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Desired Order Continuous Polynomial Time
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Abstract—An approach for the construction of a family of de-
sired order continuous polynomial time window functions is pre-
sented without self-convolution of the parent window. The higher
order of continuity of the time window functions at the bound-
ary of the observation window helps in suppressing the spectral
leakage. Closed-form expressions for window functions in the time
domain and their corresponding Fourier transform are derived.
The efficacy of these new window functions in discerning the weak
signal is demonstrated by computer simulations.

Index Terms—Discrete Fourier transforms (DFTs), harmonic
analysis, signal analysis, signal detection, spectral leakage.

I. INTRODUCTION

THE FAST Fourier transform (FFT) is widely used to
measure the frequency content of sampled measurement

data. The FFT analysis is based on a finite sampled data set
and assumes circular topologies for both time and frequency
domains. In other words, two endpoints of the time waveform
are interpreted as though they are connected together. As a
consequence of this, the truncated waveform exhibits different
spectral characteristics from the original continuous-time sig-
nal. Time window functions are used to obtain a continuous
waveform without any discontinuities and hence minimize this
effect known as spectral leakage. Time window functions shape
the finite-time sampled measurement data to minimize the edge
effects that result in spectral leakage in the FFT spectrum.
Time window functions play an important role in digital signal
processing, system identification, digital filter design, and other
applications.

A detailed analysis and comparison of the different window
functions is presented in the seminal work of Harris [1]. Harris
introduced a number of figures of merit (FOMs) to evaluate the
spectral leakage error, allowing objective comparison between
different window functions. Harris, and later Geckinli and
Yavuz [2], discussed that spectral leakage can be suppressed
by reducing the order of discontinuity at the boundary of
observation windows. The discontinuity of the windowed signal
can be avoided by matching as many orders of derivatives
(of the weighted data) as possible at the boundary, which is
equivalent to setting the values of derivatives of the window
functions to zero. This is generally achieved by self-convolving
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a parent window function multiple times in the time domain [1].
For instance, a Cm-continuous time window function can be
obtained by applying m time convolution of the C0-continuous
rectangular window. Although the window function generated
by m-fold self-convolution of a parent window of length N may
exhibit better performance in suppressing spectral leakage than
the parent window function, it will also increase the length of
the resulting window to approximately mN . Furthermore, the
Fourier transform of the resulting window function will have
m repeated zeros at each location where the parent window
transform had a zero. Ideally, these additional zeros can be
better placed between existing zeros to further reduce the
sidelobes and better detect weak signals [1].

Furthermore, in [3]–[8], the effects of windowing on the
signal-to-noise ratio, harmonic distortions, multifrequency pa-
rameter estimation, and quasi-synchronous sampling are stud-
ied in detail. It has been concluded that no window function is
the best in all aspect, and one should select a window function
according to the requirement of a particular application. For
example, the Hanning window function is considered useful for
noisy measurements, whereas Kaiser–Bessel is recommended
to detect two tones with frequencies very close to each other
but with very different amplitudes. Over time, many different
window functions [9]–[14] have been derived to optimize some
features of a window function and for easy implementation. In
[9], new window functions have been derived with very good
sidelobe behavior, whereas in [10], time window functions are
derived from B-splines that have fast sidelobe decay and max-
imum variance in the time domain. In [11], extremely flattop
window functions are derived by multiple time convolution of
the weighted cosine windows with parameters optimized for
flatness of the main lobe. References [12]–[14] present window
functions derived from hyperbolic functions and amplitude-
shaping pulses.

In this paper, we present an approach for the construction
of a family of polynomial time window functions that allow
desired order of continuity at the boundary of observation
windows. It is well known that if the mth derivative of a
window function is discontinuous, then the sidelobes of win-
dow functions asymptotically decay as 6m dB/oct [1], [2]. The
freedom to choose window continuity at the boundary of the
observation window allows us to tradeoff between different
merits of the window functions. Another advantage of these
window functions is that all their coefficients are integers, and
thus, they are easy to evaluate. The structure of this paper is
as follows: First, a closed-form expression for a desired order
continuous polynomial window function in the time domain is
derived, followed by the Fourier transform of these functions.
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Furthermore, these window functions are compared with con-
ventional window functions on the basis of FOMs, such as
equivalent noise bandwidth (ENBW), sidelobe fall off, coherent
gain (CG), and scallop loss.

II. POLYNOMIAL TIME-DOMAIN WINDOW FUNCTIONS

In this section, we will present an approach for the con-
struction of polynomial window functions in the time domain,
which allow desired order of continuity at the boundary of
the observation window. Without any loss of generality, we
assume the window interval to be [−1, 1]. Let us assume that
f(t) represents the signal of interest and f̄(t) is the windowed
approximation of f(t) over the windowed interval [−1, 1], i.e.,

f̄(t) = w(t)f(t) (1)

where w(t) is the window function with a compact support over
[−1, 1]. The requirement that the windowed approximation
f̄(t) in (1) forms an mth-order continuous signal leads to the
two requirements for the necessary window functions.

1) The first derivative of the window function must have m
repeated zeros at the centroid of the windowed interval,
i.e., at t = 0 with

w(0) = 1,
dkw

dtk

∣∣∣∣
t=0

= 0, k = 1, . . . ,m. (2)

2) The window function must have an (m + 1)th-order zero
at the endpoints of the windowed interval, i.e.,

w(1) = 0,
dkw

dtk

∣∣∣∣
t=1

= 0, k = 1, . . . ,m. (3)

These aforementioned conditions are sufficient to ensure that
the value and the first m time derivatives of the windowed
signal f̄(t) exactly reduce to the first m time derivatives of
the original signal f(t) at the centroid and endpoints of the
windowed interval. In our prior work [15], a similar boundary-
value problem is solved to generate a special weight function
to blend two completely independent adjacent local approxi-
mations to a globally valid function. We use the same analysis
here to derive a generic expression for an mth-order continuous
window function.

Like in [15], we assume that the window function is sym-
metric around the centroid of the windowed interval [−1, 1],
i.e., origin, and develop the expression for the window function
valid over the interval [0, 1]. In this respect, we assume the
following particular form for the window function:

w(t) = 1 − u(t) (4)

where u(t) is a polynomial function selected in such a way that
the first m time derivatives of the window function vanish at the
centroid and endpoints, e.g.,

du(t)
dt

= Ctm(1 − t)m (5)

where C is a yet to be defined constant. Now, the remaining
boundary conditions, i.e., w(1) = 0, can be used to find the

constant C as

w(1) = 1 − C

1∫
0

τm(1 − τ)mdτ = 0. (6)

Now, making use of the fact that the integral expression∫ 1

0 τm(1 − τ)mdτ = (m!)2/(2m + 1)! is a Eulerian integral of
the first kind leads to the following value for the constant C:

C =
(2m + 1)!

(m!)2
. (7)

Substituting for the value of C in (5) and substituting the
resultant expression in (4) leads to the following expression for
the window function:

w(t) = wm(t) = 1 − (2m + 1)!
(m!)2

t∫
0

τm(1 − τ)mdτ. (8)

Notice that we use wm(t) to explicitly indicate the depen-
dence of the window function on the smoothness order m.
Furthermore, making use of the binomial theorem to expand
the integrand

∫ t

0 τm(1 − τ)mdτ leads to

wm(t) = 1 − (2m + 1)!
(m!)2

t∫
0

m∑
n=0

mCnτmτm−n(−1)ndτ

= 1 − Km

m∑
n=0

Am,nt2m−n+1

mCn =
m!

n!(m − n)!
(9)

where Km and Am,n are given by the following expressions:

Km =
(2m + 1)!(−1)m

(m!)2
Am,n =

(−1)n mCn

2m − n + 1
. (10)

Finally, to obtain the expression for the window function in the
interval [−1, 1] instead of [0, 1], the absolute value of t can be
used as the independent variable rather than t, i.e.,

wm(t)=1−Km

m∑
n=0

Am,n|t|2m−n+1, −1≤ t≤1. (11)

It should be noted that the exponent of t, i.e., 2m − n + 1, is
always greater than 0. These special functions of (11) are an
integral part of the recently developed multiresolution function
approximation algorithm known as global–local orthogonal
mapping (GLO-MAP) [15], which permit the inclusion of
independent local functions over a compact support.

A. Fourier Transformation of Window Functions

In this section, we compute the Fourier transformation of the
window functions derived in the previous section.

Let us consider the following Fourier transformation for the
window function wm(t):

Wm(ω) =

∞∫
−∞

wm(t)e−iωtdt. (12)
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Substituting the expression for wm(t) leads to

Wm(ω) =

0∫
−1

e−iωt

[
1 − Km

m∑
n=0

Am,n(−t)2m−n+1

]
dt

+

1∫
0

e−iωt

[
1 − Km

m∑
n=0

Am,nt2m−n+1

]
dt. (13)

Notice that the first integral expression in (13) is equivalent to

0∫
−1

e−iωt

[
1 − Km

m∑
n=0

Am,n(−t)2m−n+1

]
dt

= −
0∫

1

eiωt

[
1 − Km

m∑
n=0

Am,nt2m−n+1

]
dt. (14)

This leads to

Wm(ω)=

1∫
0

(eiωt + e−iωt)

[
1 − Km

m∑
n=0

Am,nt2m−n+1

]
dt

= 2

1∫
0

cos ωt

[
1 − Km

m∑
n=0

Am,nt2m−n+1

]
dt

= 2
sin ω

ω
− 2Km|!

m∑
n=0

Am,n

1∫
0

t2m−n+1cos ωtdt. (15)

Now let us consider the following integral expression in (15):

I2m−n+1 =

1∫
0

t2m−n+1 cos ωt dt =
t2m−n+1 sin ωt

ω

∣∣∣∣
1

0

− 2m − n + 1
ω

1∫
0

t2m−n sin ωt dt (16)

=
sin ω

ω
− 2m − n + 1

ω

×
[
− t2m−n cos ωt

ω

∣∣∣∣
1

0

+
2m − n

ω

1∫
0

t2m−n−1 cos ωt dt

]
,

2m − n > 0

=
sin ω

ω
+

(2m − n + 1) cos ω

ω2

− (2m − n + 1)(2m − n)
ω2

I2m−n−1,

2m − n > 0. (17)

Notice that the 2m − n > 0 constraint corresponds to the ex-
ponent of t in I2m−n−1 being greater than or equal to zero.
Hence, the recursion formula given by (17) is only valid for
2m − n > 0. Consequently, we require I0 and I1 to permit us

to use the recursion formula given by (17). It is easy to see that
I0 and I1 are given as

I0 =
sin ω

ω
I1 =

cos ω + ω sin ω − 1
ω2

. (18)

Now substituting (17) in (15) leads to

Wm(ω) =

(
2 − 2Km

m∑
n=0

Am,n

)
sin ω

ω

− 2Km

m∑
n=0

Am,n(2m − n + 1)

×
[
cos ω

ω2
− (2m − n)

ω2
I2m−n−1

]
,

2m − n > 0. (19)

Making use of the fact that w(1) = 0 and dw/dt|t=1 = 0 for
m > 0, we get

Km

m∑
n=0

Am,n = 1 Km

m∑
n=0

Am,n(2m − n + 1) = 0. (20)

Finally, substitution of the identities of (20) in (19) leads to the
following generic expression for the Fourier transform of the
window function wm(t):

Wm(ω) = 2Km

m∑
n=0

I2m−n−1Am,n
(2m − n + 1)(2m − n)

ω2
,

m > 0. (21)

Table I lists the closed-form expressions for these window
functions in the time domain and their corresponding Fourier
transforms for different orders of continuity m. Furthermore,
the window functions for the first four orders of continuity and
their corresponding Fourier transforms are shown in Fig. 1(a)
and (b), respectively. From Fig. 1(b), it is clear that the sidelobe
far from the main lobe rapidly rolloff with an increase in m.
This is consistent with the expected 6(m + 1) dB/oct rolloff
for a window function with an (m + 1)th-order discontinuous
derivative [1], [2]. This attribute is reflected in the reduced spec-
tral leakage. Fig. 1(c) and (d) illustrates the main lobe and a few
sidelobes of Wm(ω), respectively. It is apparent that the width
of the main lobe does not significantly change with the order of
continuity m. It should be noted that only the curve correspond-
ing to m = 0 exhibits repeated roots at all locations. This is
evidenced by the fact that the slope of Wm(ω) is zero whenever
Wm(ω) = 0. This is due to the fact that the window function
corresponding to m = 0 is identical to the Bartlett window,
which can be generated by self-convolution of the rectangular
window [1]. It is apparent from Fig. 1(d) that increasing the
order of smoothness of the window function does not result
in repeated roots. This is evidenced by the fact that the slope
of Wm(ω) is discontinuous whenever Wm(ω) = 0 for m > 0.

B. Performance Analysis

To further gain insight into the performance of these window
functions, we compute the following FOMs: incoherent power
gain (ICG), CG, scalloping loss (SL), and ENBW. ENBW
determines the capability of a window function to extract the
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TABLE I
WINDOW FUNCTIONS wm(t) AND THEIR FOURIER TRANSFORM Wm(ω) FOR DIFFERENT ORDERS OF CONTINUITY m

Fig. 1. Window functions wm(t) and their Fourier transform Wm(ω) for the first four orders of continuity. (a) wm(t). (b) 20 log10 |Wm(ω)| versus ω.
(c) Zoom on the main lobe of 20 log10 |Wm(ω)|. (d) Zoom on zeros of |Wm(ω)|.

signal amplitude from background noise and is defined as the
width of the discrete Fourier transform (DFT) of a rectangular
window with the same peak power gain that would accumulate
the same noise power [1]. This can easily be calculated from
time samples of the window function w(nT ), i.e.,

ENBW = N

∑
n

w2(nT )[∑
n

w(nT )
]2 . (22)

Notice that the lower value for ENBW implies better signal
extraction from background noise. The rectangular window has
the best possible value for ENBW equal to 1. All other window
functions will have ENBW greater than one. Since the window
function attenuates the signal at interval ends, it reduces the

overall signal power. As a consequence of this, the amplitude
measured at the DFT bin is not the same as the real amplitude
of the signal’s frequency component at that frequency. This
reduction in signal power is called the CG and is defined as [1]

CG =
1
N

∑
n

w(nT ). (23)

Notice that, for the rectangular window, the CG is 1, whereas
for any other window function, the CG is reduced due to the
window smoothly going to zero at the boundaries. The ICG
represents the accumulated noise power of the window and is
computed by making use of the following relationship:

ICG =
1
N

∑
n

w2(nT ). (24)
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Fig. 2. FOMs for window functions. (a) CG versus ICG. (b) CG versus SL.
(c) SL versus ENBW.

Notice that ENBW is equal to the ratio of the ICG to the square
of the coherent power gain. Another significant FOM is the SL
related to the minimum detectable signal in the worst case of
noncoherent sampling. SL is the apparent attenuation of the
measured value for a frequency component that falls exactly
halfway between DFT bins. It is defined as the ratio of the
power gain for a signal frequency component located halfway
between DFT bins to the coherent power gain for a signal
frequency component located exactly on the DFT bin [1], i.e.,

SL =

∣∣∣∣∑
n

w(nT )e−jπ n
N

∣∣∣∣∑
n

w(nT )
=

∣∣W (
0.5ωs

N

)∣∣
W (0)

. (25)

Fig. 2(a)–(c) shows the plots of CG versus ICG, CG versus SL,
and SL versus ENBW, respectively. As expected, SL decreases
while ICG and ENBW increase with an increase in the order of

Fig. 3. Example 1: f(t)=sin(20πt)+0.01 sin(30πt)+0.001 sin(42πt)+
0.00001 sin(60πt). (a) Signal. (b) DFT of the new windowed signal. (c) DFT
of the conventional windowed signal. (d) DFT of the conventional windowed
signal.

continuity m of the window function. It is interesting to notice
that CG remains constant for various orders of continuity.
It is also apparent from these plots that the performance of
this window function is comparable to many conventional
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Fig. 4. Example 2: Spectrogram of the chirp signal. (a) m = 0. (b) m = 1. (c) m = 2. (d) m = 3. (e) m = 4. (f) m = 5. (g) Hanning-windowed signal.

window functions, and one can actually tradeoff between
different performance criterions by simply changing the order
of continuity m.

III. NUMERICAL RESULTS

In this section, two examples are considered to evaluate
the performance of the proposed window functions. First, we
consider the following benchmark signal f(t) introduced in

[12] and [13] to test the efficacy of these new window functions
in harmonic signal analysis:

f(t) = sin(20πt) + 0.01 sin(30πt) + 0.001 sin(42πt)
+ 0.00001 sin(60πt). (26)

The signal is sampled with N = 1024 samples with a sampling
frequency of 111 Hz, which is not an integer multiple of
frequencies to be identified. Fig. 3(a) shows the plot of a part of
the sampled signal. Fig. 3(b) shows the plot of the DFT of the
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windowed signal by applying the polynomial window functions
corresponding to the first six orders of continuity, whereas
Fig. 3(c) and (d) shows the plot of the DFT of the windowed sig-
nal by applying conventional window functions available in the
MATLAB signal processing toolbox. They have been plotted in
separate figures to avoid clutter. From these plots, it is apparent
that while many conventional window functions (such as rec-
tangular, Kaiser, Bartlett, Hamming, etc.) struggle in identify-
ing the presence of a weak signal corresponding to a frequency
of 30 Hz, the newly developed window functions (except for
m = 0) correctly identify the relative strength of all frequency
tones. This clearly indicates the ability of the new window func-
tions to discern the presence of weak signals. This is anticipated
since SL decreases with the increase in the smoothness order m.

The second example corresponds to a chirp signal that
generates broadband excitation. The chirp signal is simulated
in MATLAB with the frequency swept between 10 and 30 Hz in
a quadratic manner. The chirp signal is sampled with N = 1024
samples at a sampling frequency of 101 Hz. Fig. 4 illustrates
spectrogram plots for new window functions corresponding
to m = 0, . . . , 5 and the Hanning window, which is the
default window used in the MATLAB spectrogram command.
As expected, all the plots clearly show the quadratic time
variation of the frequency of the signal. It is also clear that
as the smoothness index m increases, the spectral leakage
rapidly decreases as opposed to the Hanning window. This is a
reflection of the rapid sidelobe rolloff of 6(m + 1) dB/oct.

IV. CONCLUSION

Recently developed polynomial blending functions of any
desired continuity and with compact support have been
exploited as window functions for harmonic analysis. A closed-
form expression for the Fourier transform of the proposed poly-
nomial window function has been derived. An advantage of the
proposed approach is that it results in desired order continuous
window functions without the self-convolution of the parent
window function, and thus, the Fourier transform of the re-
sulting window functions does not exhibit repeated zeros at the
same location of the m = 0 window. The proposed polynomial
time window functions are compared with traditional window
functions using FOMs, such as CG, ICG power, SL, and ENBW
to illustrate their benefits, and their efficacy in discerning the
weak signal is illustrated through numerical examples.
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