very difficult for large numbers of 
modes and may even be very difficult for as few as two modes 
if the component mode frequencies are in an uncooperative 
ratio. Hyde and Seering (1991b) note that there are some modal 
spacings that prevent the exact solution of the spacing, and 
the amplitudes from being found. In the two mode case, for 
example, if the second mode is greater than three times the 
first, the method used to find the amplitudes and spacings will 
not converge to an exact solution (Hyde and Seering, 1991b). 

Further to the issue of the number of impulses required is 
that there is a significant advantage in minimizing the number 
of impulses used to condition the input when the shaped input 
filter is used inside a feedback loop (Zuo and Wang, 1992). 

In the remainder of the paper we will present a method that 
will allow a multimode system to be controlled by a shaped 
input technique with only two impulses in the nonrobust case 
or by three impulses in the robust case regardless of the number 
of modes present in the system. All that is required is knowledge 
of the modal frequencies and damping ratios. Thus an alter­
native to having to calculate a possibly large number of am­
plitudes and spacings for a multimode system is provided. 

We begin with the undamped case in order to make the 
method clear and also in order to establish certain results that 
are important for both the damped and the undamped cases. 
Once these results are established the damped case is consid­
ered. Examples are used throughout to illustrate important 
points. 
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2 Theoretical Development 

Consider a function which may be expressed as a linear 
combination of sine functions each with a different frequency 
content. For example, 

yU) = ^lAism(o>it) (1) 

If each of the component periods are related to all the other 
component periods by a rational constant then y(t) will be 
periodic. This then means'that if to;/co/ is irrational (e.g., = 
V2) then y(t) cannot be periodic. This problem is not likely 
to arise in practice because, for a real system, the frequencies 
will not be known to the precision implied by \[2 but rather 
they will be known in the form 1.414, for example. The actual 
number of digits of accuracy depends on the method used to 
estimate the frequencies but what ever number it is it will be 
finite and the ratio of frequencies may be written as a rational. 
Then assuming that y(t) is periodic it is necessary to find its 
period Tsuch that, y(t) = y{t + T). The period of y{t) can 
be found by first considering the period of each individual 
term in (1) given by 

Ti = -
2TT 

(2) 

The period of y(t) is given by the least common multiple 
(LCM) of the periods of the component modes such that 

r = L C M ( r „ T2, . . . , TN] (3) 

This means that T may be expressed as some multiple of 
each of the component mode periods such that 

kg (natural numbers) 

T=k,Ti / = ! , N 

= 2TT 
k; (4) 

Now, define coc as the frequency of the composite signal; coc 

may be expressed in terms of T in the usual manner. Hence, 

«,=y (5) 

Each member of the set of component mode frequencies {&>,•) 
may be written as 

to, = m;wc mfc I natural numbers) (6) 

Then using Eqs. (5) and (4) results in 

2TT rrij 2-K 

~T=~ki~T> 

which means that m, = k,. 
In order for the posicast control method (Smith, 1958) or 

the shaped input control techniques (Singer and Seering, 1989; 
Singhose et al., 1990) to be applied it is necessary that the 
signal have what may be called a period of antisymmetry or 
an antiperiod Ta such thatj>(0 = ~y(t + Ta). For example 
the antiperiod for sin(0 or cos(0 is ir. 

In a similar manner to the above the antiperiod Ta will be 
given by the LCM of the component mode antiperiods such 
that 

CO; = in; — = — - (7) 

rfl = LCM[r„, , TA (8) 
which in turn means that for any of the component terms of 
(1) that the value of Ta may be expressed as component mode 
half period plus some number vt of component mode periods 
such that, 

IT 2TT 
---+Vi — 

CO/ CO; 
(9) 

TT(2I>;+1) ir(2Vj+l) 
vh vfi {whole numbers) (10) 

Also recall that co,- = cocw,- so that the above requirement may 
be cast as 

2v,+ \ 2 f ; + l 

m. 
i*j (11) 

In order to find the values of vh it is necessary to satisfy 
N(N - l)/2 equations of the above form, however only (N 
- 1) of these equations are linearly independent. The above 
equations may also be expressed as 

2mjVj - 2mjVj = (m-, - mj) (12) 

which is a linear Diophantine equation. The important point 
here is that a solution might not exist in which case the standard 
shaped input methods (Smith, 1958; Singer and Seering, 1989; 
Singhose et al., 1990) cannot be applied to the composite signal. 
A simple example of a signal ye(t) which has no antiperiod is 
shown in Fig. 1 where ye(t) is given according to, 

ye{t)=sin(t)+sm(2t) (13) 

Thus for a system with N modes there will be N(N - l)/2 
simultaneous linear Diophantine equations in N unknowns to 
be solved in order to find Ta. Each of these equations is of 
the form (12). 

The case ofN= 2 is particularly simple, resulting in a single 
equation of the form 

2m2vi-2miV2= (ml-m2) (14) 

Note that because of the manner in which mi and m2 are 
obtained they must be coprime. A single equation of this form 
has a solution iff (m^ - m2) is divisible by the greatest common 
divisor (gcd) of (w ( , m2 j and if a solution exists then an infinity 
of solutions exist (Gellert et al., 1989). Clearly if (w, - m2) 
is odd there can be no solution and if (mi - m2) is even there 
is an infinity of solutions. There are only two ways for {m\ 
- m2) to be even; one is for mx and m2 to be both odd, and 
the other is for them to be both even. But in order for m\ and 
•m2 to be coprime they cannot be both even, hence the only 
possibility for a solution to Eq. (14) is for mx and m2 to be 
both odd and coprime. The solution to Eq. (14) is 

and consequently 

(15) 

(16) 

found from 
the penultimate term of the continued fraction expansion of 
ml/m2 (Gellert et al., 1989). 

It may be shown that a special solving pair for Eq. (14) is 

vi = vl+m[t ^(integers) 

v2 = v i + m2t 

where v{ and v2 are the "special solving pair 
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Vl = - ( f f? i - l ) v2=-(m2-l) (17) 

and the general solution can be shown to be 

t> i=- ( /Hi - l ) + »M v2 = -(m2-l) + m2t (18) 

For Vi = 1/2(/M; — 1) / = 1,2 (i.e., ? = 0) Tal = Ta2 = -w/wc 

and hence: 

Result I: The minimum possible antiperiod of y(t) is Ta 

= ir/wc = l / 2 r . 
Thus the antiperiod for TV = 2, if it exists, is always half 

of the full period T. This result remains true for TV > 2 as 
well, as may be demonstrated as follows. 

Proof: By definition, Ta is the smallest Ta such that 

y{t)=-y(t+Ta) 

but 

therefore 

y(t+Ta)=-y(t + 2Ta) 

y{t)=y(t + 2Ta) 

and T = 2Ta. [Q.E.D.] 
But as mentioned above there are N{N - l ) /2 simultaneous 

linear Diophantine equations in TV unknowns to be solved and 
the question of the existence of a solution in this case is more 
difficult than the discussion above which is only valid for TV 
— 2. Because each of the equations has the form given in Eq. 
(12) it may be shown that only (TV - 1) of them are linearly 
independent. Hence if a solution exists there will be an infinity 
of solutions. In the case of more than two modes (i.e., TV 
> 2) there is a solution [vu v2, . •., vN] iff the gcd of the (TV 
- 1) rowed nonzero determinants of the coefficient matrix 
are equal to the gcd of the (TV - 1) rowed determinants of the 
augmented system (Gellertetal., 1989). Because of the specific 
form of this Diophantine system additional observations about 
the conditions that are necessary for a solution may be made. 
Notice that because of the manner in which they are constructed 
the rrij cannot be all even, at least one of them must be odd. 
But for any equation of the form (12) there will be a contra­
diction if m-, - rtij is odd. Hence there can be no solution to 
our system of Diophantine equations unless all the m-, are odd 
(this is necessary but not sufficient). 

As an example of how this may be used consider the case 
where 

ye(t)= sin(30r) + sin(1050 + sin(385f) (19) 

such that «i = 30, co2 = 105, u3 = 385 and the period of 
ye(t) is T = 2ir/5, the frequency is wc = 5 and mx = 6, m2 

= 21, and m3 = 77. 
It can be concluded at this point that because mi = 6 is 

even there is no solution to the Diophantine system and hence 
no antiperiod but in order to illustrate the broader method 
consider the following. In order to determine whether or not 
an antiperiod exists it is necessary to examine the following 
system in accordance with the above. There are three equations 
in three unknowns given by 

(20) 

An examination of the coefficient matrix on the left-hand side 
will show that it has rank = 2. Considering, for example, the 
determinants of the coefficient matrix based on the first two 
rows (it would not matter which two rows were picked) it may 
be shown that their gcd = 24 and in contrast the determinants 
of the augmented system have a gcd = 12. Hence by the 
criterion given above there is no solution to this system of 

2m2 

2m3 

0 

-2ml 

0 
2m3 

0 
- 2 m i 

-2m2 

V\ 

v2 

V3 

• = 

m1-m2 

m\ — ms 
m2-m3 

1 . 5 

1 

0 . 5 

0 

- 0 . 5 

, 

\ 

\ "*̂  

i i i 

\ """-—- -y~ X--— 

-

-

-

TIME (SECONDS) 

Fig. 2 Envelope and signal for ye(t) 
exp(-1.2J)sin(3f) 

exp(-0.10sin(f) + 1/3 

linear Diophantine equations and consequently there is no 
antisymmetry in ye{t). It is useful to note that although there 
is no antisymmetry present in ye (t) a subset of the modes may 
be combined into a signal which does possess antisymmetry. 
Specifically modes two and three may be comnbined into a 
signal which has antisymmetry. Thusye(t) may be represented 
as the sum of two periodic functions rather than three which 
will permit the use of fewer impulses in the control sequence 
than if a mode by mode approach were taken. 

The foregoing allows us to apply the standard shaped input 
techniques to signals of the form given in Eq. (1). But signals 
of this form are undamped and of less practical interest than 
damped signals of the form 

y(t) = ^ AfixP I —jsin(corf/0 (21) 

The individual damped natural frequencies o)di can be re-ex­
pressed in a manner similar to the way the frequencies were 
expressed in the undamped case such that 

and hence 
Wrf/= mi^dc 

y(0 = Yj ^ ' e X P \~f.) sil[l(mi<»dct) 

(22) 

(23) 

In order to proceed the following result from trigonometry is 
needed. 

sin(/w,-wrfc0 = 2 ( ~ ! ) r 

r = 1,3,5,. . . 

,/(Brsinr(c»(/ct)cosm' r(wdct) 

(24) 

where mf$>r is the binomial coefficient. The proper interpre­
tation of the upper limit of the summation is that r is to be 
increased so long as it does not exceed w,-. Then using Eq. (24) 
in Eq. (23) it can be shown that 

(25) 

E(t) = 

y(t)=sm(wdct)E(t) 

e of indices such th where after a change of indices such that r = (2/ - 1), 
N m , > 2 / ~ I 

V ~ m,-u>2/-l 

. (=1 j=l 

xsinzy \wdct)cos" -V+i (WrfcO (26) 

is the envelope of the system response. It is the generalization 
of the exponential envelope of the single degree of freedom 
case. This envelope function is essential to being able to apply 
the shaped input techniques to the overall signal y(t). 
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Fig. 3 Impulse response, illustrated by means of a rotating vector 

An example of this envelope is given in Fig. 2 where the 
signal ye(t) is given by 

j e(O = exp(-0.10sin(0 + -exp(-1.20sin(30 

where it may be seen that the envelope function E(t) behaves 
in a similar manner to the single degree of freedom case. 

y(t) 
hE{h) 

E £ J Aiirii 

Fig. 4 Phasor diagram for a two impulse controller 

3 The Shaped Input Method 
The response of a system with multiple frequencies that has 

anti-symmetry can be rewritten in the form given in Eq. (25). 
It is useful to rewrite the envelope function E(t) in the form 

JV /w;2 2 / ' - l 

£ ( ' ) = £ E Alsx.p(-m,)mludct)(-l}'+l
mi<&v.l 

/ = i j=\ 

x smv-\udct)cosmi-2J+ W O (27) 

where/(J,-) = £ / V 1 ~ £/• The above equation represents the 
impulse response of a system. This can be illustrated by means 
of a vector, rotating at a frequency of oidc radians/s and with 
an amplitude of E(t). The projection of this rotating vector 
on the .y-axis at any time is the response of the system (Fig. 
3). The projection of the rotating vector on the x-axis is 

y'(t)=cos(odct)E(t) (28) 

The response of the system to a sequence of k impulses can 
be expressed for time t > tk as 

y(t) = Yj 7* s i n(^c(t-tk))E(t-tk) (29) 

Yj Aimi 
/ , = 1 - N 

J^Afixp(.-mi)mt*)m,(-l)'' 
(34) 

With knowledge that the m, must be odd the impulse se­
quence for the multi-frequency system is given in the following 
table. 

time 

0 

•K 

Wdc 

N s 
; = i 

amplitude 
N 

2 ] A'm< 
; = i 

y4,-exp(-/(£;)/n,-7r)/W/ 

1 

where Ik and tk are the amplitude and time of application of 
the kih impulse. 

3.1 Two Impulse Controller. For a two impulse response, 
assume I2 = 1, t\ = 0 and t = t2. From the phasor diagram 
(Fig. 4), the addition of the components of the vectors in the 
vertical and horizontal directions gives us 

N 

Ilcos(udct2)E(t2) + 2 Aimi = 0 (30) 

3.2 Three Impulse Controller. The two impulse, shaped 
input controller is known to be sensitive to errors in estimated 
frequencies. To overcome this problem the use of three im­
pulses has been suggested by Seering and Singer (1988). The 
three impulse controller for the multi-frequency system can be 
developed in the same fashion as the two impulse controller. 
Assuming that I3 = 1, t\ = 0 and t = /3, the phasor diagram 
(Fig. 5) yields 

7iCos(wrfc/3)£'(?3) +/2cos(codc(^ -12) )E(h -12) 
N 

and 
XJ Aim, = 0 (35) 

Ilsm(oidct2)E(t2)=0 

Yom Eq. (31) it may be found that 

ir 
h = — 

(X>dc 

Jsing this value of t2 in Eq. (30) gives 

-h 
r N i 

2 ^ / e x p ( - / ( ? , ) m , - 7 r ) w , ( - l ) m ' - 1 

; = i 

+ 
r N i 

2 Aimi 
/ = i 

(3D 

(32) 

= 0 

(33) 

and 
71sin(codc?3)£'(?3) + I2sm(o>dQ(t3- t2))E(h-12) =0 (36) 

' There are now two equations in four unknowns (t3, t3, Iu 
and I2). Two additional equations are obtained by differen­
tiating equations of the form of Eq. (29) and Eq. (28) with 
respect to o>dc which corresponds to minimizing the error due 
to errors in estimated frequency. That is we require 

d 2 Iksm(wdc(t-tk) )E(t-tk) 

= 0 (37) 
dudl 

which can also be written as and 
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h 

hE{h - h) 

T.f=l AiTHi 

Fig. 5 Phasor diagram for a three impulse controller 

Table 1 Impulse sequences for the undamped problem 

time 

0 
vr/2 

Two impulse 
case 

amplitude 

0.5 
0.5 

time 

0 
x/2 

IT 

Three impulse 
case 

amplitude 

0.25 
0.5 
0.25 

d J] Ikcos(codc(t-tk))E{t-tk) 

= 0 (38) 
rfa)dc 

Solving Eqs. (35), (36), (37), and (38) produces the ampli­
tudes of the impulses Ix and I2 and the time of application t2 
and t}. An iterative numerical solution scheme is used in the 
solution process. 

4 Example 
4.1 An Undamped System. Assume that the system re­

sponse to an impulse input can be represented in the form 

y(t) =sin(u10+sin(co20 (39) 
where ĉ  = 2 and o>2 = 14 and hence coc = 2, my = 1 and 
m2 = 7. 

The integers mt and m2 are coprime and are both odd thus 
guaranteeing that antisymmetry exists. The common period 
for the system is T = 2-wfi = T and the period of antisymmetry 
is Ta = vr/2. 

Using the two impulse controller results from Eqs. (32) and 
(34) on the above system yields t2 = ir/2 and /, = 1. Then 
scaling the impulses so that the sum of their magnitudes is 
unity results in the impulse sequence given in Table 1. 

Equation (39) is plotted in Fig. 6 where it may be seen that 
antisymmetry exists in this signal. Using a sampling interval 
of a hundredth of a second the simulation of the two impulse 
controller (Figs. 7 and 8) shows a fairly good attenuation of 
the amplitudes of vibration. The response of the system, when 
the second impulse is applied one sampling interval after the 
desired time, results in the frequencies not being totally elim­
inated. The residual vibration confirms the lack of robustness 
of the two impulse controller. 

The amplitudes of the impulses for the three impulse se­
quence are arrived at from Eq. (35), (36), (37), and (38). Scaling 
the amplitudes similar to the two impulse case results in the 
values given in Table 1. 

The simulated results show a marked improvement in the 

1 .5 

1 

0 . 5 

0 

- 0 . 5 

- 1 

- 1 . 5 

1 1 1 1 

1 1 1 1 

-" " 1 ' I i i 

A A -
-

-

\ \~ 
-

TIME (SECONDS) 

Fig. 6 Response of a system without damping to a unit impulse 

TIME (SECONDS) 

Fig. 7 Response of a system without damping to a two impulse con­
troller; perfect application of the second impulse 

2 | , 1 , , , , , 1 1 

1 . 5 -

0 . 5 -

- 1 -

1 . 5 -

_T I 1 1 1 1 1 1 1 1 1 

2 2 . 5 3 3 . 5 
TIME (SECONDS) 

Fig. 8 Response of a system without damping to a two impulse con­
troller; residual vibration due to imperfect application of the second 
impulse 

elimination of the residual vibration even when the error in 
the time of application of the second and third impulse is one 
sampling interval (Figures 9 and 10). 

4.2 An Under-Damped System. For the purposes of il­
lustration assume that the system response to an impulse input 
can be represented in the form 

^(0=exp(-|i«iOsin(«o10 + exp(-J2w2Osin(oj20 (40) 
where f i = £2 = 0.01 and the values of coj and o>2 are the same 
as in the previous example. 

For the case of the two impulse controller acting on the 
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TIME (SECONDS) 

Fig. 9 Response of a system without damping to a three impulse con­
troller; perfect application of the third impulse 

TIME (SECONDS) 

Fig. 10 Response of a system without damping to a three impulse 
controller; residual vibration due to imperfect application of the third 
impulse 

Table 2 Impulse sequences 
Two impulse 

case 
time amplitude 

0 0.5484 
T/2 0.4516 

for the under-damped problem 

time 
0 

1.57 
3.14 

Three impulse 
case 

amplitude 
0.30644 
0.49482 
0.19874 

above damped system, Eqs. (32) and (34) yield t2 = ir/2 and 
Ii = 1.2144. Scaling the impulses so that the sum of their 
magnitudes is unity produces the impulse sequence given in 
Table 2. 

For the purposes of comparison the response of the system 
to the classical shaped input method where four impulses were 
used is shown in Fig. 11. Simulation of the system response 
to the two impulse control sequence, which is based on the 
above developments (Fig. 12) with a sampling interval of a 
hundredth of a second shows that the frequencies are not totally 
eliminated but are reduced compared to the response of the 
system to a unit impulse (Fig. 13). The residual vibration in 
the two impulse case is larger than that in the four impulse 
case due to the fact that the two impulse controller is trying 
to do in two impulses what is being done by four impulses in 
the former case. In both examples the last impulse was not 
applied precisely at the exact temporal instant desired because 
of the frequency content and the choice of step size. This 
indicates that the two impulse case lacks robustness, as ex­
pected, but also indicates that the classical shaped input method 

TIME (SECONDS) 

Fig. 11 Response of a system with damping to a two impulse controller 

TIME (SECONDS) 

Fig. 12 Response of a system with damping to a unit impulse 

TIME (SECONDS) 

Fig. 13 Response of a system with damping to a classical shaped input 
controller with four impulses 

with 2N impulses may be more robust in the multimode case 
• due simply to the presence of more impulses. 

The amplitudes and timing of the impulses for the three 
impulse sequence are arrived at from Eqs. (35), (35), (37), and 
(38). Scaling the amplitudes similar to the two impulse case 
results in the impulse amplitudes given in Table 2. The sim­
ulated response of the system to a classical shaped input control 
impulse sequence consisting of nine (3N) impulses is illustrated 
in Fig. 14. This response can be compared with the response 
given in Fig. 15 which illustrates the response of the system 
to the three impulse controller with the above impulse mag-
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1.5 -

0 . 5 -

- 0 . 5 -

- 1 . 5 -

_ 2 I 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 10 

TIME (SECONDS) 

Fig. 14 Response of a system with damping to a classical shaped input 
controller with nine impulses 

2 | , , , , . 

1.5 -

0 . 5 

- 0 . 5 -

- 1 . 5 -

- 2 ' 1 ' J 1 
0 2 A 6 8 10 

TIME (SECONDS) 

Fig. 15 Response of a system with damping to a three impulse con­
troller 

nitudes. The simulated results show that the three impulse 
controller eliminates the vibrations just as effectively as the 
nine impulse controller and is more robust than the two impulse 
case, as expected. It may be noted that in the case of the three 
impulse controller, the system vibrations, prior to the end of 
the impulse sequence, are not diminished as much as in the 
nine impulse sequence case. This is because fewer impulses are 
applied during that time and each impulse that is applied is 
necessarily larger in magnitude that in the nine impulse case. 

5 Summary and Conclusions 
A technique for the design of a shaped input controller for 

the suppression of vibration of systems with multiple modes 
has been presented. The suppression is achieved by designing 
an impulse sequence which cancels a pseudo-mode of lower 
frequency than any of the component modes whose frequencies 
must necessarily be greater than or equal to that of the pseudo-
mode. The impulse train so designed cancels all the higher 
frequency component modes and thus eliminates the vibration 
from the system. 

A minimum of two impulses are required to eliminate all 
the modes of vibration provided antisymmetry exists in the 
response. The robustness issue has been addressed leading to 

a three or more impulse sequence for the elimination of the 
vibration. By being able to use three impulses to cancel the 
vibration the method presented above may eliminate the need 
to find a large number of impulse magnitudes and spacings; 
a task which in practice may be very difficult. Computer sim­
ulations have corroborated the applicability of this technique 
and have also confirmed the lack of robustness of the two 
impulse sequence controller. An important point to note is 
that the time required for the elimination of all the modes will 
be greater than or equal to the period of the lowest natural 
frequency. In this regard it may be observed that if the com­
ponent frequencies are known to a large number of digits of 
accuracy this will have the effect of lengthening the period of 
the total signal. This effect can be diminished by using a con­
tinued fraction expansion on the decimal forms of the fre­
quencies to get as compact a form as possible. This may 
introduce small errors into the values of the component fre­
quencies but the robustness of the three impulse scheme should 
be able to accommodate this. 

A note to the use of this technique: Even when antisymmetry 
cannot be found for the system including all the modes, we 
are still at liberty to use subsets of the frequency spectrum and 
design impulse sequences for those subsets that provide anti­
symmetry and convolve the impulse sequences for each of the 
subsets, which would still reduce the number of impulses re­
quired as compared to convolving impulse sequences for all 
the frequencies repeatedly. 
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