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Robust time-delay control of multimode systems

T. SINGHt:j: and S. R. VADALIt

This paper presents a procedure for the design of open loop controllers for
flexible structures using multiple step inputs delayed in time. The controller
attenuates the residual vibration by cancelling the complex poles of the system.
Robustness is achieved by locating additional zeros at the cancelled poles of
the system. The paper begins by addressing the control of a single mode and
examines the effect of user selected time-delays on robustness and the
reference input. Next, a procedure for the design of robust time-delay
controllers for multiple modes with user selected time-delays is considered.
This is followed by a design of a minimum time-delay controller, such that the
step input magnitudes are constrained to values between 0 and 1. Two
examples, a spring-mass system and a single-link flexible-arm robot are used
to illustrate the effectiveness of the proposed controller.

1. Introduction
With the current interest in space stations, retargeting space structures, and

space-based robots, there has been a number of studies on the control of
vibration induced by rapid reorientation of the structure itself or its subsystems.
Considerable research effort has gone into the design of closed and open-loop
control strategies. A fairly comprehensive treatment of this family of problems
has been presented by Junkins and Turner (1986).

Rapid manoeuvring of a flexible structure between two quiescent attitudes
with the objective of minimizing structural vibration has been addressed by
many researchers (Farrenkopf 1979, Junkins et al. 1990, Vadali et al. 1992).
Farrenkopf (1979) arrived at control profiles that minimize a cost criterion-a
function of residual modal energy and the integral of the modal velocity and
acceleration. The optimal control profiles were generated for a spacecraft with
one flexible appendage containing one mode of vibration. Swigert (1980) used a
different cost function, one which reflects the sensitivity of the terminal modal
amplitudes to variations in modal frequencies. He proposed a control profile
that is a sum of multiple harmonic functions and showed that the control profile
used to minimize torque is very sensitive to parameter errors. The cost function
used by Singh et ai. (1989) was the terminal time. The optimal control profiles
for time-optimal, rest-to-rest slewing manoeuvres of flexible spacecraft were
shown to be bang-bang with multiple switches in each control variable. Hablani
(1990) developed a technique for the estimation of the switch times for a
bang-bang profile for the zero-residual energy, single-axis slew of a flexible
spacecraft. Thompson et al. (1989) proposed a near-minimum-time control
profile which involved approximating the signum function by a hyperbolic
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tangent function. Junkins et al. (1990) used a piecewise continuous spline
approximation to the signum function such that the boundary conditions are
met. This smooth profile does not 'ring' the higher modes of the structure. All
the above references considered single-axis manoeuvres. Vadali et at. (1992)
synthesized control profiles for near minimum time manoeuvres of space
structures using parameter optimization. They used the Sequential Quadratic
Programming method to arrive at the optimum switch times and maximum
thrust amplitudes. Of these works, only Swigert (1980) considered robustness
issues, such as sensitivity to errors in natural frequencies.

We wish to place special emphasis on the following works in view of their
relevance to the controller proposed in this paper. A very interesting technique
was proposed by Tallman and Smith (1958) which involved splitting the input
excitation into several segments such that the sum of all transient terms equals
zero after the last excitation. This technique was referred to as the posicast
technique. This work acknowledged the lack of robustness to errors in estimated
damping and frequency of the controlled system. This controller can also be
represented as a proportional and time-delayed block. Singer and Seering (1990)
proposed a technique for decreasing the sensitivity of the posicast controller to
modelling errors, which they referred to as the shaped input controller. The
design of the controller involved studying the response of the system to a
sequence of impulses. The amplitudes and times of application of the impulses
were determined by solving a set of equations representing the response of the
system to the impulse sequence and, for robustness, derivatives of these
equations with respect to frequency or damping. Singhose et at. (1990) used the
phasor diagram to arrive at the same solution. The input shaping technique
discussed above is designed to suppress residual vibration of one mode. To
eliminate residual vibration due to multiple modes, the impulse sequence for
each mode is convolved to produce a new impulse sequence. Wie and Liu (1990)
used the shaped input technique to modify the flexible-body, time optimal
control profile to produce a robust control scheme that was applied to the
control of a two-mass spring problem. Murphy and Watanabe (1992) showed
that the shaping filter zeros in the discrete domain, exactly cancel the plant
poles, leading to elimination of dynamics corresponding to the cancelled poles.
Hyde and Seering (1991) developed a numerical technique for arriving at an
impulse train for the control of multiple mode systems, which is simple to
implement and produces a smaller system response delay as compared with
using cascades of shaped input controllers designed for each mode separately.
This technique involved the direct solution of a group of simultaneous nonlinear
impulse constraint equations. Singh and Heppler (1993) arrived at a method for
suppressing vibration for systems with multiple modes, provided certain con-
straints related to the anti-symmetric periodic property of the signal are
satisfied. Two impulses for the non-robust case and three or more impulses for
the more robust case are required for this controller.

Time-delay control has been used in feedback form in papers by Suh and
Bien (1979), Youcef-Toumi and Kondo (1989) and in open loop form by Singh
and Vadali (1993). Suh and Bien (1979) proposed a controller which utilized the
time-delay effect in conjunction with a proportional element. This controller was
referred to as proportional minus delay (PMD) controller. This controller was
shown to be insensitive to high-frequency noise and has a smaller 'Integral of
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the Time weighted Absolute Error (ITAE)', than a PD controller. Swisher and
Tenqchen (1988) extended this work to a third-order system and arrived at rules
of thumb for the selection of the parameters of the PMD controller. Su et al.
(1989) used time-delay for the tip control of a flexible beam. Their work used
time-delay in minor loops attached to the main loop and showed the controller
as an infinite-dimensional and complex generalization of the classical lead-lag
compensator. Youcef-Toumi and Kondo (1989) used the time-delay controller
for a system whose control distribution matrix is unknown.

In this paper, we first design a time-delay controller for a single mode system
and show that multiple uses of this controller in cascade lead to controllers that
are insensitive to parameter errors. We then design a time-delay controller,
where the time-delay is user selected, this is a generalization of the time-delay
controller proposed by Singh and Vadali (1993). This is followed by studying
some properties of the controller regarding the sign of the gains of the
time-delay elements and periodicity of the controller. We refer to the magnitude
of the delayed step input, as the time-delay gain. A general procedure for the
design of user selected time-delay controllers for multi-mode systems is pre-
sented. The final controller presented in this paper is based on minimizing the
time-delay with the gains of the time-delay elements constrained to lie between
o and 1. A spring-mass system and a single-link flexible-arm robot are used to
illustrate the effectiveness of the time-delay controller for single and multimode
systems, respectively.

2. Time-delay control
2.1. Proportional plus delay (PPD) control

Time-delay controllers designed to cancel the poles of a system with the
intention of attenuating the residual vibration have been shown to correspond to
the two-impulse shaped-input controller (Singer and Seering 1990) by Singh and
Vadali (1993). It has further been shown that the three-impulse shaped-input
controller (designed to increase robustness) is equivalent to using two time-delay
controllers in series. The design of the time-delay controller to cancel the poles
of the system is presented in this section.

Figure 1 is used to represent the time-delay control of a second-order
underdamped system. We need to determine Ao and T so that the poles of the
system are cancelled by the zeros of the controller, which are given by the
equation

Ao + exp(-sT) = 0 (1)

where we have normalized the relative amplitudes of the proportional and
time-delayed signal. Ao is the amplitude of the proportional signal and T is the
delay time of the time-delayed signal.

Representing the Laplace variable s as
s = a + jw (2)

and substituting (2) into (1) and equating the real and imaginary parts to zero,
we have

Ao = exp (-aT) cos (wT) = 0 (3)

and
exp(-aT)sin(wT) = 0 (4)
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R(s)
A + e-sTo

Figure 1. Single time-delay controlled system.

From (4) we have

W = (2n + 1)~, 2n ~ (5)
T T

Substituting (5) into (3), we see that only W = (2n + 1)1T/T produces a positive
value of Ao, which leads to

1a = --In(Ao)
T

(6)

The zeros of the controller are

s = 1-ln(AO) +/2n + 1)1Tj

-In(-Ao) + 2n1Tj
T

Ao > 0
n = -00, ... , 0, ... , 00 (7)

Ao < 0

In this work, we assume Ao is positive and use the zeros corresponding to that
assumption.

To cancel the system poles at s = - SiWi ± jWi(1 - s;?/2, we have from (5)
(setting n = 0)

(8)

(9)

and

(10)

Substituting (9) into (6), we have

1T
-In(Ao) = -SiWi ----

Wi(1 - ;7)1/2
(11)

which leads to

Ao = exp [(1 _1;i;;)1/2 ] (12)

This corresponds exactly to the solution of the shaped-input technique. The
controller can also be written as

u(s) = (s2 + 21;iWiS + W;)(s2 + 2;iWiS + 9w; - 81;;wT)

... (s2 + 2;iWiS + n2w; - (n2 - 1);;w;)R(s)

n = 1,3,5, ... (13)
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The pole-zero locations of the controlled system are shown in Fig. 2. Thus,
the Single Time-Delay controller can also be used to cancel poles of the system
that are odd multiples of the two primary poles.

The final value of the single time-delayed controlled system to a unit step
input, is given by

. 1 (Ao + exp (-ST))Wr)hm-s 2 = Ao + 1
5--.0 S S2 + 2~iWiS + Wi

To force the final value of the input after passing through the controller be the
same as that entering the controller, we normalize the amplitudes of the direct
and time delayed signal, so that the time-delay controller transfer function is
(Ao + exp (-sT))/(Ao + 1).

(14)

2.2. Proportional plus multiple delay (PPMD) control
The Single Time-Delay control, by cancelling the poles corresponding to the

oscillatory behaviour of the system, provides us with a technique to produce
non-oscillatory response. The cancellation of the poles of the system is contin-
gent on the availability of accurate data regarding them. To ameliorate the
robustness of the Time-Delay control to errors in estimated poles, the two-Time-
Delay controller is proposed. The controlled system is illustrated in Fig. 3. The
zero of the controller is given by the equation

Ao + Al exp (-sT) + exp (-2sT) = 0 (15)
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Figure 2. Pole-zero locations of the controlled system in the s-plane.
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Wi yes)

s2 +2~iwis+wl

Figure 3. Two time-delay controlled system.

The tacit assumption made is that the second delay is twice the first delay.
Letting s = a + jw and equating the real and imaginary parts to zero, we have

Ao + Al exp(-aT) cos (wT) + exp-2aT) cos (2wT) = 0 (16)

Al exp(-aT) sin (wT) + exp(-2aT) sin (2wT) = 0 (17)

respectively. Equation (17) can be rewritten as

sin(wT){AIexp(-aT) + 2exp (-2aT) cos (wT)} = 0 (18)

the solution of which is

w = (2n + 1)~, 2n~
T T

(19)

or

1 (AI )W = TCOS-I -Texp(aT)

Substituting w = (2n + l)1T/T into (16), we have

Ao - Al exp (-aT) + exp (-2aT) = 0

(20)

(21)

To design a controller that is robust to errors in estimated frequencies, we
equate the derivative of (21) with respect to a to zero.

Al exp (-aT) - 2exp(-2aT) = 0 (22)

We arrive at the same equation if we differentiate (18) with respect to wand
equate it to zero. Solving (22), we have

Al = 2exp(-aT)
Substituting (23) into (21), we have

Ao = exp (-2aT)
To cancel the system poles, we equate

a = -s;w;

(23)

(24)

(25)
and

(26)

Thus we have

(27)

(28)
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which are also the impulse amplitudes obtained by the solution of the three-
impulse shaped-input technique.

From (20), we have

W = ~ cos-1(- ~l exp(aT))

Substituting (29) into (16), we have

Ao + A1eXp(-aT)( - ~l exp(aT) + eXP(-2aT)(2( - ~l eXP(O'T)f - 1) = 0

(30)

(29)

which simplifies to

Ao - exp(-2aT) = 0 (31)
or

1
0' = --In(Ao)

2T
Substituting T and Ao from (26) and (27) respectively, we have

(32)

(33)

and from (29), we have

(34)

which indicates that the use of either (19) or (20) leads to the same solution.
Thus, the effect of the second delay is to provide a second infinite set of zeros,
with all the zeros being coincident with the first infinite set, as indicated in Fig.
2. The controller should be normalized in the same fashion as the single
time-delayed controller. This controller can also be represented as

u(s) = (s2 + 2~iWiS + w~)2(s2 + ZSiWiS + 9w~ - 8~~wh2

... (S2 + 2~iWiS + n2w~ - (n2 - l)~~wTi R(s)

n = 1,3,5, ... (35)

Since the zeros are repeated, the controller transfer function should also be
equal to

u(s) = (exp ( 1T~i ) + exp (_ST»)2
R(s) (1 - ~T)1/2

(36)

or

u(s) = (exP(2 1T~i ) + 2exp( 1T~i )exP(-ST) + exp(-2ST))
R(s) (1 - ~hl/2 (1 - ~T)1/2

(37)

which is the same solution represented by (15), (27) and (28).
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3. Proportional plus user selected multiple delay control
In the time-delay controller designed in § 2, the time-delay appears non-

linearly in the equations, which increases the difficulty of arriving at closed-form
solutions. The time-delay of the multiple time-delay controller is a function of
the natural frequencies of the system. To eliminate this constraint, we propose.
in this section, a class of time-delay controllers where the time-delay is selected
by the user, thus giving greater latitude to the designer. The unknown gains of
the time-delayed signals, which appear linearly, can be easily solved for.
Consider an underdamped second-order plant and a two-time-delay controller
(Fig. 4) where T is selected by the user. We choose the second time-delay to be
twice that of the first although this is not necessary. We need to determine Au.
Al and A2 to cancel the poles of the system. We require that the poles of the
system be one set of zeros of the controller. The equations

Ao + Al exp(-aT) cos (wT) + A2 exp (-2aT) cos (2wT) = 0 (38)

Al exp (-aT) sin (wT) + A2 exp (-2aT) sin (2wT) = 0 (39)

where a = ;;w; and w = w;(l - ;7)1/2 are used to solve for Ao, A 1 and A2. The
requirement that the final value of the prefiltered signal be the same at the
reference signal leads to the constraint

Ao + Al + A2 = 1
Solving (38), (39) and (40), we have

Ao = exp (-2aT)
exp(-2aT) - 2exp(-aT)cos(wT) + 1

Al = -2exp(-aT)cos(wT)
exp (-2aT) - 2exp (-aT) cos (wT) + 1

A2 = 1
exp (-2aT) - 2exp (-aT) cos (wT) + 1

(40)

(41)

(42)

(43)

The Bode diagram of this open loop controller can be seen to produce a
notch at the system's natural frequency. Thus, any error in estimated frequency
will lead to an oscillatory response to a step input.
!? build in robustn~ss into the time-delay controller, We require that, in

addition to the cancellation of the poles of the system, the variation of (38) and
(3.9) with respect to frequency be zero. This leads to a total of five equations
with three unknowns. We therefore introduce two more delays in the t II
h f f

. . con ro er
w ose trans er unction IS now

R(s) I I u(s) ro; ------ ....~ A +A -sT A -2sT 1-_.......~ y(s)I 0 Ie + 2e I ?+2SiO)iS+~ t---4I~L-_- -' ~

User selected time-delay controlled systelll.Figure 4.
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The gains of the time delay controller can be determined such that the five
equations (45)-(49)

Ao + Ale-aT cos (wT) + A2e-2aT cos (2wT) + A3e-3aT cos (3wT)

+ A4e -4aT cos (4wT) = 0 (45)

Ale-aT sin (wT) + A2e-2aT sin (2wT) + A3e-3aT sin (3wT)

+ A4e-4aT sin (4wT) = 0 (46)

~(Ao + Ale-aT cos (wT) + A2e-2aT cos (2wT) + A3e-3aT cos (3wT)
dw

+ A4e-4aT cos (4wT)) = 0 (47)

~(Ale-aT sin (wT) + A2e-2aT sin (2wT) + A3e-3aT sin (3wT)
dw

+ A4e-4aT sin (4wT)) = 0 (48)

Ao + Al + A2 + A3 + A4 = 1 (49)

are satisfied. It can be shown that two, two-time-delay controllers in series are
equivalent to the resulting controller. The transfer function of the controller is

u(s) = (eXP(-2aT) - 2exp(-aT) cos (wT) exp (-sT) + eXP(-2ST))2
R(s) exp(-2aT) - 2exp(-aT)cos(wT) + 1

(50)

It is to be noted that we will arrive at the same solution if we force the
variations of (38) and (39) with respect to a, to zero. Thus, the robustness is
with respect to errors in estimated frequency and damping.

3.1. Signs of the time-delay gains
It might sometimes be required to limit the magnitude of the time-delay

gains to be positive, while satisfying (40). This is desirable from a practical
standpoint as we would not require the actuator to track large steps, which
could occur if the time-delay gains were unconstrained. Hence, we require from
(42), that the time-delay T satisfy

r < wT < ~ (51)
2 2

which is equivalent to
t; 3Ts- < T < - (52)4 4

where T; is the system period. To illustrate that (41), (42) and (43) represent a
generalization of the time-delay control (Singh and Vadali 1993), we study the
case when T = Ts/4. This leads to

exp [(1 _~;2)1/2]
Ao = (53)

exp [ ~1T ] + 1
(1 - ~2)1/2
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Al = 0 (54)

A
2
= 1 (55)

exp [ 1;1T ] + 1
(1 - 1;2)1/2

and the controller degenerates to the two-impulse shaped input controller.
Further, when T = Ts/2, we have

Ao= (56)

exp C1 ~~)1/2) + 2 exp C1 _1;;2)1/2) + 1

2 exp ((1 _1;;2) 1/2)
(57)

exp C1 ~1;;)1/2) + 2exp C1 _1;;2)1/2) + 1

1A2 = ---------------

exp C1 ~1;;)1/2) + 2exp C1 _1;;2)1/2) + 1

(58)

which is equivalent to the three impulse shaped-input controller. It can also be
shown that when T = 3 Ts/4, the resulting controller is the same as when
T = Ts/4 except that the system response delay is increased by one period.

3.2. Periodicity
The time-delay controller leads to an infinite number of zeros, one pair of

which cancels a pair of poles of the system. To determine the zeros of the
time-delay controller as a function of the user selected time T, we rewrite (38)
and (39) with the appropriate values of Ao, Al and A2, to arrive at

exp (- 2as T) - 2 exp (- as T) cos (ws(l - 1;;)1/2T) exp (- aT) cos (wT)

+ exp (-2aT) cos (2wT) = 0 (59)

and

-2exp (-asT) cos (ws(1 - 1;;)1/2T) exp (-aT) sin (wT) + exp (-2aT) sin (2wT)

= 0 (60)

From (59), which is quadratic in exp (-aT), we have

exp(-aT) = exp(-asT) x
cos(ws(1- 1;;)1/2T) cos (wT) ± [cos2(ws(1- 1;;)1/2T)cos2(wT) - cos (2wT)]l/2

cos (2wT)
(61)
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and from (60), we have

- 2cos(ws(1 - g;)1/2T) sin (wT) +
cos(ws(1 - g;)1/2T) cos (wT) ± [cos2(ws(1 - g;)1/2T)cos2(wT) - cos(2wT)P/2

cos (2wT)
x sin (2wT) = 0 (62)

Solving(61) and (62), we have

(63)

and

_ + (1 _ [;2)1/2+ 2nrrw - _Ws Ss
T

Thus, the smaller the value of T, the larger are the intervals between zeros of
the time-delay controller. In the special case when T = rr/ws(1 - ';;)1/2 the
imaginary parts of the zeros of the controller are odd multiples of the imaginary
parts of the system poles.

The time-delay filter can be mapped into the z-domain, where one can show
that the same objective is met, i.e. cancellation of the poles of the system by the
time-delay filter zeros. However, in the z-domain, we would solve a polynomial
equation to arrive at the zeros of the filter, which are finite in number, unlike in
the s-domain where we solve a transcendental equation leading to an infinite set
of zeros of the filter.

(64)

4. Time-delaycontrol of multi-mode systems
4.1. Userselected time-delay

The design of the time-delay controller in § 3 was simplified as the unknowns
Ai appeared linearly in the constraint equations. This concept can easily be
extended to the design of systems with more than one mode of vibration. The
easiest design would be to connect the time-delay controller for each of the
modes in series. This, however, will not lead to the minimum number of delays
in the controller. In addition, the system response delay will not be the smallest
possible. We can reformulate the constraints so that the selection of the gains of
the time-delay controller satisfy the constraints simultaneously. To control one
mode, we required a two-time-delay controller, and we need to add two more
time-delays for the control of each additional mode. The transfer function of the
time-delay controller for an m-mode system is

'" 2m A -isTLJi=O .e (65)

The constants Ai have to satisfy the constraints

L7:bAie-iajT cos (iwjT) = 0 (66)

L7:'oAie-iajT sin (iwjT) = 0 (67)

for j = 1 to m, where aj is damping constant and Wj IS the damped natural
frequency of the jth mode. We also require

L7:bAi = 1 (68)
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We thus have 2m + 1 equations in 2m + 1unknowns, which can be solved easily
as the unknowns appear linearly in the equations. The matrix equation to be
solved is

1 e-ajT COS(W1T) e-2ajT cos (2W1 T)
0 e-ajT sin(w1T) e-2ajT sin (2W1 T)

1 e-amT cos (wmT) e-2amT cos (2wmT)
0 e-amT sin (wmT) e-2amT sin (2wmT)
1 1 1

e-2ma,T cos (2mwj T)
e-2ma,T sin (2mwI T)

e-2mamT cos (2mwm T)
e-2momT sin (2mw", T)

I

(69)

For certain values of T, the above matrix might become singular. In such cases,
the solution can be obtained by using the pseudo-inverse technique. The
pseudo-inverse solution will be exact for a row rank deficiency, but for a column
rank deficiency, a least square approximation solution results, which does not
satisfy the constraints. In this case, we need to select a different T so that
column rank deficiency is avoided.

4.2. Minimum time-delay
In § 4.1, a set of linear equations had to be solved to arrive at the time-delay

controller. We choose to modify the proposed technique such that all the
time-delay gains are positive. When the gains are unconstrained, the resulting
control input could 'ring' the unmodelled dynamics of the system. This is
undesirable for flexible structures. With all the time-delay gains being positive,
we are assured that they will lie in the range 0-1. We reformulate the design
process so as to minimize the time-delay T, i.e.

minI = T2 (70)

subject to the equality constraints

'V2mA -so.t (. T) 0..6i=O ie / cos lWj = ,
'V 2mA -so.t : (i T) 0..6i=O .e / sm lWj =,

L7:'oAi = 1

j = 1 to m

j = 1 to m

(71)

(72)

(73)

and the inequality constraints

(74)

Solution of the optimization problem leads to the desired time-delay controller.
The use of multiple time-delay controllers in cascade adds robustness to errors
in system parameters.
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5. Numericalexamples
Two numerical examples are presented to illustrate the time-delay controller

proposed in this paper. The first example is a spring-mass system (Fig. 5).
Selecting the mass of the system to be 1 kg and the stiffness of the spring to be
1Nm-1, we have the following transfer function for the system

1y(t) = --u(t), Ts = 21T
S2 + 1

We require the mass to be displaced from its initial position to a final position of
unity, i.e. the input to the system is a unit step. We study the response of the
system when we prefilter the step input to the system through two different
time-delay filters, the first where the smallest time delay T, is one quarter the
period of the natural frequency of the system Ts' the second where the
time-delay Tis 1/6Ts• For each case, we also simulate the robust controller.

Figure 6(a), illustrates the prefiltered reference input to the system when the
time-delay is chosen to be Ts/4. This leads to a controller that is exactly the
same as the two-impulse shaped-input controller. The dashed curve corresponds
to the non-robust controller and the solid line to the robust controller. The
deflection of the mass shows very little residual vibration. In all the figures that
follow, the dashed curve and the solid curve represent the non-robust and robust
controllers, respectively.

We next choose T = Ts/6 seconds, which should force the system to its final
position quicker than the previous controller. Figure 6(b ), illustrates the
prefiltered reference input to the system. It can be seen that the gains of the
time-delayed signals are not all positive, thus forcing the reference input to go
negative in the robust case. The response of the mass shows that the non-robust
controller forces the mass to the desired position directly, unlike the robust case
where the mass moves in a direction leading to an increase in error for a short
interval of time before reaching the desired position.

(75)

L--_
M
.,.-__ ':l

u(t) t yet

Figure 5. Spring mass system.
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Figure 6. Prefiltered reference input and corresponding system response: (a) time-delay =
Ts/4; (b) time-delay = Ts/6.

To compare the insensitivity of the two controllers to errors in estimated
parameters, we plot their Bode diagrams. Figure 7(a), is the Bode diagram for
the controller with positive time-delay gains. It can be seen that the magnitude
plot of the non-robust controller is an envelope to the robust case. The robust
controller has a slope of zero at odd multiples of the natural frequency of the
system, unlike the non-robust case, which has a notch at these frequencies. The
user-selected time-delay controller which leads to some of the time-delay gains
being negative, shows a distinctly different behaviour (Fig. 7(b)). The Bode
diagram of the robust controller, despite having a slope of zero at the system
frequency, has a large magnitude at a frequency of 3. Thus, if the error in the
estimated parameter was small, the robust controller would do a better job than
the non-robust case, but after a critical value corresponding to the intersection
of the two curves, the 'robust' controller will lead to a larger residual vibration
than the 'non-robust' controller. It should also be noted that the next pole
cancelled corresponds to a frequency of 5. This is expected as (64) shows that
the periodicity of the controller increases with decreasing time-delay.

The next example is a single-link flexible-arm robot (Fig. 8) considered to
demonstrate the use of the time-delay controller to attenuate two modes. The
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Figure 7. Bode diagram of time-delay controller for a single-mode system: (a) time-delay =
Ts/4; (b) time-delay = Ts/6.

(a)
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equations of motion of the robot considering only the first mode of vibration are

[
0.1128 0.262095J {O} + 10 ° ] {O} II} (76)
0.262095 0.63466 ~ L° 612·821 C = lOu

The length of the robot arm is 0·726 m. We use a simple proportional feedback
controller

J0 - oref}
U ~ -[100 0 0 0] 1 ~ (77)
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x

Figure 8. Single flexible-link robot.

so that the eigenvalues of the closed loop system are

s = ±j21'6 and ±j212'59 (78)

We design the time-delay controller to prefilter the reference input to the system
so as to produce a non-oscillatory response. The reference input to the system is
a unit step of one radian. The first controller is the user selected time-delay
controller, with a time-delay of 0·05 s. The selected time delay leads to
time-delay gains that are both positive and negative (Table 1)_

Figure 9(a), is the prefiltered reference input to the flexible robot. The solid
curve and the dashed curve correspond to the robust and non-robust controllers
respectively. The change in signs of the steps is the effect of the negative gains
of the time-delayed signals. At the time of the final time-delay (0,2 sand 0-4 s
for the non-robust and robust case respectively) it can be seen that the tip has
moved to its desired position of 0·726 m. For the next design, the time-delay is
optimized with the constraint that all the time-delay gains have to be positive.
The optimization toolbox of Matlab (Grace 1990) which uses the Sequential
Quadratic Programming (SQP) method is used to arrive at the optimal time and
time-delay gains, which are listed in Table 2. The final delay in the controller is
incidentally smaller than that of the previous controller. We are however at
liberty to choose a time-delay smaller than 0·0402, if we are not constrained by
the requirement that the time-delay gains have to be all positive. Figure 9( b)
shows that the prefiltered input reference steps do not have any sign changes

Time-delay gains Time-delay

0·3479
-0-0786
0·4614

-0·0786
0·3479

o
0-05

2*0'05
3*0-05
4*0'05

Table 1. User selected time-delay.
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gure 9. Prefiltered reference input and corresponding system response of flexible-link robot:
(a) user selected time-delay; (b) minimum time-delay; (c) minimum time-delay with
+10% error in frequency.

Time-delay gains Time-delay

0·42825
o
0·14351
o
0·42825

o
0·0402

2*0·0402
3*0·0402
4*0·0402

Table 2. Minimum time-delay.
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and that the response of the system has a characteristic that is similar to the
previous case with a smaller high frequency amplitude superimposed on the
gross motion. Figure 10 illustrates the feasible region for the gains of the
optimized time-delay controller. It can be seen for the present example that the
proportional gain Ao, and the gain of the largest time-delay signal A4 are the
same, as are the gains of the smallest time-delay signal A 1 and A 3' The
optimized time-delay controller corresponds to the situation when the gains Al
and A3 are zero. We next design a controller with +10% error in both the
frequencies. The prefiltered reference input is the same as the previous
controller except for the time-delay of 0·0366 s, as shown in Table 3. Figure
9(c), illustrates that both the non-robust and robust controller have considerable
residual vibration, although only the high frequency manifests itself in the robust
case as compared with the non-robust controlled system where both the
frequencies are conspicuous in their presence.

Bode diagrams (magnitude) are used to highlight the differences in time-
delay controllers when both positive and negative gains are used and when only

Feasible Region

0.45

0.4

0.35

~ 0.3
c

"01o 0.25
~
Q 0.2
~
b

0.15

0.1

0.05

0
0.034 0.036 0.038

Az:

.\.:
0.04 0.042 0.044 0.046 0.048 0.05

Time Delay (sec)

Figure 10. Feasible regions for the positive-gain/minimum time-delay controller.

Time-delay gains Time-delay

Ao 0·42825 0
Al 0 0·0366
Az 0·14351 2*0·0366
A3 0 3*0·0366
A4 0·42825 4*0·0366

Table 3. Minimum time-delay with +10% error in frequencies.
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positive gains are used. Figure H( b) helps confirm the fact that the Bode
diagram of the robust time-delay controller with positive gains is enclosed within
that of the non-robust case. The magnitude curve goes to zero at the system
natural frequencies of 21·6 and 212·59 rad S-I. When the time-delay gains are
both positive and negative, it can be seen that large errors in system parameters
can lead to large residual vibration amplitudes (Fig. 11(a)).

6. Conclusions
Attenuation of residual vibration of flexible structures, in an open loop

fashion, by cancelling the underdamped poles of the system via a time-delay

(a)

(b)

0.9
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Figure 11. Bode diagram of time-delay controller for a multiple mode system: (a) user
selected time-delay; (b) minimum time-delay.
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controller has led to results that are the same as the. shaped input contr~l
technique for a single-mode system. The design of the tlme-dela~ contr~ller IS

eneralized so that the time-delay can be selected by the user and IS not dictated
gy the system dynamics. This controller has a simp!e struc~ure, and the solution
can be obtained by solving a linear algebraic equation. This procedure has been
extended to design controllers for systems with multip~e modes: The prop~s.ed
final controller involves minimizing the time-delay, with the time-delay gains
constrained to lie in the range 0 and 1. ..'

Two simple examples, a spring-mass system and a single-link tlexl?le-arm
robot are used to demonstrate the effectiveness of the proposed techll1~ue. It
has been shown that when gains of the time-delay controllers are constramed. to
be positive, the manoeuvre is completed in an optimal time, whic.h is a function
of the system's natural frequencies, unlike the case where the time-delays are
selected by the user. The controller with positive gains has the advantage of
relatively smaller residual vibration, even when the estimated parameters of the
system have large errors.
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