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Characterizing Performance of a-3~ Filters

The o—3— filter, a sampled data target tracker which can
asymptotically track a constant acceleration target, is discussed
in detail. The o, 3, -y parameters are studied to characterize
the stability of the filter and its performance viz its transient
behavior. A closed-form equation for the mean square response
of the system to white noise is derived. In addition, performance
measures to gauge the transient response and the steady state
tracking error are derived. The closed-form equations for the
noise ratio and the transient and steady state error are exploited
to optimally select the o, 3, -y parameters. The resulting solutions
are shown to reduce to some resuits presented in the literature for
the -3 filter.

I. INTRODUCTION

Numerous applications such as air-traffic control,
missile interception, and antisubmarine warfare require
the use of discrete-time data to predict the kinematics
of a dynamic object. The use of passive sonobuoys
which have limited power capacity constrain us to
implement target-trackers which are computationally
inexpensive. It is with these considerations in mind,
we analyze an a—f— filter to study its ability to
predict the object kinematics in the presence of noisy
discrete-time data.

There exists a significant body of literature
which addresses the problem of track-while-scan
systems. Sklansky [1] in his seminal paper analyzed
the behavior of an o7 filter. His analysis of the
range of the a—f smoothing parameters is based on
the prediction characteristics, which resulted in a
stable filter constraining the parameters to lie within
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a stability triangle. He also derived closed-form
equations to relate the smoothing parameters for
critically damped transient response and the ability

of the filter to smooth white noise, using a figure

of demerit, which was referred to as the noise ratio.
Finally he proposed, via a numerical example, a
procedure to optimally select the «, 3 parameters to
minimize a performance index, which is a function

of the noise ratio and the tracking error for a specific
maneuver. Following his work, Benedict and Bordner
[2] used calculus of variations on the filter update
equations to solve for an optimal filter, which
minimizes a weighted function of the noise smoothing
and the transient (maneuver following) response. They
showed that the optimal filter is coincident with an
a—f3 filter with the constraint that 8 = o?/(2 — o).
Simpson [3] extended this approach to an a—G—y
filter arriving numerically at the optimal condition

28 — oo + B+ 1/2v)y = 0, which minimizes the update
noise ratio and the transient response following a
ramp and a quadratic input. Neal {4] later showed that
Simpson’s result is coincident with the steady state
Kalman solution, and provided an additional optimal
condition 3% = Za-y by assuming a random walk
acceleration statistics. The a~3 filter was also studied
by Kanyuck [5]} and Schooler [6] as a prediction filter
in that the mean square error of the predicted position
is addressed. Schooler derived a recursive algorithm to
optimally select the o— parameters, which was shown
to be identical to the Kalman filter.

Since the development of the Kalman filter, which
minimizes the unbiased mean square error estimation,
numerous researchers applied the Kalman equations
10 the a—F—(¥) algorithm including various process
noise models, i.e., discretized and discrete [7-10]
white noise acceleration and.exponentially correlated
acceleration [11, 12]. Kalata [13] proposed a new
parameter, which he referred to as the tracking index
to characterize the behavior of the a—g—{(7) filters,
and Ekstrand [14] parameterized the root-loci for the
poles and zeros. The tracking index is defined as the
ratio of the position maneuverability uncertainty to
the position measurement uncertainty, which fully
describes the optimal set of the a—(F—y parameters,

An alternative algorithm avoiding complex polynomial
root evaluations is given by Gray and Murray [15].
The two-stage Kalman estimator developed by
Alouani [16], Xia [17], and Rice and Blair [18] tracks
maneuvering targets by introducing an acceleration
bias in the dynamic model. Furthermore, the second
stage can be augmented by kinematic constraints,

for example constant speed targets as shown by

Blair [19]. ‘ -

A detailed analysis of the a—f—y filter is carried
out in this report. Section II discusses the bounds
on the smoothing parameters for a stable filter
and demarcates the underdamped and overdamped
region of the stability volume. This is followed by a
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closed-form derivation of the prediction noise ratio

for the a—{—y filter in Section IIIA. In Section IIIB, a
closed-form expression for the steady state errors and
a performance measure to gauge the transient response
of the filter are derived followed by optimization of
the smoothing parameters for various cost functions
(maneuvers and noise ratios) in Section IV. The paper
concludes with some remarks in Section V.

Il.  STABILITY ANALYSIS

The a-F—y tracker is a one-step ahead position
predictor that uses the current error, called the
innovation, to predict the next position. The
innovation is weighted by the smoothing parameter o,
3, and ~y, These parameters influence the behavior of
the system in terms of stability and ability to track the
target. Therefore, it is important to analyze the system
using control theoretic aspects to gauge its stability
and performance.

The one-step ahead prediction equation for the
a—3— tracker is:

x, 0k + 1) = x,(k) + T (k) + 1T%a (k) (1

and the velocity of the target is predicted by the
equation; -
vtke+ D =vk)+Tak) (2)

where the smoothed kinematic variables are calculated
by weighting the innovation as follows:

x,(k) = x,(K) + alxg k) — x, k) €
100 = 3,80 + 20— 5, ) @
a0 = a4+ LG -5, ()

The observation at time k is denoted by xy(k).

Applying the z-transform to (1) to (5) and solving
for the ratio x,/x, leads to the prediction transfer .
function in z-domain, which is: .

(a+ 8+ i +(-20-5+ ify)z+o;
ﬁ4{a+ﬁ+%7—3k2+04a—ﬁ+i7f3k¥a~1-

(6)

Equation (6) can now be studied to determine the
bounds of a, 3 and ~ for stability. For the third order
system, the Jury’s Stability Test is used, to determine
the region of stability, resulting in the parameter
constraints:

Gz} =

O<a<2 -(7a)

0<B<4-2 - (Tb)

0<y< 228 (7¢)
2 -« .

Details of the development are included in
Appendix A.
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Fig. 1. Stability volume of o—F—y tracker.

Fig. 1 illustrates the bounding surfaces of (7),
which circumscribe the stability volume in the a—3—y
space, where (7a) and (7b) span the stability triangle
in the a—g plane and (7c) limits .

It is desirous to divide the stability volume
into regions which are characterized by specific
classes of transient responses such as underdamped,
overdamped, and critically damped. However, the
difficulty in factoring the characteristic polynomial
of the transfer function in the a—@3—y space prompt
us to conceive of a new space which we refer to
as the a-b-¢ space. In this space, the characteristic
polynomial is represented as

(z+c) +(a+b—2z+1—a) (8)

where the second-order factor has a form which is
identical to the characteristic equation of the o3
filter and the third pole at —c is real. The above
transformation might be understood as a partial pole
placement incorporating intuitive knowledge about the
second-order o3 filter. Comparing the denominator
of (6) with (8), the following transformation is derived

a=1l+c(l-a)
T B=a(l+c)+ (1 —c)
4 =2b(1 +¢).

From the remaining paper, the usefulness of this
transformation becomes evident. For example, when
one derives the stability volume of the a—3-~ filter
since c is constrained to li¢ in the interval [—1 1], and
the a-b space resembles the o—3 space, the stability
volume in the a-b-c space is a prism (Fig. 2) with a
triangular cross section, which is derived from the a—03
filter. Mapping the stability prism in the a-b-¢ space
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to the o~~~ space using (%), we rederive the stability
volume iljustrated in Fig. 1.

Since, the pair of poles of (8), which are functions
of a and b, are responsible for the second-order
response of the system, the ag-b-c space is divided by
extruding the lines which divide the stability triangle
of the o—73 filter, in the ¢ dimension. These surfaces,
shown in Fig. 2, are transformed using (9) to the
a—f3—y space. Fig. 3 shows the surface in the a—ff—y
space corresponding to a pair of coincident poles. It
is clear that the surface in Fig. 3 separates the stable
region into different sectors, which are difficult to
visualize compared with Fig. 2.

"Similarly, the remaining surfaces in the a-b-c¢ space
can be mapped into the o~G—y space. These mappings
illustrate the fact that for v = 0, the third-order
tracker reduces (o the a—3 tracker. Substituting + = 0
in the transfer function (6), results in a pole zero
cancellation at z = 1, resulting in a second order
tracker. From (9), we can infer that ¢ equals —1 when
+ = 0, and furthermore a and & degenerate to « and 3.
The cross section at ¢ = —1 therefore corresponds to
the a—# tracker. Note that ¢ = 0 does not result in the
a—3—y degenerating to the a—g filter.

lll.  PERFORMANCE OF TARGET TRACKER
A. Noise Ratio

Measurement noise significantly effects the
performance of target trackers. It is therefore, of
interest to characterize the noise filtering strengths of
the tracker, which can be described by the noise ratio.
In this section, we derive a closed-form expression for
the prediction and smoothing (update) noise ratio in
terms of the «, 3, and -y parameters.
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Fig. 3. Coincident pole pair surface in a—3—y space.
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Studying the effect of noisy signals-requires a

performance measure gauging the influence of the
noise on the system. Since the response of the system
to-a hoisy input can reflect this influence, the roise
ratio i defined as the ratio of the rms value of the
system response to the rms value of the noisy input.
Depending on the purpose of the target tracker,
different system responses have been considered. The
noise ratio p, is defined as

o

pe=

" (10)

CORRESPONDENCE

'Stabi_lity prism in g-b-c space, where cross section of a-b plane resembles stability triangle.

where the subscript * represents the update noise ratio
p, or the prediction noise ratio p,. Since we require
the tracker to reject measurement noise, a small -
value of p, implies an excellent filtering of noise. In
particular, the update noise ratio should be less than
one to alleviate the input noise.

The rms value in (10) is a consistent! estimator.of
the second-order moment, and the definition of the
noise ratio can be restated in terms of expectations

denoted by E{-}
_ [E{x})
p* - E'{-%-}--

The input noise is modeled as discrete Gaussian white
noise with zero mean such that the second-order
moment E{x2} results in the variance of the input
noise 3. The second-order moment of the prediction
and the update position can be derived by rewritin
(1)-(5) in state space as '

(11)

(12)
(13)

2,(k) = 2,(k) + K(xp(k) — Cz,(k))
z,(k +1) = 2z,(k)

where z, is the state vector [xp v, ap]T, and the
corresponding transition matrix € is defined by

1 T ir?
®=|0 1 T
00 1

1A consistent estimator © converges to the true value ¢ as sample
size increases [20].
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The gain X and the output matrix C obtained by the
prediction equations evaluate to:

K< [ B

T

The predicted and smoothed position are the first
element of the vector z, and z, respectively, which
can be calculated as:

%,k + 1) = Cz,(k + 1)
x,(k+1) = Cz,(k + 1).

(14)
(15)

Substituting (13) and (14) into the second-order
moment of the prediction, and defining the covariance
matrix of the state z, by P yields the dynamic

equation for P
E{z,(k+ Dk + D} = P+ 1)
=& — KCYPR)(I - KC)T &7
+BKaK d" (16)

E{xX(k+ 1)} = CP(k+ 1)CT. a7

The square of the pfediction noise ratio is the element
P divided by the input noise variance, as the
solution of (17) reaches the steady state Appendix B,
which yields:

2_.2a2+05.8+2,6

453~
P SE 20 B)

a(4 —2a - Bdaf +ay—27)
" (18)

Similarly, the square of the update noise ratio can be
calculated as:

2 207308 +28 48y(1 - o)’
Ps = a(d-2a— 3 a(d —2a — BY4af + ay—27)
- - : (19)

The constant noise ratio surface typically displayed
as a function of the square of the noise ratio p;’; =10
is shown in Fig. 4(a) and for p? = 0.8 in Fig. 4(b). As
mentioned in Section II, the a—G— filter reduces to
a two-parameter tracker if v becomes zero. Thus, the
noise ratio of the a—/ filter can easily be extracted
from (18). The line of constant noise ratio for the
a—{ filter is also inctuded in Figs. 4 by setting v = 0.
However for greater clarity, the curves of constant
noise ratio in the a—3 space are shown in Fig. 5(a)
and Fig. 5(b) for various noise ratios. One can observe
that with increasing values of 5 the noise transmission
increases and that for a fixed &, a matching « exists,
which minimizes the noise ratio. The constant p,
curves are skewed to the right of the constant p,
curves, which implies that the appropriate noise ratio
should be used in the optimization based on whether
the filter objective is prediction or estimation. The
dashed-dot and dashed lines in Fig. 5(b) enclose the
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o~ region, which corresponds to an update noise
ratio less than one.

The -3 part of (18) differs from that derived by
Sklansky [1] and the a3 part of (19) conforms with
the variance reduction ratio developed by Benedict
and Bordner [2].

B. Prediction Error

Numerous cost functions can be used to gauge
the performance of a tracker, such as the steady state
tracking error, the transient response of the tracker,
and the noise ratio, besides others. In this work, we
endeavor to derive closed form expressions for the
steady state errors and the sum of the square of the
errors, which capture the transient behavior of the
a—{3— filters for two classes of trajectories. The
first is a circular trajectory with the target moving
at constant speed and the second is a straight line
trajectory where the target moves with constant
acceleration. These measures can then be exploited
to determine optimal sets of parameters for any cost
function, which are weighted combinations of these
performance measures.

The tracking error is defined as the difference
between the observed and the predicted position, and
its discrete transformation needs to be derived. The
innovation in the smoothing equations (3), (4), and (5)
represents the maneuver error of the filter. Substituting
the innovation with the term e(k), and transforming
the prediction equation (1) and the smoothing
equations (3), (4), and (5) into the z-domain, yields
the relationship between the maneuver error and the
observed position, which is

.. = (z— 1x,
afy BHla+f+iv-32+(20-F+ 37+ +ra-1
’ (20)

V) Circular Trajectory: The tracking error of a
filter following a circular trajectory can be resolved
into components e, and e, in the x and y directions,
respectively. The net error magnitude is given by

e(t) = /e2(t) + eg(r).

Assuming that the target traces a circular path with
radius K while moving at constant speed, results in

a constant angular velocity. The target’s position can
be described in the time domain using. the projection
of a rotating phasor, via the cosine and sine function, -
which also can be mapped into the complex domain
as

2D

(1) = Rel*

- (22
Yol) = jRe™ @

where the y axis has been swapped to lead the x axis.
Substituting the discrete transformation of the input
xo(f) and y,(#) into the z-transformation of the error
(equation (20)) and substituting z = &/7, the steady
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Fig. 4. Constant pf surfaces in a—3-y space. (a) Prediction noise ratio p ' (b} Update neise ratio p,.

state values of the errors can be represented as corresponding discrete transformation e, 5, (9T into
, _ . (23). The maneuver error of a circular target path of
e,(nT) = Re 5 (/)T = R TV @) an a—p- tracker can now be simplified to
ey(nT) = jRenBT(eij)ej“‘"T =j}}ej(wn?'+¢) s (w )
4Rsin” | —
whese R = [Re, (7)), ¢ = arg{Re, ;. (/7)) e= :
Equation (23) states that the magnitude of the sin® (W—T-) {((2 - a)coswT +a + 3 — 2 + o sini* T

maneuver-error for a circular path is constant at 2 i
all sampling instants, and only the phase changes ﬂ(( X tcoswT + 1) — & sin? wT)
with each time step. To derive an expression for the 32 4
tracking error for an a—f3—v filter, we substitute the : o (24)

CORRESPONDENCE 1077
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Fig. 5. Constant p? curves in stability region of a4 tracker. Stability region enclosed by coordinate axes and line § =4 — 2a.
(a) Prediction noise ratio Pp {(b) Update noise ratio p,.

To determine the steady state ervor for an a0
filter, we can substitute the corresponding error
function e, 4(¢/“") into (23), or set v o zero in (24).
This leads to the maneuver error of the a—g filter

T
4Rsin® { 2=
Sll’l(z)
o=

\/[(2 ~a)coswT + o+ 8—21 + e?sin’wT
25

where the maneuver error of the o—73 filter is the same
as the closed form expression derived by Sklansky
{1]. Sklansky [1], proposed simplifying the expression
for wT <« 7 by neglecting the term under the radical,
reducing (25) to

arT2 s
7 (26)
where a, is the centripetal acceleration given by

Ru?.

2) Srraight Line Maneuvers: Besides the circular
maneuver, the straight line maneuver is one which
needs to be studied carefully. This section presents the
derivation of closed foirm expressions for steady state
errors and the sum of the square of the errors for o—43
and o—f(— filters.

Unlike the derivation of the error for the circular
path, the error for a straight line trajectory can
be simplified by assuming that the target path is
coincident with one of the reference axis, reducing
the problem to a single dimension. Assuming
constant acceleration along the straight line with
zero initial position, the targets position is given

e Rz

1078

by:

aT%z(z+1)
2z - 1)

+ vIz
(z—1)?
(27

xo(0) = %astz + vt & xy{z) =

where a_ is the acceleration and v is the initial
velocity. The choice of constant acceleration is made
to illustrate the ability of a higher order tracker to
track the target without a steady state error. Simulating
the a—4 tracker for this maneuver, results in a steady
state error, in contrast to the a—@—y tracker, which
exhibits no steady state error. Similar to the derivation
of (23), the maneuver error for a straight line is
obtained by substituting the z-transform of x; into
(20). The maneuver error for the a—@ tracker and the
a—f3—y trackers are

_ 3aTMz+ D +vTz(z=1)
“tT et -z l-a)z—1)
. = fa T2z + 1) +vTz(z —1)
T Balatfriv-N2+ (20— B+iy+3z+a-1
(29)

(28)

The steady state error is obtained by applying the
final value theorem [21] to (28) and (29), which for
the a—p3 tracker leads to the interesting result,

aT1?
¢

which is coincident with the maneuver error for a
circular path with a high sampling rate, as derived by
Sklansky [1] (equation (26)). As can be seen from
(29), the steady state error of the a—f—y tracker

€,p(t — 00) = (30)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 38, NO. 3 JULY 2002



€ngy(t = 00) =0

vanishes for the case of constant acceleration.
3) Transient Response Performance Measure:
The transient response can be characterized by a
- performance measure which is defined as the sum
of the square of the tracking errors as time tends to
infinity. This measure can be defined in discrete time
as

J =.i Te* (k)

k=0

(32)

which can be calculated by simulating the response

of the system given in (28) and (29), and summing
the resulting error = u —y, where y is the system
response and u is the trie target position. Instead, of -
using simulations, a closed-form expression can be*
derived using Parseval’s Theorem [21]. Rewriting (32)
and using Parseval's Theorem and the Residue Theorem
we have :

- -—j{ e(De(z i tdz = ZRcs[e(z)e(z_l)z 1
: ' - (33)

where the line iiitegral is carried out along'a closed’
curve C, which is also given by the sum of the
residues at the singular points within the closed
curve C. The closed curve C is the unif circle which
includes all the stable poles of e(z). "

As shown in (30); the a—f3 tracker exhibits a
non-zero final value, so that the performance measure
defined in (32}is not finite. However, subtracting -
the steady state error from the transient error yields -
a finite solution for the cost furiction. To derive the
finite cost characterizing the' transient béhavior of the
a-,@ filter tracking a constant accéleration proﬁ]e the
z-transform of the augmented dlscrete error is!

aT2 z -
Blz=1
. (39

where the z-transform of the steady state error is
subtracted from the original error function. Solving
(33) by determining the residues of the three poles
of e,(z) yields a closed-form equation for the cost
function of the a~f3 tracker

( ),__ -z-axTzz(z + 1) +vTz(z=1)
eaﬂ Ve @@+ icae-1

1T 2B+ aB +2a2)  vaT*
-7 &

_ Ve —-2)
@ ofa+f-4)

!

The first.expression in (35)is the transient cost.
function, corresponding to a constant velocity target
motion referenced as J, ;.. The second expression
corresponds-to the cost for a target path, which is
parameterized by constant acceleration and zero inifial
velocity. referenced as J, ; .. The third term is due to
the steady state error.as aforementioned.

CORRESPONDENCE
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35)

Since the a—f3—y filter tracks the target without
steady state error, the cost defined in (32) is finite.
Thus, the cost function of an a—F—y tracker for an
accelerating target along the straight line given in (33)
is obtained by using the error function (29). Since the
derivations of the cost function in the a~8— space
are more complex than in the a-b-c space, (29) is
transformed to the a-b-c space, where the discrete
error transformation becomes:

a2z + ) +vTz(z - 1)
T @+ +a+b-2z+1—a)
A closed-form expression of the cost function is now
obtained in the g-b-¢ space
7. = 2(c —ca— DT
¢~ 4(2a+b—48)c— Dlcla+b + ca)— (1 — ¢)?]
%afTS(c(a -1-1)
ab(l +c)cla+ b +ca)— (1 =2}

e(z)

(36)

37

_Like the o7 filter, the first term is the contribution

to the measure of the tracker’s performance for a
constant velocity input (. ), and the second term
represents the cost for a constant accelerating target
(4pe.0): Equation (37) cannot be reduced to an a-3
tracker by substituting ¢ with —1, since this results
in the second term being divided by zero, resulting
in an infinite value for J, sy which is consistent with
our intuition, since the integral over infinite time of a
constant value is infinity,

The different performance measures deﬁned
in (24), (35), and (37) can now be used in an
optimization process to optimally select a set of
smoothing parameters «, 3, and ~y for a specific
maneuver.

IV. DESIGN OF OPTIMAL FILTERS

‘We have derived regions of stability for the
a—3 and the a—f3— filters. The selection of the
smoothing parameters within the region of stability
is a function of the trajectory of the target, the noise
in the measurement, the steady state error, and
the transient response of the filter. To arrive at the
optimal set of parameters, a constrained parameter
optimization problem is formulated. This is feasible
since closed-form expressions for various performance
measures have been derived in Sections IITIA and ITIB.
Furthermore, closed-form solutions for the optimal
parameter are derived for a set of target trajectories.

Define a figure of demerit which consists of two
terms: the firt is-a function of the tracking error,
and the second is a function of the noise ratio. This
provides us with the flexibility to include steady state
error, trafisient error, etc. and permits us to weight
them based on their importance. In the proceeding text
K is a weighting factor to penalize the contribution
of one term relative to the otlier. The constraints for
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Fig. 6. Contours of cost function for a—4 filter with x =0.01 including minimum value.

the optimization are defined by the stability region

of the tracker: As shown in Section IIIB, there are
different measures to capture the tracking error for
specific maneuvers, such as straight line or circular
target path. The maneuver-error can be characterized
by transient response and/or the steady state error. The
choice of the appropriate cost function depends on the
optimization purpose.

A. Circular Trajectory

The first task attempted in this work was an
extension of the optimization of a cost defined by
Sklansky [1] for the design of filters for tracking
submarines. To study the variation of the smoothing
parameters as a function of the relative importance of
the steady state error for a circular maneuver and the
prediction noise ratio, a series of optimizations were
carried out. Thus a cost function can be designed with
the maneuver error (25) and the square of the noise
ratio (18)

J = e+ rplad: (38)

Assuming that the smallest turn radius of a submarine -

travelling with a speed of v =3 knots is 45 m, leads to
the angular velocity of w = v/R = 0.034 rad/s. Assume
that the variance of the measurement noise is 200 m?,
and weight the noise ratio by « in (38). The contours
of the cost function (equation (38)) are illustrated

in Fig. 6, where k = 1/100 and the sampling rate is
assumed to be T = 3 s. The contour plot illustrates

the location of the minima. To illustrate the effect

of changing the weighting parameter, a series of
optimizations are carried out and the resulting set

of a—f3 parameters are plotted. Fig. 7(a) illustrates
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that the optimal set of parameters monotonically
decrease with an increase of x. It can be seen that for
Iarge values of the weighting factor, the smoothing
parameters asymptotically tend to o = 0.0032 and

B =0, which can be shown by setting the maneuver
error in the cost function to zero and solving for the
optimal o—f3 parameters. The shape of the curve does
not change for circular maneuvers of different radii,
since the increase in the radius of the trajectory is,
equivalent to increasing the weighting factor. The
optimal smoothing parameters are displayed in the
a—{3 space in Fig. 7(b), where the cost function is a
weighted combination of the noise ratio and the steady
state maneuver error when the target follows a circular
path. Fig. 7(b) shows various values of the weighting
factor x-along the line of optimal solutions. It can be
seen that the optimal solutions lie in the underdamped
region only.

"Extending the same procedure to an a—3—y
tracker, leads to similar results for the optiinal
smoothing parameter. The change of the parameters
versus the weighting factor is shown in Fig. 8.

B. Straight Line Maneuver

In practice the tracker rarely reaches steady state
because the target path is continuously changing.
Including the transient response of the tracker to the
cost function leads to a more realistic performance
measure, Section IIIB contains the development of
the transient error cost function for tracking a straight
path. A ciosed-form solution is given for an o3 .
tracker (equation (35)), and an a—f-y tracker (equation
(37)). Depending on the path of the target, the tracker
can exhibit a steady state error. We can now modify .
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(38) by including the performance measure gauging
the transient performance, as follows:

f =gy + Bglianyt — 00) +5p%x3 (39

where J, 5., 1s the transient error cost and eiﬁ(ﬂf)(t — 00)
the steady state error of the a—3 tracker or the o—(—y
tracker. The weighting factor , adjusts the influence
for the steady state error. The transient error cost
function in (35) and (37) are sorted as a function of
velocity and acceleration. The effect of the velocity
and acceleration on the optimal set of the smoothing
parameter of an a~# tracker is shown in Fig. 9 for

CORRESPONDENCE

three cost functions. The three curves in the graph
correspond to objective functions which weigh the
noise ratio to the tracking errors for targets moving
with constant velocity, constant acceleration, and the
steady state tracking error for a constant acceleration
input. '

The solid line in Fig. 9 exhibits variation of the
optimal parameters as a function of the weighting
parameter for targets with constant velocity. A
closed-form expression of this optimal curve can be
derived as described by the following algorithm. The
objective function (equation (39)) for the proposed
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case reduces to which can obviously be rewritten in the matrix form
as o
f = duy + R (40) ) R
. o . o dov da 1 1
The optimal solution is obtained by searching for the 4 i —|=Gag| | =0 “42)
parameter where the gradient of f vanishes. In this d“g'” —Ei-ﬁ—) o . @xo

two parameter case, the following equations need to
be satisfied:

ﬂ _ d‘laﬁ,v d(P )
da = do " da
4n
df _ Mosw =D _
dg dg o dﬁ =
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Equation (42) can be satisfied only if if the determinant
of G ; is zero since the vector [1 nxz]’ never vanishes.
Equating the determinant to zero, we can solve for 8

resulting in the equation:

ol

7o {43)

B =
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which matches the optimal solution proposed by
Benedict and Bordner [2). In addition to (43), the
optimal set of the parameters « and J requires
satisfaction of one of (41), which for instance, )
is

0 = [28(48a +4a® — 48 + )k

+ 2073 (~0? + 4o — 4 + 3). (44)

This equation determines the location of the optimal
parameters on the curve given by (43) as a function
of the weighting factor «. In Fig. 9 various values of
the weighting factor are shown. A very small penalty
on the noise ratio minimizes the settling time of the
tracker, which is of course the shortest if the two
peles lie at z = 0. This leads to the so-called dead-beat
response and is given at the smoothing parameters
a = 8 = 1. Increasing the penalty of the noise ratio,
moves the parameter into the underdamped region
while 8 is decreasing. This effect has been
observed in a previous discussion on the noise ratio
in Section IIIA, .- : .
The optimal curve for constant acceleration is
obtained by setting the initial velocity and the steady
state weight to zero. Optimizing with respect to the
transient response of accelerating targets results in
larger values for 8 as shown by the-dash-dot line in
Fig. 9. The equation describing this curve is
obtained by applying the same algorithm as for the
case of constant velocity maneuver. It can be
shown that the dash-dot line in Fig. 9 is described

by - .
By, =3-32a+1v/(36-60a+a?)

CORRESPONDENCE

(45)

and the second equation that needs to be satisfied is
0= [48°(4c> — 48 + 3 + 4Ba)lk

+a’T3 (% — B2 — 4 + ). (46)

The dashed line in Fig. 9 which corresponds
to a cost function including the steady state error
reveals that minimizing the steady state error of the
tracker by increasing the weight x, forces Stobe
maximized. The two equations describing the optimal
solutions for the case where the objective function has
a strong penalty on the steady state error are derived
as follows:

Bia=2-20+2/(0- 22 N
0 = [—4a’ + (16 — 48)a? + (88 — % — 16)ala,T?
+8kf32 - -(48)

For both scenarios, (43) and (47), the second
derivatives have been verified to ensure local minima,
whereas only one optimum reveals a fower cost.

Observing Fig. 9 revéals that better noise
smoothening is obtained with smaller values of g
and o, conversely, faster response is obtained with
higher values of 3. The special case of constant
velocity has its fastest response at a = § = 1. The
three discussed objective functions containing constant
velocity, constant acceleration and steady state are
illustrated in the subplots of Fig. 10 as a function of
the weight «. A change in the variance can easily be
translated into a change of the weighting factor, since
these parameters appear as constants in the same cost
function.

Following the aforementioned technique for
optimizing the a—f3 filter, we design the optimal
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Fig. 11.

a—f— filter. The equation of the transient error cost
functions of an a—f—y tracker is also divided in

two fractions depending only on the velocity and

the acceleration. Two sets of the optimal smoothing
parameters are shown in Fig. 11, which have been
derived by the constrained parameter optimization
algorithm. The upper plot uses a constant accelecation
input without initial velocity, whereas the lower

plot shows the optimal sclution for a combined cost
function with an acceleration of 0,03 m/s* and a
velocity of 3 knots. As also observed in Fig. 9, higher
parameters cause a faster system response. Conversely,
for better noise smoothing, the optimal parameters are
decreasing. A closed-form expression of the optimal
set of parameter can be derived for a straight line
target trajectory where the target is accelerating. The
gradient matrix of the cost function with respect to «,
b, and c is

d‘]abc,v dJabc,a d(Pz)

da da da 1 1
d‘]abc,v dJabc.n d(ﬂz) 1 =G

— “abe
b " Wb || 5 -
o KX KX,

d"abc.v dJabc,a d(Pz ) 0 0

de de de

(49)

where the previously introduced transformation into
the a-b-c space is carried out {equation (9)). Equating
the determinant of G, to zero and solving for the
parameter b, leads to the optimal solution in the a-b-¢
space:

b = (1+c)a—1)+a’c
e (2 a)

(50)
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Optimal solution of «, 8, for straight line maneuver with two different cost functions.

_(Q+cHe+1-a)

b, .

1))
It can be seen that &, reduces to the optimal solution
of the a—g filter (equation (43)) if ¢ = —1, whereas
b, vanishes for this case. The two additional
conditions to be satisfied cannot easily be simplified.
Furthermore, to ensure the optimality of the sclution
the parameter resulting in the smaller cost is selected.
The optimal solutions of the «, F and v parameters
are derived for a constant initial velocity and changing
acceleration of a target moving along a straight
line. The objective function for this case consists
of the transient maneuver error cost equation (37),
and the prediction noise-ratio equation (18). We
arrive at the optimal solutions shown in Fig. 12 by
using a numerical optimization during which the
positive-definiteness of the Hessian evaluated at the
optimal parameter b, and b, has been verified. The
positive-definiteness of the Hessian for the solutions
(50) and indefiniteness for (51) implies that one is
a global minimum b, and the other is a saddle b,.
Fig. 12 shows the change of the smoothing parameters
versus the acceleration. It can be observed that for
zero acceleration, the filter reduces to the a—2 filter
since the a—p filter is able to track a nonaccelerating
target. Increasing the acceleration results in increasing
~ and since the rate of changing the velocity increases,
[ also increases.

V. CONCLUSION

This paper focuses on the design of a—{—y filters.
The issue of the determination of the stability volume
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Fig. 12, Optimal o,3,7 parameters at constant sensor noise and changing acceleration.

TABLE I
Jury $ Stability Table of a—g--y Filter

Row ZO Zl 22 Z3
1 a-1 ~20-0+1y+3 a+rf+iv-3 1
1 a+f+iy-3 —2a—B+4y+3 a—1

3 oo —2) old—2a— A+ 10—y ala+A~2+47)- 5 —

is first addressed. A simple technigue to simplify
the procedure to determine the stability bounds on
thé e, 3, and « filters is proposed. This includes
parameterizing the characteristic equation of the
a—3— filter via a nonlinear transformation to what
is referred 1o as the a-b-c space. In this space, the
characteristic equation appears to be the product -

of the charactenstw equation of an a—2 filter and

a first order pole which is only a function of the
parameter ¢. One can now easily. determine the
bounds on the parameters with knowledge of the
bounds on the parameters of an a~3 filter. Therefore,
the stability volume in the a-b-c space is a prism
which can be transformed into the a—3-y space. To
quantify the performance of a—3—v filters, various
metrics are defined such as the noise ratio which is
a figure of demerit to represent the noise filtering
capability of the tracker. A closed-form solution to
the noise ratio is arrived at in the a—f—y space which
reduces to the noise ratio for the a—3 filter when ~
is equated to zero. The resulting solution is shown
to be different from that derived in the literature.
Numerical simulations are carried out to evaluate
the veracity of the derived-solution. Closed-form
equations to characterize the transient performance
of the o-3—y tracker for straight line and circular
maneuvers are also derived. These are subsequently
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used in conjunction with the noise ratio to determine
the optimal set of the tracker parameters based on a
cast function which is a weighted combination of

the noise ratio, the transient response metric and the
steady state error. Variation of the tracker parameters
for different weights of the cost function are studied
to provide the designer with information for the
optimal selection of the «, 3, and v parameters.

APPENDIX

A. Jury’s Stability Test of a—3—y Filter

The Jury’s Table constructed from the coefficients
of the characteristic polynomial (equation (52)) of
nth-order yields Table [

-1

P@y=ay"+a" "+ +a, z+a, (52)

The Jury's stability criterion requires a set of
constraints to be satisfied. The condition a, > 0 is
satisfied for the a—G— filter since g, = 1. To satisfy
the constraint |a,| < a,, the criterion requires
loe — 1] < 1, which is equivalent to

0<a<?. (53)

Substituting z = 1 and applying the constraint -
P(z)|,-, > 0, requires satisfaction of the inequality
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TABLE I
Square of Noise Ratios According to Different Approaches

Sklansky Benedict & Bordner Tenne & Singh
Pregiictign Noise —3aB8+68- 3% _ 20? +af +28 . 40~
Ratio p 3a(d —2a-f) . ad—2a—-F)  old 20— Pad +ay—27)
Update Noise _ 202 —3af + 25 ~3aB+28 4871 —a)?
Ratio g} al@—2a=p) . “@—20-B) | od—2a - BYAaB + a7 —27)
Simulation ) for y=0:
P2 = 1.9540 P = 12058 — " = 1.9565
o =0.7398 — o2 =0.7391 =0.1391

Note: Results are obtained with o = 0.5 and 3 =0.7.

L+(@+B+iv-3N+(-2a—F+iv+D+a-1>0

which can be rewritten as

> 0. (54)
Satisfying the constraint P{z)!,__, <0, for odd n,
yields
2a+fB<4 (55)

which is the same constraint for « and 3 as the a—3
filter. The last condition that |b,) > |by|, where

a a
bo=| ™ " k=0,1,2,...n—1 (56)

Gy Oy
is used to construct the third row of Table I, requires

loa—2)| > lala~2) +a(B+ i -7l (5T

Observing (57) and knowing the fact that a{a —2)
is always negative within the stability area, we have

a(B+ 1) — v >0.

This statement leads to the constraint on -y for which
the a—3—y tracker is stable, which is
403

v < —.

o (58)

B. Derivation of Square of Noise Ratio

The square of the noise ratio is coincident with the
(1, 1) element of the covariance matrix divided by the
input noise variance. The elements of the symmetrlc
covariance matrix are
. [Pl Pz]_
P P

The steady state solution of (17) can be obtained by
writing:

(59

P(k) = ®( - KC)P, (k)1 — KC)TtI>T + ®Ko2KTaT.
(60)

and equating the elements on the left and right side,
thus obtaining three equations for the three unknown
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elements of P. Employing a symbolic solver returns
the following covariance matrix:

28+ af +20%)
P 2| ed—pF-2a)

"7 pea+s
al(4—58—2a) .

B(2a + 5)
ald—-8-2a)
232
T2a{d -3 —a)

(61)
The square of the prediction noise ratio is then
obtained by

P =CELTjo?

_ 20 +af+2p
T o4 -2a-5)"

C. Numerical Simulation of Noise Ratio

To prove the veracity of (18), numerical
simulations are carried out. Results of simulating
an a—g filter for normally distributed white noise
are used to calculate the noise ratio by calculating - -
the ratio of the rms value of the output and input; - -
Table II summarizes the different solutions for the™
square of the noise ratio and displays the 'simulation -
result for the parameter set a = 0.5 and §=0.7.2" "~
As is clear from the table, the solution of Sklansky -
does not match the results of the simulation while"
(18) matches the simulated results. Sklansky’s’’
sampled continuous model differs from the discrete *
representation used in this work, In-addition, the
update noise ratio derived by Benedict and Bordner -
is shown i in Table II'and matches the numencal
results.
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Gating Techniques for Maneuvering Target 'I‘rackmg
in Clutter

Gating techniques for maneuvering target tracking using an
IMM-PDA filter are considered in this paper. Existing gating
techniques, namely, Centralized Gating and Model Based Gating
are reviewed and new gating techniques, called Model Probability
Weighted Gating and Two-Stage Model Probability Weighted
Gating, are propesed. A benchmark trajectory and a random
scenario are considered for performance evaluation of the gating
techniques in terms of RMS errors, percentage of track loss and
computational load.

I. INTRODUCTION

Tracking a maneuvering target in clutter is
important in many applications. However clutter
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