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A controller for a flexible/rigid link robot is designed using the sliding-mode and
shaped-input concepts. The controller for the rigid body motion is designed to serve two
purposes: it forces the state trajectory onto a preselected sliding surface and then guides
it to the state space origin. The shaped-input controiler is designed for the control of the
flexible motion which requires information about the natural frequency and damping of
the linearized system. This information is used to discretize the input so that minimum
energy is injected via the controller to the flexible modes of the structure. The controller
is tested successfully on an experimental flexible link robot.

I. INTRODUCTION

Distributed parameter systems theory has gained considerable maturity in the past two
decades. The origin of this field can be traced back to papers by the Russian scientists
Butkovskii and Lerner {1] in 1960. Application areas include chemical engineering,
mechanical and civil engineering (bridges, flexible arm robots and large antennas) and even
physiology {mathematical modelling of the distribution and effects of drugs in humans).
Distributed parameter systems are modeiled by partial differential equations. In the case
of flexible link robots, the partial differential equations reflect the distributed nature of
mass and stiffness. The first impulse of researchers is to simplify the model to a form that
is amenable to solution using conventional techniques. Eigenfunction expansion, space
quantization, space and time quantization and transfer function approximations are a few
of the techniques used to transform the partial differential equations into a set of ordinary
differential or difference equations.

Models of realistic systems are seldom completely known and, if known, are rarely
linear. Control theorists are now required to design controllers applicable to non-linear,
incompletely modeiled systems, to systems the models for which can be improved on-line
during system operation. The normal procedure for designing controllers for non-linear
systems has been to linearize the system and then design a controller for the resulting
system. This procedure can yield unsatisfactory performance, especially when the system
is highly non-linear and undergoes large motion, as is the case for control of robotic
manipulators, advanced aircraft control ete.
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Control of multi-link, flexible arm robots belongs to the class of problems that is
characterized by non-linearity and incompleteness in modelling. The incompleteness in
modelling is due to the transformation to convert the partial differential equations into a
system of ordinary differential equations. The effects of Coriolis, centripetal and gyro-
scopic terms contribute to the non-linearity in the model. A generalized control strategy
is consequently desired to track any command input with minimal vibration of the links.
Many investigators have studied various control methods to find a successful and practical
control technique for flexible arm robots. The importance of this area is highlighted by
the publication of numerous research papers, which is also indicative of the non-avail-
ability of a satisfactory control method. There is a plethora of papers on the control of
single flexible link robots. Wilson et al. [14] designed contrellers using the pole placement
technique, Vidyasagar and Wang {13] designed a controller using the stable factorization
approach. Meirovitch er al. [3] designed an on—off controller to control a free—free beam
in a non-linear fashion. The use of acceleration feedback was promulgated by Kotnik er al.
[2]. Gebler et al. [7] worked on the control of a two-link flexible arm robot. An optimized
reference trajectory for the rigid body is realized using a non-linear feedforward concept:
any deviations from this path are counterbalanced by an additional feedforward loop and
the remaining elastic vibrations are actively damped by feeding back strain gauge
measurements. Qakley and Cannon [5] used a collocated PID control scheme to regulate
the motion of a two-link flexible arm robot. The controller was designed to compensate
for the effect of Coulomb friction. Oakley and Cannon also designed a collocated PD
controller for a two-link manipulator with a very flexible forearm [4]. A self-tuning scheme
approach was adopted to resolve the robustness of the sysiem to changes in the system
parameters,

The equations of motion of a multi-link robot are non-linear and are not known exactly.
Thus, controlling the robot in a decentralized fashion is feasible only if the controller for
each joint is robust, first because the model of the system is not exactly known, and,
second, because the coupling of the other links in consideration is considered as
disturbance. Thus, the controller should be able to reject the disturbance and be robust
to handle the discrepancies in the model. Sliding-mode controllers are suitable for the
control of systems with uncertainities. A sliding-mode controller has been designed based
on a Lyapunov function, to arrive at a control law [9]. The sliding-mode technigue may
be used in a decentralized fashion, provided that the bounds on the coupling of the other
links are known. The sliding-mode technique can also be used to control the non-linear
system in a centralized manner. The control technique in this paper uses the latter
approach to control the rigid body motion.

Smith [11] proposed discretizing a step input to an underdamped second order system
into two steps to cancel any harmonic motion of the system. The basis of this control
strategy is to utilize the second step of the discretized step input to annul the vibratory
motion of the plant. This is achieved by forcing the response of the second step to be 180
degrees out of phase with the response to the first step. Thus the final position of the system
is the position at the time at which the second step is applied. Singer and Seering [8]
ameliorated this control strategy by introducing robustness into the controller to variations
in estimated damping and frequency. This was achieved by increasing the number of
discrete steps, from the two proposed by Smith to three or more: the greater the number
of steps, the greater the robustness. The cost of increasing the number of steps is reflected
by the increased time to reach the final position. The non-linear nature of the multi-flexible-
link system changes the natural frequency of the links with change in position. Thus, the
shaped-input controller provides us with a patent chcnce to attenuate the vibratory motion
of the flexible links in a robust fashion.



FLEXIBLE/RIGID LINK ROBOTS 187
2. CONTROL PHILOSOPHY

The motion of the multi-link, flexible arm robot is assumed to consist of two parts, the
gross or average motion (rigid body motion) and the perturbations about this average
motion (vibration of the flexible links). The average motion of the system is controlled
using a feedback controller. The perturbations about the mean trajectory will tend to zero
as the flexible modes are damped, although lightly. The next step is to accelerate the
damping out of the vibrations in an open loop fashion. The sliding-mode and shaped-input
controllers are used to exemplify the contro! philosophy. The sliding-mode caters to the
rigid body motion (gross motion) and the shaped-input controller modifies the command
input so as to annul any vibrations in the flexible links.

3. CONTROLLER DESIGN

3.1. SLIDING-MODE CONTROLLER

The equations of motion of any robot are linear with respect to the control, that is, the
system can be represented in the form

X =f(x)+ B(x)u, )

where x and f are 2n-dimensional column vectors, B(x) is a 2n x m matrix, and u is an
m-dimensional input vector. It is assumed that the functions f{») and B(x) satisfy the
Lipschitz condition outside the sliding surface. In such systems, sliding motion occurs
which, unlike the scalar case, stays on the intersection of the sliding surface rather than
on a single sliding surface [12].

The motion of a system controlled by a sliding-mode controller can be described in two
phases. The first involves forcing the state trajectory, from any initial condition to a
predefined surface; and the second involves sliding along this surface to the state space
origin. The design of the controller is also two-fold; sclection of a surface to produce the
desired dynamics and the selection of a control law that forces the selected surface to be
globally attractive.

The equation of motion of a multi-rigid-link robot can be represented as

x| X 0
[* ] ) LM]"(—IC(x].xz)] - [K]x.)] ¥ [EM]"]"" @

where M is the mass or inertia matrix, C is the coupling matrix, reflecting the effect of the
Coriolis, centripetal and gyroscopic non-linearities, and K is the stiffness matrix. The
variables x; and x, are state vectors of the same dimension. This model is used to design
the sliding-mode controller, as this controller caters to the rigid body motion.

The first step is to select the sliding surface. The linear sliding surface selected is of the
form

o=35x=0, 3)

where the terms of § are the direction cosines of the normal to the surface(s). The sliding
surface is of dimension (2n — m), where 2n is the number of states in the system and m
is the number of inputs to the system. The final surface can also be considered to be the
intersection of m, (2n — l)-dimensional surfaces. The sliding surface can also be
represented as

o =S, 321{2} =0. ()
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Since the non-linearities lie in the range space of the input, they can be ¢liminated when
the system state is on the sliding manifold, where the equation of the sliding manifold
provides us with an algebraic relation between the states. When the system trajectory is
on the surface, that states are related as

X2 = _Sl_lSlxl’ (%)

assuming that §, is non-singular. Substituting equation (5) into the first half of equation
(2), we have

X = —85'8,x,. (6)

This is now in a form that can be exploited to select the coefficients of the sliding surface.
S7'8, is in the form of the state feedback matrix, and a plethora of techniques is available
to select the feedback matrix. Thus the desired dynamics define the sliding surface. When
the system state is on the selected suface, the dynamics of the system are defined by the
following equations:

% =—=S57'8x, and x,=-—87'Sx,. (7, 8)

Having selected the surface, the next step is to choose a control law that forces the system
state onto this surface. The definition of a sliding-mode resembles the definition of
Lyapunov stability, which provides us with a patent choice to select the control law. Let
us choose a Lyapunov function ¥{x, ¢) of the form

V =1c"g, )

which is globally positive definite with respect to the surface 0. To ¢nsure that the surface
is globally attractive, the derivative of the Lyapunov function with respect to time should
be negative definite; that is, '

dvidt = o6 <0, dV/idt =o"Sx <0. (10, 11)
On substituting equation (1) into equation {11}, we have
dVidt =e¢"S(f(x)+ B(x)u) <0. (12)
We need to select # such that equation (12} is globally negative definite. Let
u=—(SB)"'Sf(x)— (5B) ‘ea, (13)

where ¢ is a diagonal matrix of positive constants, the components of which define how
fast the surface is approached. Substitute equation (13) into equation (12) to obtain
dV/dr = e "S(f(x) + B(x){(—(SB) 'Sf(x) — (SB) 'es) < 0. (14)

It is simplified to
dvidt=—Y o605, (15)
i=1
which is negative definite, thus forcing the selected surface to be globally attractive.

3.2. SHAPED INPUT CONTROL

The next step in the design process involves modifying the command input to the system
such that the response of the system does not contain any harmonic content. Smith [11],
in 1958, proposed breaking up a step input to an underdamped system into two steps, such
that the response of the underdamped system was non-oscillatory, Singer and Seering [8]
ameliorated this control concept to incoporate robustness to variations in damping and
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Figure 1. (a) Impulse sequence; (b) vector diagram illustrating the response of the system to two impulse
inputs.

frequency. The vector diagram (Figure 1) is used to exemplify this control concept, which
represents the impulse response of a second order system by means of a rotating vector,
the projection of which on the y-axis is the impulse response of the system. The vector
diagram represents the response of an underdamped system to two impulses. The
controller requires determination of the relative amplitudes of the impulses and the time
at which they have to be applied, such that the system does not respond in an oscillatory
manner. We assume that the second impulse is applied ¢ seconds after the first, which has
an amplitude of unity. For the resultant response to be zero, the following two equations
must be satisfied simultaneously:

(w/ /1~ e cos{w/1 — )+ A/ /1 — E2=0, (16)

and

(@] /1= &) e sin (w /T — ) = 0. (mn

We have, from equations (16) and (17),

exp| — 5"
Az_exp(w \/1——62) (18)

t=nflw/1—E%). (19)

To produce an aperiodic response to any command input, the impulse sequence is
convolved with the command input, and this modified input produces the desired response.
This controller can be used to control the motion of a flexible arm robot subject to
point-to-point motion. The two-impulse shaped input cancels vibrations only if the natural
frequency and damping of the system are exactly known. Singhose et al. [10] proposed to
minimize the sum of the components of the system response vectors in the X and Y

applied at
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TABLE 1

Impulse sequence

Time (s) Amplitude of step
0-0 1
il 2t/ T E
@ /1 —&2
% (e~t/T=Ey

w1 — &2

(Figure 1) directions to variations in frequency. To achieve their objective, they proposed
a three-impulse controller, whose relative amplitudes, for zero initial conditions are derived
in the same fashion as the two-impulse sequence and are listed in Table 1.

The natural frequencies of multi-flexible-link robots are functions of the link positions,
implying that the natural frequencies change with the link position. Since the shaped-input
controller is robust with respect to variations in natural frequencies, it can be used to
eliminate the oscillatory portion of the response. This control strategy is tested on an
experimental single flexible-link robot, the results of which are presented next.

4. EXPERIMENTAL RESULTS

The testbed for the proposed control strategy, is a two-flexible-link mechanism, Each
link is driven by a d.c. servo motor. The first link (72-6 x 10-16 x 0-3172 cm) is less flexible

Infra-red LED

CCD sensor and optics 1

Signal conditioning circuitry
(and counterbalance)

Accelerometer 1
D.c. servo motor 1

Endcoder 1
16-Channel
D/A, A/D board
ATC cmmmm— Data acquisition system
- B e _‘
! }
I Nicolet 310 '
- ! digital scope :
e o ! 1
MLIHI | — | A 1
f— | |
S : HP3350A signal l
12 MHz, 80286 PC ) analyzer |
- | el ——— 1

Figure 2. Schematic of flexible link manipulator configuration.
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TABLE 2

Three-impulse sequence convolved with a step

input
Time (s) Amplitude of step (rad)
0-0 0-4113
0-6545 1-1961
1-3089 1-5707

compared to the second link (50 x 2-54 x 0-1587 cm) and is driven directly by a servo
motor (Inertial Motors Model GA4552-1), unlike the second link which employs a
gear train to enable the use of a smaller motor (Electro-Craft, Inc. Model E350-MGH)
(Figure 2). The sensory system comprises two cameras to detect the deflection of the tip
of the links from their rigid body positions. The CCD cameras, which are integral with
the shaft of the motors, detect the deflection via infra-red light emitting diodes mounted
at the tip of the links. Optical encoders (SUNX REX-31), used in conjunction with a
HCTL-2000 gquadrature decoder counter, and tachometers are used to measure the
position and velocity of the motor shaft, respectively. The mechanical hardware is
interfaced to a 386SX computer, while the controllers are implemented in software
developed in “C” language. A PC-LAB card (PC-LAB 718), which provides analog-to-
digital and digital-to-analog conversion facilities, is used to communicate with the robot.
This communication involves a multiplexing protocel using hardware that was developed
in-house. Limit switches are used to disable the motors in case the robot reaches its limits,

A single link of the experiment was used to illustrate the proposed controllers. First, the
system was controlled using a simple PD feedback controller which damps out vibration,
and which can be proved to be asymptotically stable using the work—energy rate principle
[6]. The feedback gains were chosen to produce an underdamped response. The reference
input to the system is a step input corresponding to a 90 degree slew. The rigid body motion
of the system containing large overshoot and small damping is illustrated in Figure 3(a).
The time response of the tip of the link from the rigid body position is shown in Figure
3(k). Two frequencies are evident in the response: the low frequency is the contribution
of the underdamped rigid body response and the high frequency is the first mode of
vibration of the link. The control input to the system varies harmonicaily with small
amplitude, high frequency content due to the coupling of the flexible modes and the rigid
body mode superimposed on the gross low frequency (Figure 3(c)). The arc length

1-8 T T T T T T T e

1.4 | _

12 - .

10 .

0-8 -

Input reference (rad)

06 —

04 1 | L 1 | | 1 | 1
00 62 04 06 08 10 12 14 16 1.8 20
Time (s)

Figure 4. Reference input for the three-impulse/PD controller.
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TABLE 3
Nine-impulse sequence conzolved with a step
input

Time (s) Amplitude of step (rad)
0:0 0-1046

0:0242 0-3103

0-0484 (-3994

0-6549 06109

0-6791 1-0033

0-7033 1:1962

1-3098 1-2913

1-3339 1-4785

1-3581 1-5707

described by the tip of the link is shown in Figure 3(d). This is not very different from
Figure 3(a), stating that the absolute value of the tip deflection is small compared to the
deflection due to the slew.

The next experiment involved elimination of the frequency corresponding to the rigid
body motion, The three-impulse-shaped input controller was designed to modify the
reference input to the system. Convolution of the three-impulse with the reference input
leads to the input sequence (Table 2) which is illustrated in Figure 4. The rigid body
response (Figure 5(a)) reveals a very small overshoot and reaches the desired position in
about two seconds. The manifestation of the first mode of vibration in the tip response
is illustrated in Figure 5(b). A point to note is that the amplitude of the tip vibration has
been significantly reduced compared to the previous controller. In Figure 5(c), the time
history of the control input, it is shown that there are two switches in the sign of the control
signal which correspond to the application of the multiple stepped input. The arc length
of the tip of the link shows a response similar to the rigid body, but with a greater
amplitude of the high frequency content (Figure 5(d)). )

The next experiment involved elimination of the first two frequencies, leading to a
nine-impulse sequence, shaped input controller. Convolving this impulse sequence with the
reference input leads to the input sequence listed in Table 3,

The reference input to eliminate the two modes of vibration is shown in Figure 6. The
rigid body response (Figure 7(a)) to this reference input is smoother than that shown in
Figure 5{a). The tip deflection has a very small amplitude of vibration, and the deflection

18 T — T 1  — —F

1.4} -
12} 4
101 -
0-8 -

06k ~

Input reference (rad)

0-4 .

20 -
t 1 I 1 1

| | 1 L
00 02 04 06 08 10 1.2 14 16 18 20
Time (8)

Figure 6. Reference input for the nine-impulse/PD controller.
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Figure 8. Experimental results of a sliding mode and sliding-mode/shaped-input controller: rigid body
rotation.

of the tip is due to the minimum phase characteristic of the system (Figure 7(b)). The
control input (Figure 7(c)) to the system contains sudden changes in magnitude at every
instant of application of the impulse of the shaped-input controller.

The proposed shaped-input/sliding-mode control technigue is next implemented on the
single-link, flexible arm robot. In this technique, a sliding-mode controller is designed
based on the rigid body model only. With this controlter in place, the dynamics of the
system are studied and any harmonics in the response are eliminated using input shaping.
The rigid body model of the robot in question is

o 1 0
*= [0 —0-0599}" + [00528]“' (20)

The surface
o =[72919 1]x=0 21)

produces a pole at —7-2919 when the system state is sliding on the surface. The control
law given by equation (13), with ¢ = 5-7825, provides us with poles at s = —5-78 and
§ = —7-29, which correspond to poles at z = 0-9715 and z = 0-9642 in the discrete domain.
The feedback gains to achieve the poles in the continuous domain and the discrete domain
are

K =[79%-0597 246-6248], K =[773-55 240-67], (22,23)

respectively. The effect of this feedback gain on the continuous sixth order model of the
system,

[0 0 0 1 oo] [ o 1
0 0 0 0 i 0 0
x=|0 0 0 0 0 Ilyx4+ 0 u, (24)
0 13909 871680 —38716 0 0 6988:5
D —58406 359970 15988 0 0 — 28860
[0 —91657 95363 02551 0 0| | 4605 |
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Figure 9. Experimental results of a sliding-mode controlier; tip deflection.

is to produce poles at the locations s = —0-0165 + 31-072i, —0-0166 + 194-74i, —3-2145
and ~1-6819E6. The poles at —0-0166 + 194-74i are insignificant (with respect to
frequency) compared to the poles at —0-0165 + 31-072i. The latter two poles produce a
damped natural frequency of 31-072 rad/s. The input is shaped so that the vibration of
frequency 31-072 rad/s is eliminated. The damping ratio of this mode is 5-3E — 4. Table 1
is used to determine the relative amplitudes and time of application of the three impulses
to design the shaped input controller.

The response of the shaft of the motor (Figure 8) shows an exponential behavier. To
better appreciate the controller performance, plots of the response of the system when only
the sliding-mode controller is in place, and when both the sliding-mode and shaped-input
(SM-SI) are in place, are overlaid, as shown in Figure 8. It can be seen from Figure 9 that
the system with the rigid body controller sets up large amplitudes of vibration of the tip
of the link, which show up in the arc traversed by the tip, as shown in Figure 10. The
magnitude of the input torque required for the SM-SI controller is symmetric about the

1.2 T T T T T T T T T
Sliding-mode
10| control

08 Sliding-mode/shaped-input control

0-6

04

Deflection of tip {m)

0-2

0-0

1 1 1 1 ! 1 | 1 i
00 02 04 06 08B 10 12 14 16 18 29
Time (8)

Figure 10. Experimental results of a sliding-mode and a sliding-mode/shaped-input controller: arc length
traversed by the tip.
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origin (Figure 11), unlike the sliding-mode controller case (Figure 12). Thus, by dividing
the input into multiple steps, the SM-SI technique provides us with more available torque
to achieve a quicker response. Any discrepancy between the expected tip deflection and
the actual response can be credited to the unmodelled dynamics of the velocity feedback
circuit of the motor unit, which has been modelled as a simple gain, This could move
the poles from the estimated position to a different location, leading to the oscillator
behavior of the tip of the beam. The deflection of the beam tip for the SM—SI controller
(Figure 13} is smaller than that for the sliding-mode controller by an order of magnitude,
lending credibility to the filtering characteristic of the shaped-input controller.

5. CONCLUSIONS

A generalized scheme based on the sliding-mode and shaped-input concepts has been
proposed for the control of flexible/rigid multi-link robots. The design process is two-fold;
design of the rigid body motion controller followed by the design of a flexible motion
attenuator,

The design of the controller for the rigid body motion requries selection of a hyperplane
in state space which produces the desired dynamics. The controller is then designed such
that the hyperplane selected is a globally attractive manifold and leads to a sliding mode.
The selection of the control law to make the selected surface an attractive manifold is based
on a Lyapunov function,

Once the rigid body controller is designed, the system equations, with the rigid body
controller, are linearized about an operating point. The design of the shaped-input
controller requires information about the natural frequency and damping of the linearized
system. This information is used to modify the input such that the flexible modes are not
excited.

The proposed control strategy has been implemented on an experimental single flexible
link robot, where the damping of the structure was estimated experimentally using modal
analysis. The results have proven the potential of this technique to control multi-flex-
ible/rigid link robots.
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