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A Gaussian-mixture-model approach is proposed for accurate uncertainty propagation through a general

nonlinear system. The transition probability density function is approximated by a finite sum of Gaussian density

functions for which the parameters (mean and covariance) are propagated using linear propagation theory. Two

different approaches are introduced to update the weights of different components of a Gaussian-mixture model for

uncertainty propagation through nonlinear system.Thefirstmethodupdates theweights such that theyminimize the

integral square difference between the true forecast probability density function and its Gaussian-sum

approximation. The second method uses the Fokker–Planck–Kolmogorov equation error as feedback to adapt for

the amplitude of different Gaussian components while solving a quadratic programming problem. The proposed

methods are applied to a variety of problems in the open literature and are argued to be an excellent candidate for

higher-dimensional uncertainty-propagation problems.

Introduction

T HE state of a stochastic dynamic systemx is characterized by its
time-dependent probability density function (pdf) p�t;x�. The

random nature of the state may be due to the uncertain initial
conditions and/or due to the random excitation that is driving the
dynamic system. The knowledge about the time evolution of the pdf
of a state of a dynamic system is important to quantify the uncertainty
in the state at a future time. Numerous fields of science and
engineering present the problem of pdf evolution through nonlinear
dynamic systems with stochastic excitation and uncertain initial
conditions [1,2]. This is a difficult problem and has received much
attention over the past century.

One may be interested in the determination of the response of
engineering structures [such as beams, plates, entire buildings beams
under random excitation (in structure mechanics [3])], the
propagation of initial condition uncertainty of an asteroid for the
determination of its probability of collision with a planet (in
astrodynamics [4]), the motion of particles under the influence of
stochastic force fields (in particle physics [5]), or simply the
computation of the prediction step in the design of a Bayes filter (in
filtering theory [6]). All these applications require the study of the
time evolution of the pdf p�t;x�, corresponding to the state x of the
relevant dynamic system.

For nonlinear systems, the exact description of the transition pdf is
provided by a linear partial differential equation known as the
Fokker–Planck–Kolmogorov equation (FPKE) [2]. Analytical
solutions exist only for stationary pdfs and are restricted to a limited
class of dynamic systems [1,2]. Thus, researchers are actively
looking at numerical approximations to solve the Fokker–Planck
equation [7–10], generally using the variational formulation of the
problem. The finite difference method and the finite element method

have been used successfully for two- and three-dimensional systems.
However, these methods are severely handicapped for higher
dimensions because the generation of meshes for spaces beyond
three dimensions is still impractical. Furthermore, because these
techniques rely on the FPKE, they can only be applied to continuous-
time dynamic systems. For discrete-time dynamic systems, solving
for the exact forecast pdf, which is given by the Chapman–
Kolmogorov equation [11], yields the same problems as in the
continuous-time case.

Several other approximate techniques exist in the literature to
approximate the pdf evolution, the most popular being Monte Carlo
methods [12], Gaussian closure [13] (or higher-order moment
closure), equivalent linearization [14], and stochastic averaging
[15,16]. Monte Carlo methods require extensive computational
resources and effort and become increasingly infeasible for high-
dimensional dynamic systems. All of these algorithms except
Monte Carlo methods are similar in several respects and are suitable
only for linear or moderately nonlinear systems, because the effect of
higher-order terms can lead to significant errors. Furthermore, all
these approaches provide only an approximate description of the
uncertainty-propagation problem by restricting the solution to a
small number of parameters: for instance, the firstN moments of the
sought pdf.

The present paper is concerned with improving the approximation
to the forecast density function using a finite Gaussian mixture.With
a sufficient number of Gaussian components, any pdf may be
approximated as closely as desired. Many algorithms [17,18] have
been discussed in literature for time evolution of the initial state pdf
through a nonlinear dynamic system in discrete time or continuous
time. In conventional methods, the weights of different components
of a Gaussian mixture are kept constant while propagating the
uncertainty through a nonlinear system and are updated only in the
presence ofmeasurement data [17,18]. This assumption is valid if the
underlying dynamics is linear or the system is marginally nonlinear.
The same is not true for the general nonlinear case and new estimates
of weights are required for accurate propagation of the state pdf.
However, the existing literature provides no means for adaptation of
the weights of different Gaussian components in the mixture model
during the propagation of state pdf. The lack of adaptive algorithms
for the weights of the Gaussian mixture is felt to be a serious
disadvantage of existing algorithms and provides the motivation for
this paper.

In this paper, two different schemes are introduced to update the
weights corresponding to different components of the Gaussian-
mixturemodel during pure propagation. Thefirst method updates the
forecast weights by minimizing the integral square difference
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between the true forecast pdf and its Gaussian-sum approximation.
The second method updates the weights by constraining the
Gaussian-sum approximation to satisfy the Fokker–Planck equation
for continuous-time dynamic systems. Both methods lead to a
convex quadratic programming problem that is computationally
efficient.

The structure of the paper is as follows: First, an introduction to
conventional Gaussian-sum approximation is presented for the
discrete-time dynamic systems, followed by a new scheme for
updating the weights of different components of a Gaussian mixture.
Next, another novel scheme is presented to update the weights for
different components of Gaussian-mixture models for continuous-
time dynamic systems. Finally, several numerical examples are
considered to illustrate the efficacy of proposed methods.

Update Scheme for Discrete-Time Dynamic Systems

Problem Statement

Consider the following nonlinear discrete-time dynamic system
driven by white noise �k:

x k�1 � f�k;xk� � �k (1)

� k �N �0;Qk� (2)

with the probability density function of the initial conditions given by
the following Gaussian sum:

p�tk;xk� �
XN
i�1

wikN �xkj�ik;Pik� (3)

where

N �xj�;P� � j2�Pj�1=2 exp��1
2
�x � ��TP�1�x � ��� (4)

We are interested in approximating the probability density
functionp�tk�1;xk�1� as a Gaussianmixture. The true forecast pdf is
given by the Chapman–Kolmogorov equation [11]:

p�tk�1;xk�1� �
Z
p�tk�1;xk�1jtk;xk�p�tk; xk� dxk (5)

where p�tk�1; xk�1jtk;xk� is the conditional state transition pdf that
corresponds to the pdf for the process-noise variable �k, generally
modeled as Gaussian white noise of covariance Qk: that is,

p�tk�1;xk�1jtk;xk� �N �xk�1jf�k;xk�;Qk�

.
A linear mapping will transform a Gaussian mixture into another

Gaussian mixture without changing the weights of different
Gaussian components, where the parameters (mean and covariance)
of the resulting mixands can be easily computed. But the outcome of
a Gaussian that undergoes a nonlinear transformation is generally
non-Gaussian. Conventionally, a Gaussian-sum approximation to
the forecast density function p�tk�1;xk�1� is obtained by linearizing
the nonlinear transformation and assuming weights of different
components to be constant:

p̂�tk�1; xk�1� �
XN
i�1

wik�1N �xk�1j�ik�1;Pik�1� (6)

where the reference values of the parameters of the Gaussian
components are given by the prediction step of the extended Kalman
filter:

wik�1 �wik (7a)

� i
k�1 � f�k;�ik� (7b)

P i
k�1 �Ak��ik�PikAT

k ��ik� �Qk (7c)

where

A k�xk� �
@f�k;xk�
@xk

Evolution schemes other than linearization using Taylor series, such
as statistical linearization [19], may be used for obtaining the
moments of the Gaussian components. Because they imply
linearizations, such approximations are computationally convenient
and may be easily used in linear applications.

The reason that the weights are not changed in Eq. (7a) is because
it is assumed that the covariances are small enough and that there is a
sufficient number of Gaussian components [11,17] such that the
linearizations become representative for the dynamics around the
means. To better understand this assumption, let us substitute Eq. (3)
into Eq. (5), and further, one can derive the following relationships
presented in [11]:

p�tk�1;xk�1� �
XN
i�1

wik

Z
N �xkj�ik;Pik�N �xk�1jf�k;xk�;Qk� dxk

(8a)

�
XN
i�1

wik

Z
N �xkj�ik;Pik�N �xk�1jAk��ik��xk � �ik�

� f�k;�ik�;Qk� dxk �
XN
i�1

wik

Z
�k dxk (8b)

where

�k �N �xkj�ik;Pik��N �xk�1jf�k;xk�;Qk�
�N �xk�1jAk��ik��xk � �ik� � f�k;�ik�;Qk�� (9)

Assuming that all covariances Pik of the Gaussian components are
small enough such that the linearization around a mean is
representative for the dynamics in the vicinity of the respective mean
and that there are sufficient number of Gaussian components, then
Pik ! 0 implies

R
�k dxk ! 0. Using this assumption and the fact

that the product of two Gaussian densities yields another Gaussian
density function, Eq. (8b) becomes, after some algebraic
manipulations,

p�tk�1;xk�1�	
XN
i�1
wik

Z
N �xkj�ik;Pik�N �xk�1jAk��ik��xk��ik�

� f�k;�ik�;Qk�dxk (10a)

�
XN
i�1

wikN �xk�1jf�k;�ik�;Ak��ik�PikAT
k ��ik� �Qk� (10b)

�
XN
i�1

wikN �xk�1j�ik�1;Pik�1� (10c)

� p̂�tk�1; xk�1� (10d)

In practice, this assumption

8 i Pik! 0 implies

Z
�kdxk! 0 implies wik�1�wik

(11)

may be easily violated, resulting in a poor approximation of the
forecast pdf. Practically, the dynamic system may exhibit strong
nonlinearities, and the total number of Gaussian components needed
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to represent the pdf may be restricted due to computational
requirements. The existing literature provides no means for adaption
of the weights of different Gaussian components in the mixture
model during the propagation of the state pdf. The lack of adaptive
means for updating the weights of the Gaussian mixture is felt to be a
serious disadvantage of existing algorithms and provides the main
motivation for this paper.

Weight Update I

In this section, we present a novel scheme to better approximate
the forecast pdf by developing the update laws for the forecast
weights. The new weights can be obtained by minimizing the
following integral square difference between the true pdf
p�tk�1;xk�1� and its approximation p̂�tk�1;xk�1� in the least-
squares sense:

min
wi
k�1

1

2

Z
jp�tk�1;xk�1� � p̂�tk�1;xk�1�j2 dxk�1 (12a)

subject to
XN
i�1

wik�1 � 1 (12b)

wik�1 
 0; i� 1; . . . ; N (12c)

Notice that Eqs. (12b) and (12c) are introduced to account for the
normality and positivity constraints for the state pdf. Here, the true
density function p�tk�1;xk�1� is given by Eq. (5). By substituting
Eq. (6) in Eq. (12a) and expanding and grouping the terms in the cost
function with regard to the weights, the new cost function is given by

J� 1
2
wTk�1Mwk�1 � wTk�1y (13)

where wk�1 � �w1
k�1w

2
k�1 � � �wNk�1�T , andM 2 RN�N is a symmetric

matrix given by

M �
Z

M�xk�1�MT�xk�1� dxk�1 (14)

whereM is aN � 1 vector that contains all theGaussian components
at time k� 1:

M�xk�1� � �N �xk�1j�1
k�1;P

1
k�1�

�N �xk�1j�2
k�1;P

2
k�1� � � �N �xk�1j�Nk�1;PNk�1��T (15)

Thus, the components of matrixM are easily given by the product
rule of two Gaussian density functions, which yields another
Gaussian density function [20]. By integrating the product, we are
left only with the normalization constant as illustrated next:

mij�
Z

N �xk�1j�ik�1;Pik�1�N �xk�1j�
j
k�1;P

j
k�1�dxk�1; i≠ j

(16a)

�N ��ik�1j�
j
k�1;P

i
k�1 � Pjk�1�

Z
N �xk�1jPijk�1��Pik�1��1�ik�1

� �Pjk�1��1�
j
k�1�;P

ij
k�1� dxk�1 �N ��ik�1j�

j
k�1;P

i
k�1 � Pjk�1�

(16b)

� j2��Pik�1 � Pjk�1�j�1=2 exp��1
2
��ik�1 � �

j
k�1�T

� �Pik�1 � Pjk�1��1��ik�1 � �
j
k�1�� (16c)

mii �N ��ik�1j�ik�1;Pik�1 � Pik�1� � j4�Pik�1j�1=2 (16d)

where

P ij
k�1 � ��Pik�1��1 � �P

j
k�1��1��1

The components of the vector y 2 RN�1 are given by

yi �
Z
p�tk�1;xk�1�N �xk�1j�ik�1;Pik�1� dxk�1; i� 1; . . . ; N

(17)

Now, making use of the Chapman–Kolmogorov equation given by
Eq. (5) and the assumption that the process noise is additive and
modeled by a Gaussian white noise process, Eq. (17) reduces to

yi�
ZZ

p�tk�1;xk�1jtk;xk�p�tk;xk�N �xk�1j�ik�1;Pik�1�dxk�1 dxk

(18a)

�
Z �Z

N �xk�1jf�k;xk�;Qk�N �xk�1j�ik�1;Pik�1� dxk�1
�

� p�tk;xk� dxk (18b)

Further, by applying the integration rule of Eq. (16b) of a product of
Gaussian densities for the inner integral in Eq. (18b), the new yi is
given by

yi �
Z �Z

N �xk�1jf�k;xk�;Qk�N �xk�1j�ik�1;Pik�1� dxk�1
�

|������������������������������������������������{z������������������������������������������������}
N �f�k;xk�j�ik�1 ;P

i
k�1�Qk�

� p�tk;xk� dxk (19a)

�
Z
p�tk;xk�N �f�k;xk�j�ik�1;Pik�1 �Qk� dxk (19b)

	
Z
p̂�tk;xk�N �f�k;xk�j�ik�1;Pik�1 �Qk� dxk (19c)

Finally, making use of the Gaussian-sum representation of p̂�tk; xk�,
we get

yi �
XN
j�1

wjk

Z
N �xkj�jk;P

j
k�N �f�k;xk�j�ik�1;Pik�1 �Qk� dxk

�
XN
j�1

wjkNij (20)

where

Nij �
Z

N �f�k;xk�j�ik�1;Pik�1 �Qk�N �xkj�jk;P
j
k� dxk (21)

The result is a sum of expectations of composite functions. Notice
that we assume that we have a good Gaussian-sum approximation at
time tk, such that p̂�tk;xk� 	 p�tk;xk�.

Further, substitution ofEq. (20) into Eq. (13) leads to the following
expression for the cost function:

J� 1
2
wTk�1Mwk�1 � wTk�1Nwk (22)

wherewk � �w1
kw

2
k � � �wNk �T is the prior weight vector, and thematrix

N 2 RN�N has the following components:

Nij �
Z

N �f�k;xk�j�ik�1;Pik�1 �Qk�N �xkj�jk;P
j
k� dxk (23a)
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� EN �xkj�jk;P
j
k
��N �f�k;xk�j�ik�1;Pik�1 �Qk�� (23b)

The expectations (23b) may be computed using Gaussian
quadrature, Monte Carlo integration, or unscented transformation
[21]. Although the unscented transformation is mostly equivalent
with Gaussian quadrature in lower dimensions, the unscented
transformation is computationally more appealing in evaluating
integrals in higher dimensions, because the number of points grows
only linearly with the number of dimensions. However, this comes
with a loss in accuracy [22], hence the need for a larger number of
points [23] to capture additional information.

In the case of linear transformation, f�k; �� � Fk, using the
integration rule of two Gaussian densities in Eq. (21), and after some
algebraic manipulations, the elementsMij � Nij; therefore,M�N.
Hence, as expected, the weight vector will be kept constant.
However, the numerical approximations made in computing the
expectation integrals involved in Eq. (23b) may result in some
change in the value of the weight vector.

The final formulation of optimization (12a) can be posed in the
quadratic programming framework and solved using readily
available solvers:

min
wk�1

J� 1
2
wTk�1Mwk�1 � wTk�1Nwk

subject to 1Twk�1 � 1 wk�1 
 0 (24)

where 1 2 RN�1 is a vector of ones and 0 2 RN�1 is a vector of zeros.
If we show that the matrix M is a positive semidefinite and the cost
function J is lower bounded, then the aforementioned optimization
problem can be posed as a convex optimization problem and we are
guaranteed to have a unique solution [24]. Notice that the integrand
M�xik�1�MT�xik�1� is a rank-1 symmetric positive semidefinite
matrix with nonzero eigenvalue equal to MT�xik�1�M�xik�1�.
Further, we write the integral (14) as an infinite sum as follows:

M �
X
i

M�xik�1�MT�xik�1� (25)

Making use of the fact that the summation of two positive
semidefinite matrix is also a positive semidefinite matrix, we
conclude that matrixM is a positive semidefinite matrix becauseM
is a sum of positive semidefinite matrices. Further, notice that the
linear term wTk�1Nwk in cost function J is lower bounded because
N 
 0, and bothwk�1 andwk have to lie between 0 and 1. Hence, we
can conclude that the cost function J is always bounded below and
we are guaranteed to have a unique solution.

Update Scheme for Continuous-Time Dynamic Systems

Problem Statement

Consider a generaln-dimensional noise-driven nonlinear dynamic
system with uncertain initial conditions, given by the equation

_x� f�t;x� � g�t;x���t� (26)

where ��t� represents a Gaussian white noise process with the
correlation function Q��t1 � t2�, and the initial state uncertainty is
captured by the pdf p�t0;x�. Then the time evolution of p�t0;x� is
described by the following FPKE, which is a second-order partial
differential equation in p�t;x�:

@

@t
p�t;x� � LFP �p�t;x�� (27)

where

LFP �
�
�
Xn
i�1

@

@xi
D�1�i �t;x���� �

Xn
i�1

Xn
j�1

@2

@xi@xj
D�2�ij �t;x����

�

(28a)

D�1��t;x� � f�t;x� � 1

2

@g�t;x�
@x

Qg�t;x� (28b)

D�2��t;x� � 1
2
g�t;x�QgT�t;x� (28c)

We mention that Eqs. (27) and (28a) represent the Stratonovich
interpretation for the FPKE, which is more popular among engineers
and physicists. An alternative interpretation (Itō interpretation) for
the FPKE is also commonly used amongmathematicians and leads to
the same equation if g��� is constant in Eq. (26). In this paper, we use
the Stratonovich interpretation for the FPKE to illustrate the main
idea of updating theweights corresponding to different component of
the Gaussian-mixture model. However, one can use the Itō
interpretation for the FPKE equation without compromising the
formulation presented in the next section. Irrespective of the form
(Stratonovich or Itō), the FPKE is a formidable problem to solve,
because of the following issues: 1) positivity of the pdf

p�t;x� 
 0 8 t; x

2) normalization constraint of the pdfZ
Rn
p�t;x� dx� 1

and 3) nofixed solution domain (how to impose boundary conditions
in a finite region and restrict numerical computation to regions in
which p >�10�9).

Let us assume that underlying pdf can be approximated by a finite
sum of Gaussian pdfs:

p̂�t;x� �
XN
i�1

wipgi (29)

where

pgi �N �x�t�j�i;Pi�

where �i and Pi represent the mean and covariance of the ith
component of the Gaussian pdf, respectively, and wi denotes the
amplitude of ith Gaussian in the mixture. The positivity and
normalization constraint on the mixture pdf p̂�t;x� leads to
following constraints on the amplitude vector:

XN
i�1

wi � 1; wi 
 0 (30)

All the components of the mixture pdf (29) are Gaussian and thus
only estimates of their mean and covariance need to bemaintained to
obtain the optimal state estimates that can be propagated using the
extended-Kalman-filter time-update equations:

_� i � f��i� (31)

_P i �AiPi � PiA
T
i � g�t;�i�QgT�t;�i� (32)

where

A i �
@f�t;x�
@x

����
x��i

(33)

Notice that the weights wi corresponding to each Gaussian
component are unknown. In a conventional Gaussian-sum filter, the
weights are initialized such that the initial mixture pdf approximates
the given initial pdf and it is assumed that the weight does not change
over time. This assumption is valid if the underlying dynamics are
linear or the system is marginally nonlinear. The same is not true for
the general nonlinear case, and new estimates of weights are required
for accurate propagation of the state pdf.
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Weight Update II

In this section, a novel method is described to update the weights
of different components of the Gaussian mixture of Eq. (29). The
main idea is that the mixture pdf of Eq. (29), p̂�t;x�, should satisfy
the Fokker–Planck equation (28a), and the Fokker–Planck-equation
error can be used as a feedback to update the weights of different
Gaussian components in the mixture pdf [25]. In other words, we
seek to minimize the Fokker–Planck-equation error under the
assumption of Eqs. (29), (31), and (32).

Substituting Eq. (29) in Eq. (28a) leads to

e�t;x� � @p̂�t;x�
@t

� LFP �p̂�t;x�� (34)

� @p̂�t;x�
@t

�
�
�
Xn
i�1

@D�1�i �t;x�
@xi

�
Xn
i�1

Xn
j�1

@2D�2�ij �t;x�
@xi@xj

�
�p̂�t;x��

(35)

where LFP��� is the so-called Fokker–Planck operator, and

@p̂�t;x�
@t

�
XN
i�1

wi

�
@pTgi
@�i

_�i �
Xn
j�1

Xn
k�1

@pgi
@Pijk

_Pijk

�
(36)

wherePijk is the jkth element of the ith covariancematrixPi. Further,
substitution of Eqs. (28b) and (28c) along with Eq. (36) into Eq. (35)
leads to

e�t;x� �
XN
i�1

wiLi�t;x� � LTw (37)

where w is a N � 1 vector of Gaussian weights, and Li is given by

Li�t;x� �
�
@pTgi
@�i

f�t;�i� �
Xn
j�1

Xn
k�1

@pgi
@Pijk

_Pijk

�
Xn
j�1

�
fj�t;x�

@pgi
@xj
� pgi

@fj�t;x�
@xj

� 1

2

@d�1�j �t;x�pgi
@xj

� 1

2

Xn
k�1

@2d�2�jk �t;x�pgi
xjxk

��
(38a)

where d�1��t;x� and d�2��t;x� are given as

d�1��t;x� � 1

2

@g�t;x�
@x

Qg�t;x� (39a)

d�2��t;x� � 1
2
g�t;x�QgT�t;x� (39b)

Further, different derivatives in the preceding equation can be
computed using the following analytical formulas:

@pgi
@�i
� P�1i �x � �i�pgi (40a)

@pgi
@Pi
��

pgi
2jPij

@jPij
@Pi
�
pgi
2

@�x � �i�TP�1i �x � �i�
@Pi

��
pgi
2

P�1i �
pgi
2

@�x � �i�TP�1i �x � �i�
@Pi

��
pgi
2

P�1i �
pgi
2

P�1i �x � �i��x � �i�TP�1i (40b)

@pgi
@x
��P�1i �x � �i�pgi (40c)

@2pgi
@xxT

��P�1i
�
I� �x � �i�

@pTgi
@x

�
pgi (40d)

At a given time instant, after propagating the mean �i and the
covariance Pi of individual Gaussian elements using Eqs. (31) and
(32), we seek to update weights by minimizing the FPE equation
error over some volume of interest V:

min
wi

1

2

Z
V
Rn

e2�t;x� dx

subject to
XN
i�1

wi � 1 wi 
 0; i� 1; . . . ; N (41)

The Fokker–Planck-equation error of Eq. (37) is linear in Gaussian
weightswi, and hence the aforementioned problem can be written as
a quadratic programming problem:

min
w

1
2
wTLw subject to 1Tw� 1 w 
 0 (42)

where 1 2 RN�1 is a vector of ones, 0 2 RN�1 is a vector of zeros, and
L is given by

L �
Z
V
Rn

L�x�LT�x� dV

�

R
V
Rn L1L1 dx

R
V
Rn L2L1 dx � � �

R
V
Rn LNL1 dxR

V
Rn L1L2 dx
R
V
Rn L2L2 dx � � �

R
V
Rn LNL2 dx

..

. . .
. ..

.R
V
Rn L1LN dx

R
V
Rn L2LN dx � � �

R
V
Rn LNLN dx

2
6664

3
7775

(43)

If we show that the matrix L is a positive semidefinite, then the
aforementioned optimization problem can be posed as a convex
optimization problem and we are guaranteed to have a unique
solution. Notice that the integrandL�x�LT�x� is a rank-1 symmetric
positive semidefinite matrix with a nonzero eigenvalue equal to
LT�x�L�x�. Further, the integral in the definition of matrix L can be
approximated by an infinite sum of the positive semidefinite matrix:Z

V
Rn
L�x�LT�x� dV �

X
i

L�xi�LT�xi� (44)

Making use of the fact that summation of two positive semidefinite
matrices is also a positive semidefinite matrix, we conclude that
matrix L is a positive semidefinite matrix and thus the optimization
problem of Eq. (42) has a unique solution.

Notice that to carry out this minimization, we need to evaluate
integrals involving Gaussian pdfs over volume V, which can be
computed exactly for polynomial nonlinearity and, in general, can be
approximated by the Gaussian quadrature method.

Numerical Results

The two update schemes presented in this paper were tested on a
variety of benchmark problems studied extensively in the literature
[7–9]. In this section, we present results from these studies. For a
discrete-time-update scheme, we represent the system dynamics by
converting the continuous-time differential equations to discrete-
time difference equations. The selection of the examples presented in
assessing the performance of the proposed methods was made such
that they cover a wide spectrum of scenarios, including 1-D and 2-D
dynamic systems and different initial conditions for the Gaussian
components: equally weighted, randomly weighted, and having
particular weight assignments. The two update schemes are
compared with the usual procedure of not updating the weights on
several dynamic systems in which either a closed-form solution for
the stationary pdf is available or a Monte Carlo simulation is carried
out. For the examples in which an analytical solution is available, the
following integral of the absolute error was used to quantitatively
compare the methods:

E�
Z
jp�t;x� � p̂�t;x�j dx (45)
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The different expectation integrals that appear in the cost function of
the two methods have compact support and were numerically
approximated using the Gaussian quadrature method.

Example 1

The first update method was applied on the following nonlinear
discrete-time dynamic system with uncertain initial condition given
by Eq. (47):

xk�1 �
1

2
xk � 10

xk
1� x2k

� �k (46)

where �k �N �0; 1�

x0 � 0:1N ��0:5; 0:1� � 0:9N �0:5; 1� (47)

The moments of the two Gaussian components are propagated for
20 time steps using Eqs. (7b) and (7c). Because there is no analytical
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solution for the forecast pdf, we run a Monte Carlo simulation using
10,000 samples and compute the histogram of the samples at each
time step, as shown in Fig. 1a. Figure 1b shows the pdf
approximation without updating theweights and Fig. 1c plots the pdf
approximation with updated weights. By updating the weights, we
are able to better capture the two modes presented in Fig. 1a. In
addition to this, log probability of theMonteCarlo sample points was
computed according to the following relationship:

L�
XM
j�1

log
XN
i�1

wiN �xjj�i;Pi� (48)

where M is the total number of samples used in the Monte Carlo
approximation, and the higher value of L, the better the pdf
approximation. Figure 1d shows the plot of log probability of the
samples with and without updating the weights of the Gaussian

Fig. 3 Numerical results example 3.
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mixture. As expected, updating the weights of the Gaussian mixture
leads to higher log probability of the samples. Hence, we conclude
that the adaptation of the weights during propagation leads to more
accurate pdf approximation than without weight updates.

Example 2

For the second example, we consider the following continuous-
time dynamic system with an uncertain initial condition given by
Eq. (50):

_x� sin�x� � G�t� (49)

where Q� 1

x0 � 0:1N ��0:5; 0:1� � 0:9N �0:2; 1� (50)

The moments of the two Gaussian components are propagated for
15 s using Eqs. (31) and (32). Again, because there is no analytical
solution for the transition pdf, we run aMonteCarlo simulation using
10,000 samples and compute the histogram of the samples at each
time step (�t� 0:1 s.), as shown in Fig. 2a. Figure 2b shows the pdf
approximation without updating the weights and Figs. 2c and 2d
show the plot of the approximated pdf using the two methods
introduced in this paper. We mention that weight-update scheme I is
implemented by approximating the continuous-time dynamic system
by a discrete-time difference equation. It is clear from these plots that
we are able to better capture the transition pdf with the incorporation
of a weight-update scheme. Also, the shape of the approximated pdf
is in accordance with the histograms generated by Monte Carlo

simulations and is consistent with the behavior of the dynamic
system, which has two attractors at �� and �.

Example 3

We consider the following 2-D nonlinear dynamic system for
analysis:

�x� � _x� �x� �x3 � g�t�G�t� (51)

Equation (51) represents a noise-driven duffing oscillator with a
soft spring (�� < 0, � > 0) and included damping (to ensure the
presence of a stationary solution: a bimodal pdf). For simulation
purposes, we use g�t� � 1,Q� 1, �� 10, ���1, and �� 3, and
the stationary probability density function given by Eq. (52) is
plotted in Fig. 3b.

p�x; _x� / exp

�
�2 �

g2Q

�
�

2
x2 � �

4
x4 � 1

2
_x2
��

(52)

Notice that the stationary pdf is an exponential function of the
steady-state system Hamiltonian, scaled by the parameter
�2��=g2Q� [1].

To approximate the stationary pdf given by Eq. (52), we assume
the initial pdf to be a mixture of 10 Gaussian pdfs with centers
uniformly distributed between ��5;�5� and (5, 5). The covariance
matrix for each Gaussian component is chosen to be P� 10 � I,
where I is the 2 � 2 identity matrix, and the initial weights of the
Gaussian components are randomly assigned a number between 0
and 1. Theweights were randomly generated in 20 different runs (see

Fig. 4 Numerical results example 4.
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Fig. 3i for weights/run), and the initial pdf for the last run is plotted in
Fig. 3a.

The center and corresponding covariancematrices of theGaussian
components are linearly propagated for 100 s. Figure 3c shows the
plot of the approximated pdf without updating the weights of the
Gaussian mixture and Fig. 3f shows the corresponding
approximation-error plot for the weights of the last run. As
expected, the final pdf is biased toward one of the modes of the true
pdf, due to the fact that the initial weights of those components were
large.

It is clear that although the approximated pdf did capture some
non-Gaussian behavior, it failed to capture both modes accurately.
Further, Figs. 3d and 3h show the plot of the approximated stationary
pdfs after updating the weights of different components of the
Gaussian mixture using weight-update schemes I and II,
respectively. It is clear that both methods (update I and update II)
yield approximately the same pdf with the corresponding
approximation error given in Figs. 3g and 3h. The integral absolute
error of Eq. (45) for the updated Gaussian sum is lower than the one
without weight update. This result is consistent in all 20 runs, as
shown in Fig. 3j (in which, for different initial weights, bothmethods
are able to yield approximately the same approximation error), and
lower than without updating the weights.

The first method was applied recursively every second to update
the weights, and the second method was applied only once at the end
of the simulation. The results of the 20 runs were averaged and
tabulated at the end of the section in Table 1. As expected, with the
adaptation of the weights, the approximation error was reduced.

Example 4

For the fourth example, we have considered the following the 2-D
noise-driven quintic oscillator given by Eq. (53):

�x� � _x� x��1 � �2x2 � �3x4� � g�t�G�t� (53)

For simulation purposes, we choose the following parameters:
g�t� � 1,Q� 1, �� 10, �1 � 1, �2 ��3:065, and �3 � 1:825. The
true stationary pdf [1] given byEq. (54), plotted in Fig. 4b, is trimodal
in this case, with each of the mode centered at three equilibrium
points of the oscillator:

p�x; _x� / exp

�
�2 �

g2Q

�
�1
2
x2 � �2

4
x4 � �3

6
x6 � 1

2
_x2
��

(54)

To approximate the stationary pdf, we assume the initial pdf to be a
mixture of 11 Gaussian pdfs with centers uniformly distributed
between ��5;�5� and (5, 5). The covariance matrix for each
Gaussian component is chosen to be P� 0:33 � I, and initially, all
Gaussian components are assumed to be equally weighted, as shown
in Fig. 4a.

The center and corresponding covariancematrices of theGaussian
components are propagated for 1000 s in accordance with Eqs. (31)
and (32). Figure 4c shows the plot of the approximated pdf without
updating the weights of the Gaussian mixture, and Fig. 4f shows the
corresponding approximation-error plot. As expected, the final pdf is
not able to capture the mode centered at the unstable equilibrium
point (0, 0). It is clear that although the approximated pdf did capture

Table 1 Numerical approximation of the integral of the absolute error

No update Update I Update II

Example 3 (avg 20 runs) 0:50� 0:02 0:47� 10�15 0:47� 10�15

Example 4 (avg 20 runs) 0:86� 0:07 0:74� 10�14 0:50� 10�15

Example 5 (avg 20 runs) 0:75� 0:01 0:19� 10�15 0:26� 10�15

Fig. 5 Numerical results example 5.
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some non-Gaussian behavior, it fails to capture all three modes
accurately.

Figures 4d and 4e show the plot of the approximated stationary pdf
after updating the weights of different components of the Gaussian-
mixture model using the first and the second methods, respectively.
Figures 4g and 4h show the approximation error of the two methods.
The integral absolute errors corresponding to 20 different runs with
random assignment of Gaussian weights is tabulated in Table 1. It is
clear that the average approximation error and corresponding
standard deviation was reduced with the adaptation of the weights.
The first method was applied recursively every 0.5 s to update the
weights, and the second method was applied only once at the end of
the simulation.

Example 5

The last example involves the state pdf propagation through the
noise-driven energy-dependent damping oscillator given by the
following equation:

�x� � _x� x� ��x2 � _x2� _x� g�t�G�t� (55)

For simulation purposes, we choose the following parameters:
g�t� � 1, Q� 1=�, �� 0:125, and ���0:5, and the stationary
probability density function [9] is given by

p�x; _x� / exp

�
� �

2g2

�
��x2 � _x2� � �

2
�x2 � _x2�2

��
(56)

Figure 5b shows the plot of the true stationary pdf with most of the
probability mass centered at the boundary of the stable limit cycle in
this case.

To approximate the stationary pdf,we assume the initial pdf to be a
mixture of 100 Gaussian pdfs with centers uniformly distributed
between ��20;�20� and (20, 20). The covariance matrix for each
Gaussian component is chosen to be P� 0:1347 � I. Initially, the
weight of the first Gaussian component isw1 � 0:5 and the rest of the
99 Gaussian components have equal weights: w2���100 � 0:0051.

The center and corresponding covariancematrices of theGaussian
components are propagated for 1000 s using Eqs. (31) and (32).
Figure 5c shows the plot of the approximated pdf without updating
the weights of the Gaussian mixture, and Fig. 5f shows the
corresponding approximation-error plot. As expected, the final pdf is
not able to capture the non-Gaussian behavior in this case.

Figures 5d and 5e show the plot of the approximated stationary pdf
after updating the weights of different components of the Gaussian-
mixture model using the first and the second methods, respectively.
Figures 5g and 5h show the approximation error of the two methods.
The integral absolute errors corresponding to 20 different runs with
random assignment of Gaussian weights is tabulated in Table 1. It is
clear that the average approximation error and corresponding
standard deviation were reduced with the adaptation of the weights.
The first method was applied recursively every 0.5 s to update the
weights, and the second method was applied only once at the end of
the simulation.

For continuous-time dynamic systems, the overall computational
complexity in applying the secondmethod is small because it is used
to update the weights only when an estimate or approximation of the
conditional pdf has to be computed. In the continuous-time case, the
first method has to be applied sequentially on the discretized
equations of the dynamic system, making the method more
computationally expensive than the second one. Therefore,
discretization errors may be propagated in the update formulation
of the weights.

Finally, we mention that the numerical results presented in this
section reiterates our observation and supports the conclusion that
the better performance of proposed algorithms can be attributed to
the adaptation of amplitude corresponding to different components
of the Gaussian mixture. These dramatic advantages from five
different problems provide compelling evidence for the merits of the
proposed algorithms.

Conclusions

Two update schemes for the forecast weights are presented to
obtain a better Gaussian-sum approximation to the forecast pdf. The
difference between the twomethods comes from the particularities of
their derivations. The first method updates the weights such that they
minimize the integral square difference between the true probability
density function and its approximation. The derivation of the first
method indicates that it is more appropriate for discrete-time
systems. The second method is derived such that the Gaussian sum
satisfies the FPKE, which indicates that it is more appropriate for
continuous-time systems. The weights are updated such that they
minimize the FPKE error. Bothmethod leads to two different convex
quadratic minimization problems that are guaranteed to have a
unique solution.

Several benchmark problems are provided to compare the two
methodswith the usual procedure of not updating theweights in pure
propagation settings. In all of these diverse test problems, the
proposed two algorithms are found to produce considerably smaller
errors than with existing methods. The results presented in this paper
serve to illustrate the usefulness of adaptation of weights
corresponding to different components of the Gaussian-sum model.
We anticipate that major advances are possible in numerous
engineering applications such as studying the biochemical-plume
propagation using uncertainmeteorological data, orbit determination
using uncertain measurements, and pricing problems in finance by
virtue of the proposed ideas. In filtering settings, in which
observations are available, the study of the impact of such an update
scheme for Gaussian-sum filtering is set as future work. Finally, we
fully appreciate the truth that results from any test are difficult to
extrapolate; however, testing the new algorithm on five benchmark
problems does provide compelling evidence and a basis for
optimism.
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