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Atmospheric dispersion is a complex nonlinear physical process with numerous uncertainties in model
parameters, inputs, source parameters, initial and boundary conditions. Accurate propagation of these
uncertainties through the dispersion models is crucial for a reliable prediction of the probability
distribution of the states and assessment of risk. A simple three-dimensional Gaussian puff-based
dispersion model is used as a test case to study the effect of uncertainties in the model parameters and
initial conditions on the output concentration. A polynomial chaos based approach is used to numerically
investigate the evolution of the model output uncertainties due to initial condition and parametric
uncertainties. The polynomial chaos solution is found to be an accurate approximation to ground truth,
established by Monte Carlo simulation, while offering an efficient computational approach for large
nonlinear systems with a relatively small number of uncertainties.

� 2010 Published by Elsevier Ltd.
1. Introduction

Real-time detection, tracking, hindcasting, nowcasting and
forecasting of chemical, biological and radiological (CBR) releases
are important for fast response to CBR leakages and attacks.
Atmospheric dispersion models are used to track the evolution of
the releases and assess the impact of the exposure to potentially
harmful contaminants over space and time. They enable acquisition
of useful knowledge about the hazardous releases due to chemical
incidents like the Bhopal toxic gas release disaster in 1984 and
radiological incidents like the Chernobyl nuclear accident in 1986
(National Research Council (U.S.), 2003). Uncertainty analysis of
models is recommended as an integral part of any risk assessment
to quantify the degree of confidence in the estimate of risk and is
particularly significant in CBR applications (IAEA, 1989; Rao, 2005),
since impact to life and property may be catastrophic.

Dispersion involves transport (advection) and diffusion of the
target species released into the atmosphere. Dispersion modeling
uses mathematical formulations to characterize the atmospheric
processes that disperse a pollutant emitted by a source. Various
atmospheric dispersion models have been developed to estimate
the downwind concentration of the releases, some of which are
addressed in the (Environmental Protection Agency) EPA’s Guide-
line on Air Quality Models (EPA, 2005). Long-range atmospheric
Elsevier Ltd.
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dispersion models, which emphasize regional and continental
scales (Whelpdale, 1991), calculate concentration values over
a relatively short period of time (hours or days). Models of this type
are often used to deal with accidental CBR releases (EUJRC, 2004).
Two categories of long-range atmospheric dispersion models can
be distinguished, Eulerian and Lagrangian. Eulerian models
describe the dispersion of pollutants in a fixed frame of reference
(fixed with respect to a point on the earth surface). In Lagrangian
models, the evolution of a pollutant air parcel (or puff) is described
relative to a mobile reference system associated with the puff from
its initial position as it moves along its trajectory. In the Lagrangian
approach, diffusion, transformation and removal calculations are
performed for the moving puffs (Whelpdale, 1991). The Lagrangian
models have been widely used for problems of regional-to-conti-
nental scales. RIMPUFF (RIso Mesoscale PUFF model) (Thykier-
Nielsen et al., 1999), CALPUFF (CALifornia PUFF model) (ASG-TRC,
2003), SCIPUFF (Second-order Closure Integrated PUFF model)
(Sykes et al., 1998) are examples of puff-based atmospheric
dispersion models for calculating the concentration and doses
resulting from the dispersion of airborne materials.

Dispersion is a complex nonlinear physical process with
numerous uncertainties in model parameters, inputs, source
parameters, initial and boundary conditions. Accurate propagation
of these uncertainties through the models is crucial for a reliable
prediction of the probability distribution of the states and assess-
ment of risk. Uncertainty propagation in various kinds of dynamical
models has been studied extensively in various fields. Most of the
on in puff-based dispersion models using polynomial chaos, Environ.
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Fig. 1. Evolution of puff states.
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methods incorporate linear approximations to nonlinear system
response, or involve propagating only a few moments (often, just
the mean and the covariance) of the distribution. Adjoint models
(Errico, 1997) and parametric differentiation belong to this class
and are widely used in sensitivity analysis of the models. These
work well if there is adequate local linearity. Another class of
methods, often used with models involving nonlinearities, are the
various sampling techniques (Helton et al., 2006). The uncertainty
distributions are taken into account by sampling values from
known or approximated distributions and the model is run
repeatedly for those values to obtain a sample distribution of the
outputs. A Gaussian mixture based approach is proposed in
(Terejanu et al., 2008) for accurate uncertainty propagation through
nonlinear dynamical systems due to uncertain initial conditions.
Surveys of the various methods used for uncertainty analysis in
dispersion and transport models can be found in (Rao, 2005;
Isukapalli, 1999).
Fig. 2. Evolution of concentration.
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The present work applies generalized polynomial chaos theory
(Xiu and Karniadakis, 2002) to efficiently approximate the solution
of a nonlinear dynamical model with parametric uncertainties.
Polynomial chaos is a term originated by Norbert Wiener in 1938
(Wiener, 1938), to describe the members of the span of Hermite
polynomial functionals of a Gaussian process. According to the
CameroneMartin Theorem (Cameron and Martin, 1947), the Four-
iereHermite polynomial chaos expansion converges, in the L2

sense, to any arbitrary process with finite variance (which applies
to most physical processes). This approach is combined with the
finite element method to model uncertainty in (Ghanem and
Spanos, 1991). This has been generalized in (Xiu and Karniadakis,
2002) to efficiently use the orthogonal polynomials from the
Askey-scheme to model various probability distributions. The
polynomial chaos approach has been applied in modeling uncer-
tainties in multibody dynamical systems (Sandu et al., 2006),
environmental and biological systems (Isukapalli et al., 1998),
structural mechanics (Ghanem and Red-Horse, 1999) and compu-
tational fluid dynamics (Najm; Knio and Le Maǐtre, 2006). This
approach has been recently applied for uncertainty quantification
and apportionment studies on an Eulerian air quality model (Cheng
and Sandu, 2009). Monte Carlo techniques have been applied in
(Rood et al., 2001) to obtain stochastic estimates of exposure and
cancer risk, due to parametric uncertainties in a Lagrangian
Gaussian-puff dispersion model. The present work involves the
propagation of parametric and initial condition uncertainty
through a nonlinear puff-based Lagrangian dispersion model, using
polynomial chaos. Gaussian puff-based models (Thykier-Nielsen
et al., 1999; Holmes and Morawska, 2006)] of this sort are often
used to make fast release concentration predictions, in which
a series of Gaussian shaped puffs (pollutant atmospheric parcels
with a Gaussian distribution of the concentration field for each
puff) are released at the sources and propagated in the atmosphere.

In this work, a representative three-dimensional nonlinear
Gaussian puff-based dispersion model is used to examine the
effects of diffusion parametric uncertainties on the solution. The
model is introduced and its dynamics are described in Section 2.
The polynomial chaos approach is described in Section 3. Then, the
uncertainty propagation is considered for uncertainties in diffusion
parameters for two important cases in the target applications:
normal and uniform distributions. The selection of these two
distributions is solely for the purpose of illustrating the generality
of the proposed approach. The selection of the Gaussian distribu-
tion permitted using the error propagation approach with the
linearized model to be compared to the proposed approach. The
results of numerical trials are discussed in Section 4. Section 5
includes some concluding remarks and thoughts for future work.

2. Dispersion model

The atmospheric dispersion model used in this work is based
on the RIMPUFF (Thykier-Nielsen et al., 1999) (Riso Mesoscale
PUFF) model which was designed to calculate the concentration
and doses resulting from the dispersion of airborne radioactive
particles. It is a Lagrangian mesoscale atmospheric dispersion puff
model, which applies both to homogeneous and inhomogeneous
terrain with moderate topography on a horizontal scale of up to
50 km, and responds to changing (non-stationary) meteorological
conditions. The model simulates the time-varying release (emis-
sion) of airborne materials by sequentially releasing a series of
Gaussian shaped puffs at a fixed rate on a specified grid. The
amount of airborne material allocated to individual puffs equals
the current release rate multiplied by the elapsed time between
puff releases. At each time step, the model advects, diffuses and
deposits the individual puffs according to local meteorological and
on in puff-based dispersion models using polynomial chaos, Environ.
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Fig. 3. pdf of uncertain states for normally distributed uncertainties.
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physico-chemical parameter values. This model is used as a basis
to design the present simple dispersion model to study the effects
of parametric uncertainty on the solution.

2.1. Gaussian puff characteristics

The concentration distribution in each puff is Gaussian in three-
dimensional physical space. Its mean represents the location of the
puff center, and the standard deviations scale the size of the puff in
the three spatial directions. For convenience, the standard devia-
tion sx in the downwind direction is made equal to the standard
deviation sy in the crosswind direction and is denoted by sxy. The
activity Q of the puff is assumed to be constant, that is, deposition
and species conversion are not modeled.

Each Gaussian puff has five scalar parameters which vary with
time: [X, Y, Z, sxy, sz], where

X ¼ [X, Y, Z]T, Centroid of the Gaussian puff
sxy ¼ Puff size in x and y directions (std. deviation)
sz ¼ Puff size in z-direction
The concentration c at a grid point xg ¼ [xg, yg, zg]T, at each time

step, is calculated by summing the contributions of all the puffs at
that instant.
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c
�
xg
� ¼

XN
j¼1

Qjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3

���Pj

���
r e

�
�ðxj ¼ xgÞTPj

�1ðxj�xgÞ
2

�
(1)

where N is the number of puffs and the covariance matrix is given
by:

X
j

¼
2
4sxy 0 0

0 sxy 0
0 0 sz

3
5

2.2. Puff dynamics

The advection and diffusion of each puff take place according to
local meteorological parameter values. In this model, the advection
of each puff is calculated according to the surface wind vector, u at
the puff center and the time step, DT used to determine the next
position of the puff center. Wind shear will cause the puff height to
increase when the vertical diffusion sz increases. Plume rise due to
heat content, buoyancy, release momentum and other effects is
ignored for the present simple model, which is given by the ordi-
nary difference equations:

Xkþ1 ¼ Xk þ uXDT
Ykþ1 ¼ Yk þ uYDT

Zkþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2k þ sz�sz

2p

q
where;u ¼ ½uX ;uY �Tat½Xk; Yk�T

(2)

uX, uY being the X and Y components of the wind vector. Expansion
with time of a single puff is fundamentally related to the relative
diffusion process. It is computed from simultaneous measurements
or specifications of the atmospheric turbulence intensity and/or
stability in the dispersion area. For the current model, standard
plume dispersion information is used. Pasquill parameterization,
using a modified KarlsruheeJülich system (Thykier-Nielsen et al.,
1999), is employed. These parameters can be used to describe
puff growth in a constant wind field scenario (Zannetti, 1990)
which we consider in the present work. This parameterization is
valid for limited cases of near ground level releases and dispersion
over flat terrains. The growth of each puff is described by

sxykþ1 ¼ pys
qy
kþ1

szkþ1 ¼ pzs
qz
kþ1

where; s ¼ downwind distance given by;

skþ1 ¼ sk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X þ u2Y

q
DT

¼
�
sxyk
py

	1=qyþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X þ u2Y

q
DT

py; qy; pz; qz ¼ stability dependent parameters
ðKarlsurhe� J�ulich diffusion coefficientsÞ

(3)

Deposition and target species chemical reactivity are neglected
for the present model and hence the mass of each puff remains
constant during the dispersion process.

3. Polynomial chaos

The polynomial chaos theory is applied for the solution of
a system of difference equations. A dynamical system with uncer-
tainties represented by a set of equations with stochastic parame-
ters, can be transformed into a deterministic system of equations in
the coefficients of a series expansion using this approach. The
development in this section largely follows (Ghanem and Spanos,
1991) and (Xiu and Karniadakis, 2002). The basic goal of the
on in puff-based dispersion models using polynomial chaos, Environ.
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approach is to approximate the stochastic system states in terms of
a finite-dimensional series expansion in the infinite-dimensional
stochastic space. The completeness of the space allows for the
accurate representation of any random variable, with a given
probability density function (pdf), by a suitable projection on the
space spanned by a carefully selected basis. The basis can be chosen
for a given pdf, to represent the random variable with the fewest
number of terms. For example, the Hermite polynomial basis can be
used to represent random variables with Gaussian distribution
using only two terms. For dynamical systems described by
parameterized models, the unknown coefficients are determined
by minimizing an appropriate norm of the residual.

Let us consider a dynamical system of the form:

xðkþ 1;pÞ ¼ fðxðkÞ;u;pÞ (4)

where, xðk;pÞ˛Rn represents the stochastic system state vector at
time step k, u represents the deterministic input and p˛Rm

represents the vector of uncertain system parameters, which is
a function of a random vector x, with components xj having
a known pdf g(xj), with common support U. Now, each of the
uncertain states and parameters can be expanded approximately by
the finite-dimensional WienereAskey polynomial chaos (Xiu and
Karniadakis, 2002) as:
Please cite this article in press as: Konda, U., et al., Uncertainty propagati
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xiðk;pÞ ¼
XP
r¼0

xirðkÞfrðxÞ ¼ xTi ðkÞFðxÞ (5)

piðk; xÞ ¼
XP
r¼0

pjrfrðxÞ ¼ pT
j FðxÞ (6)

The total number of terms in the expansion is P þ 1 and is
determined by the chosen highest order (l) of the polynomials {4r}
and the dimension (m) of the vector of uncertain parameters p.

P þ 1 ¼ ðlþmÞ!
l!m!

(7)

3.1. Example

For a dynamical system with two independent uncertain
parameters, each of which is a Gaussian random variable ðmj; s2j Þ
for j ¼ 1, 2, Hermite polynomials are chosen as the random
orthogonal basis functions for expansion. Each of the uncertain
parameters is expressed as a function of an independent Gaussian
random variable xj˛ð0;1Þ. The orthogonal polynomials used in
on in puff-based dispersion models using polynomial chaos, Environ.
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the polynomial chaos expansion are constructed as the tensor
products of 1-D Hermite polynomials in the x1, x2 space, the joint
pdf of the random variables being given by:

P þ 1 ¼ ðlþmÞ!
l!m!

(8)

The resulting orthogonal polynomials up to order l are given by:

fðx1; x2Þ ¼ fiðx1Þfjðx2Þ;
ci ¼ 0;1;.; l; j ¼ 0;1;.; l; where iþ j � l:

The Hermite polynomials up to, say, order l ¼ 2 can be written
as:

f0ðx1; x2Þ ¼ 1
f1ðx1; x2Þ ¼ x1
f2ðx1; x2Þ ¼ x2
f3ðx1; x2Þ ¼ x21 � 1
f4ðx1; x2Þ ¼ x1x2
f5ðx1; x2Þ ¼ x22 � 1

where each xi is N(0,1). Note that there are six terms in the
expansion as given by Eq. (7). The system states can be written as:
−20 0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

concentration

pr
ob

 d
en

si
ty

pdf of conc at T = 15 at Xg = [60  40   0]

Lin Err prop
poly chaos
monte carlo

20 25 30 35
0

0.005

0.01

Fig. 7. pdf of concentration for normally distributed uncertainties.

Please cite this article in press as: Konda, U., et al., Uncertainty propagati
Model. Softw. (2010), doi:10.1016/j.envsoft.2010.04.005
xiðt; x1; x2Þ ¼
X5
r¼0

xirðtÞfrðx1; x2Þ; for i ¼ 1;.;n (9)

The two uncertain parameters can be expanded as:

pjðx1; x2Þ ¼ mj þ sjxj; for j ¼ 1;2 (10)

Note that the coefficients for the other terms are all zero.

3.2. Solution

Substitution of the approximate expressions for x and p in Eq.
(5) and Eq. (6), in Eq. (4) leads to:

eiðxÞ ¼ xTi ðkþ 1ÞFðxÞ � fiðx1ðkÞ;.; xnðkÞ;u;p1;.;pm;FðxÞÞ
for i ¼ 1;.;n

(11)

where, e(x) represents the error due to the truncated polynomial
chaos expansions of x and p. The n(P þ 1) time-varying unknown
coefficients xir can be obtained using the Galerkin projection
method. Projecting the error onto the space of basis functions {4r}
and minimizing it leads to n(P þ 1) deterministic ordinary differ-
ence equations:

heiðxÞ;frðxÞi ¼ 0
for i ¼ 1;.;n and r ¼ 0;.; P

(12)

where huðxÞ; yðxÞi ¼ R
U

uðxÞyðxÞgðxÞdx represents the inner product
induced by pdf g(x). For linear and polynomial functions, these
integrals can be easily evaluated analytically (Ghanem and Spanos,
1991) to obtain the difference equations. For non-polynomial
nonlinearities, these integrals represent a challenge. Numerical
quadrature methods are used to evaluate the multi-dimensional
integrals in the present work. For instance, GausseHermite quad-
rature formulae may be used to evaluate the integrals for a Hermite
polynomial basis. These quadrature methods fall under the broader
Table 1
Uniform distribution bounds of diffusion parameters.

pj aj h

py 0.64 0.84
% 0.75 0.85
pz 0.16 0.26
pz 0.75 1

on in puff-based dispersion models using polynomial chaos, Environ.
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sampling-based Non-Intrusive Spectral Projection (NISP) methods
discussed in Reagan et al. (2003). The differential equations can
then be solved to obtain the time-history of the time-varying
coefficients xir. The solution of the stochastic system in Eq. (4) can
thus be obtained in terms of polynomial functionals of random
variables xi:

xiðk;pÞ ¼
XP
r¼0

xirðkÞfrðxÞ; i ¼ 1;.;n

This expression can be used to estimate the pdf of the solution
by Monte Carlo sampling of the random variables. Further, the first
coefficient xi0(k) represents the mean of the solution xi(k,p) when
40(x) ¼ 1. The other coefficients similarly represent the combina-
tions of various moments of the solution:

xirðkÞ ¼ hxiðk;pÞ;frðxÞi
hfrðxÞ;frðxÞi

¼

Z
Rm

xiðk; xÞ;frðxÞgðxÞdx
Z
Rm

f2
r ðxÞgðxÞdx

(13)
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The mean of the solution xi(k,x) can be easily calculated using
the equation

E½xiðk;pðxÞÞ� ¼ m ¼
Z
U

xiðk;pðxÞÞgðxÞdx (14)

and the higher central moments by the equation:

E

ðxiðk;pðxÞÞ � mÞn� ¼

Z
U

�
xiðk;pðxÞÞn

�
gðxÞdx (15)

4. Results and discussion

In the present work, the effects of uncertainties in diffusion
parameters py,qy,pz and qz and in initial location [x0,y0] of the source
on the solution of the dispersion model are studied in a simulated
CBR dispersion scenario. The simulation experiments are per-
formed for a plume evolutionwhose target species activity for each
puff is 5 � 105. The units of activity can be chosen according to the
species under study. Note that the units of concentration (as well as
concentration error) are then ActivityUnits/m3 in the following. The
results are shown for two scenarios:

� Single puff release with parametric uncertainty, no initial
location uncertainty and a fixed wind field at all locations

� Multiple puff release with parametric and initial location
uncertainties, and wind varying with location

These scenarios and parameters for the simulations are next
described.

4.1. Single puff release

The release occurs at the origin. The wind direction is 240�

(measured clockwise fromNorth) and blows horizontally across the
domain at 5 m/s. The evolution of the 5 states of the puff is shown
in Fig. 1, for the following diffusion parameters to determine the
growth of a puff:

py ¼ 0:640; qy ¼ 0:784
pz ¼ 0:215; qz ¼ 0:885 (16)

The evolution of the surface concentration (concentration at
[x, y, 0]) due to the release is shown in Fig. 2, where the concen-
tration surface and contour plots are shown for two time instants
t ¼ 10 and t ¼ 20.

The effects of parametric uncertainty are discussed for the cases
of normal and uniform distribution of the four diffusion parameters
py, qy, pz and qz. Since these parameters do not effect the evolution
of Xk and Yk, they are deterministic.

4.1.1. Normal distribution
The diffusion parameters are assumed to be normally distrib-

uted around the values chosen in Eq. (16), with a standard deviation
of 0.05. The three uncertain puff states are expanded, as described
in Eq. (9), in terms of Hermite polynomial functionals of x˛R4, each
xm being a random variable with distribution N(0,1). The series
expansion is done up to order l, chosen appropriately. The diffusion
parameters are similarly expanded, as described in Eq. (10). These
polynomial chaos expansions are substituted in Eq. (2) and Eq. (3).
Using Galerkin approximation as in Eq. (11), a set of deterministic
difference equations are obtained which can be solved to obtain the
solution of the stochastic system.

The resulting pdfs of the states are plotted for each of the
uncertain states in Fig. 3, with the probability density along the
on in puff-based dispersion models using polynomial chaos, Environ.
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vertical axis. These are compared with the pdfs obtained by the
Monte Carlo solution, which involves solving the stochastic system
many times, each time with a sample of the diffusion parameters
drawn from their uncertainty distributions. 10 000 sample draws
are chosen in the current example. The polynomial chaos approach
involves fewer computations than the standard Monte Carlo
approach while it can be seen that the approach captures the
distribution of all the states as well as the Monte Carlo approach.

The pdf of each uncertain state is plotted using the MATLAB�

function ksdensitywhich computes the probability density estimate
using a normal kernel smoothing method. The function takes the
Monte Carlo realizations of the uncertain state as the input to
obtain the density estimate.

The concentration can be obtained by substituting the poly-
nomial chaos solution in Eq. (1). In Fig. 4, the error in polynomial
chaos solution is shown, at the grid location [20,10,0] for time
T ¼ 15. The absolute error in mean and variance respectively, is
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Fig. 11. Evolution

Please cite this article in press as: Konda, U., et al., Uncertainty propagati
Model. Softw. (2010), doi:10.1016/j.envsoft.2010.04.005
plotted by comparing with the solution obtained by solving the
system for 50 000 Monte Carlo runs. The error is plotted for the
polynomial chaos series expansion up to order 4, and for the 10 000
run Monte Carlo solution. It can be seen that the error decreases
with increase in the order for the polynomial chaos solution. In all
our examples, the polynomial chaos solution is for order 4, and the
Monte Carlo solution is for 10 000 runs.

The polynomial chaos solution gives the joint effect of all the
uncertain parameters on the concentration. The effect of a single
parameter, xj on the solution y(x) can be captured using the
moment equations:

mj ¼
Z
U

yðxÞg�x1;.; xj�1; xjþ1;.; xm
�
dx (17)

mj being the mean, and the higher central moments mjk:

mjk ¼
Z
U

�
yðxÞ � mj

	k
g
�
x1; :; xj�1; xjþ1; :; xm

�
dx (18)

The variation of the concentration with each of the uncertain
diffusion parameters is shown in Fig. 5, for three different grid
locations S1, S2 and S3 at time T ¼ 15. The three locations are chosen
such that S2 is near the puff center at that time, S1 is away from the
puff center on a line orthogonal to the plume path and S3 away from
the puff center but, along the plume path. The effect of each of the 4
uncertain diffusion parameters py,qy,pz, qz is shown for each of the 3
locations, by plotting the mean and one standard deviation (1s)
bounds of the concentration values. The pdf of each of the param-
eters is also shown in the background. It can be seen from the plots
that themean concentration is higher for all the 3 grid locations, for
smaller values of the diffusion parameters pz and qz, which corre-
spond to diffusion in the z-direction. However, the concentration
variation with py and qy depend on the grid locations. For locations
S1 and S3 away from the puff center, smaller values of diffusion in
the xy-direction means the puff has not diffused to those locations
at that time instant. Therefore, higher values of the diffusion
parameters mean an expanded puff causing an increase in the
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30 35 40 45 50
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of puff states.
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Fig. 12. Evolution of concentration.

−20 0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

concentration

pr
ob

 d
en

si
ty

pdf of conc at T = 15 at Xg = [150   70    0]

poly chaos
monte carlo

Fig. 14. pdf of concentration for normally distributed uncertainties.
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mean concentration. A further increase in diffusion leads to dissi-
pation and reduction in the concentration values. For location S2,
which is near the puff center, smaller diffusion parameters lead to
higher concentrations as expected. The 1s bounds are larger for
larger mean concentration values in all scenarios.

In Fig. 6, the concentration contours at time T ¼ 15 are plotted
across the domain, for concentration values greater than a given
threshold, which is chosen as 3 in this example. The first plot shows
the mean (m) concentration contours whereas the second plot
shows the contours of concentration mean plus three standard
deviations taking the uncertainty into account. The second plot
gives a more realistic estimate of the hazard map to the decision-
maker, compared to the one generated using just the expected
concentration. Tracking the higher moments in addition to the
mean is very important in such scenarios.

The pdf of the concentration at time T ¼ 15 for grid location
[60,40,0], is compared with that obtained from Monte Carlo solu-
tions of the system in Fig. 7. It can be seen from the figure that the
result is consistent with theMonte Carlo solution. In the same Fig. 7,
the pdf of the concentration, obtained using the mean and variance
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Fig. 13. pdf of uncertain states for normally distributed uncertainties.
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information propagated using a linearized error model of the
system, is also plotted (see the green dashed line). Since this
method propagates only the mean and covariance, the true distri-
bution is approximated with a Gaussian. It can be seen that the
nonlinearities in the model and concentration equation cause the
true pdf to be very different from this result. For instance, while
the estimated mean concentration values are 9.51 for the true
Monte Carlo solution and 9.6 for the polynomial chaos solution, the
same for the solution obtained using linearized error propagation
model is 12.25. Further, it can be seen from themagnified section of
Fig. 7, that this approximation gives a negligible probability for
concentrations above 25, while the pdf obtained fromMonte Carlo/
polynomial chaos approach gives a significant probability to
influence the risk assessment of a decision-maker. In a CBR
scenario, a decision-maker might order an evacuation based on the
more accurate risk assessment or take other protective measures
such as requiring first responders towear protective gear, while not
doing so using a less accurate method propagating only low order
moments. This illustrates the limitations of the linearization
approach, and propagating only the mean and covariance of the
distribution.

4.1.2. Uniform distribution
The diffusion parameters are assumed to be uniformly distrib-

uted in this case. The bounds [aj, bj] of the distribution of each of the
parameters are as shown in Table 1.

The three uncertain puff states are expanded, in terms of
Legendre polynomial functionals of x˛R4, each xm being a random
variable with distribution U (�1,1). The series expansion is done up
to order 4. The diffusion parameters are similarly expanded as
follows:

pjðxÞ ¼ bj � aj
2

þ bj � aj
2

xj; for j ¼ 1;.;4

where; pj˛
�
aj; bj

�
These polynomial chaos expansions are substituted in Eq. (2)

and Eq. (3). Using Galerkin projection as in Eq. (11), a set of deter-
ministic difference equations are obtained which can be solved to
obtain the solution of the stochastic system. The resulting pdfs of
the states are plotted for each of the uncertain states in Fig. 8, and
compared with the pdf of the Monte Carlo solutions. It can be seen
that the polynomial chaos approach captures the distribution of all
states as well as the Monte Carlo approach. The highly skewed
on in puff-based dispersion models using polynomial chaos, Environ.
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non-Gaussian nature of the pdfs is well captured. This confirms that
in addition to the mean and variance, the higher moments are also
well captured by the PC expansion.

The uncertain concentration at a grid point at various time
instants can then be obtained, as mentioned earlier, by substituting
the polynomial chaos solution in Eq. (1). The resulting pdf of the
concentration is compared with that obtained from Monte Carlo
solutions of the system in Fig. 9.

The results show the ability of the method to accurately prop-
agate the pdf of the uncertain states through nonlinear dynamics,
for a wide variety of uncertainty distributions in the model
parameters. The same approach is similarly valid for the propaga-
tion of initial condition uncertainties in the states, as illustrated in
the following.

4.2. Multiple puff release

In this case, there are three puff releases from the source, one
each at 0 s, 5 s and 10 s. The location of the source is uncertain and is
around [200,100]. The wind speed across the domain is 5 m/s with
varying direction dependent on the location as shown in Fig.10. The
evolution of the five states of each of the three puffs is shown in
Fig. 11, for the diffusion parameters in Eq. (16).

The evolution of the surface concentration (concentration at
[x, y, 0]) due to the release is shown in Fig. 12, where the concen-
tration surface and contour plots are shown for two time instants
t ¼ 10 and t ¼ 30. It is to be noted that the figure shows one
particular realization of possible puff paths. Depending on the
initial location of the sources, the puff paths could be north-ward or
south-ward because of the varying wind direction with location.

The effects of parametric and initial condition uncertainties are
discussed for the cases of normal and uniform distribution of the
four diffusion parameters py,qy,pz and qz and initial location [x0,y0].

4.2.1. Normal distribution
The diffusion parameters are assumed to be normally distrib-

uted around the values chosen in Eq. (16), with a standard deviation
Table 2
Uniform distribution bounds of source location.

x aj bj

x0 180 200
y0 90 110
z0 0 0
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of 0.05. The initial location is assumed to be normally distributed
with mean [185,100,0] and standard deviation [5,5,0]. In this case,
the locations of each of the puffs in the evolution of the plume are
also uncertain. The polynomial chaos expansions are done in terms
of Hermite functionals, as described in the earlier section and a set
of deterministic difference equations are obtained which can be
solved to obtain the solution of the stochastic system. The initial
condition uncertainties in the source location translate into the
corresponding initial conditions of the deterministic set of
equations.

The resulting pdfs of the states are plotted for each of the
uncertain states in Fig. 13. These are compared with the pdfs
obtained by the Monte Carlo solution, which involves solving the
stochastic system several times, each time with a sample of the
diffusion parameters and initial location drawn from their uncer-
tainty distributions. The polynomial chaos approach performs well
in capturing the propagated distribution.

The pdf (obtained using the MATLAB ksdensity function) of the
uncertain concentration at a particular grid point (in this case
[150,70,0]) is compared with that obtained from Monte Carlo
solutions of the system in Fig. 14. The histograms of the same are
shown in Fig. 15. It can be seen from the figures that the result
agrees with the Monte Carlo solution.
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Fig. 17. pdf of concentration for uniformly distributed uncertainties.
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4.2.2. Uniform distribution
The diffusion parameters and the uncertain source location are

assumed to be uniformly distributed in this case. The distribution of
diffusion parameters is same as earlier, as shown in Table 1. The
bounds [aj, bj] of the distribution of each of the source location
parameters are as shown in Table 2.

All the five puff states for each puff are expanded, in terms of
Legendre polynomial functionals as described earlier, and a set of
deterministic difference equations are obtained which can be
solved to obtain the solution of the stochastic system. The initial
condition uncertainties in the source location translate into the
corresponding initial conditions of the deterministic set of
equations.

The resulting pdfs of the states are plotted for each of the
uncertain states in Fig. 16, and comparedwith the pdfs of theMonte
Carlo solutions. It can be seen that the polynomial chaos approach
captures the non-Gaussian distribution of all states, closely
following the Monte Carlo approach.

The pdf of the uncertain concentration at [150,70,0] is similarly
compared with that obtained from Monte Carlo solutions of the
system in Fig. 17. The histograms of the same is shown in Fig. 18. It
can be seen from the figure that the result agrees with the Monte
Carlo solution. Note that the pdf obtained using the MATLAB
ksdensity function in Fig. 17 seems to have support for negative
concentrations, only because of the approximation using normal
kernels.

These results illustrate the ability of the generalized polynomial
chaos method to accurately quantify the evolution of parametric
and initial condition uncertainties.
5. Conclusion

A three-dimensional puff-based dispersion model has been
tested for the purpose of accurately estimating the uncertainty
distribution of the solution, caused by propagation of the uncer-
tainty in the diffusion parameters and initial conditions of the
model. The polynomial chaos approach is discussed in this context.
An approximate solution to the stochastic system is obtained as
a linear combination of the selected orthogonal basis functionals,
whose coefficients are functions of time.

The polynomial chaos approach has been used to study the
effect of each of the diffusion parameters on the output concen-
tration at various spatial locations. Using this approach, the
Please cite this article in press as: Konda, U., et al., Uncertainty propagati
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solution to the stochastic nonlinear dynamical system is obtained
in terms of functionals of random variables, in terms of which the
true distribution and moments of the solution can be approxi-
mated. The polynomial chaos solution is shown to compare well
with the ground truth, determined by Monte Carlo simulation. The
polynomial chaos approach involves fewer computations than the
standard Monte Carlo solution approach which requires solving
the dynamical model many times for many realizations of the
uncertain parameters. Improved estimates of the higher order
moments of the output concentration distribution give a more
realistic estimate of the hazard maps to the decision-maker, in case
of harmful releases into the atmosphere. When measurements are
available, this information about the distribution of the propagated
solution can be used to make predictions with improved accuracy
using data assimilation. This suggests an extension of this approach
to filtering problems with dynamical models having known
parametric uncertainty distributions, a task currently under
investigation.
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