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Abstract: This paper considers the design of open-loop fuel/time optimal controllers for flexible space struc-
tures using a frequency domain approach. The control system consists of a time-delay filter whose output
signal is the optimal control profile when it is subject to a step input. A constrained parameter optimization
problem is formulated to minimize a weighted combination of fuel consumed and total maneuver time for a
rest-to-rest maneuver. The parameters to be optimized for are the delays of a time-delay filter. The number
of switches of the fuel/time optimal control profile is shown to be a function not only of number of flexible
modes but also of the weighting parameter, which is illustrated via numerical examples.
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1. INTRODUCTION

The design of optimal controllers for space structures has been extensively studied over the
past decade. In most of these studies, the optimization objective has been the minimization
of the maneuver time (Singh, Kabamba, and McClamroch, 1989; Singh and Vadali, 1994),
the fuel consumed (Seywald et al., 1994; Silverberg and Redmond, 1993), or a weighted
combination of both (Vander Velde and He, 1983; Hartmann, 1994). Since most large space
structures are inherently restricted in weight, the structure is usually assumed to possess
significant flexibility

Recently, Seywald et al. (1994) investigated all possible control logics including singular
controls in fuel optimal solutions for a rigid spacecraft reorientation problem. Silverberg
and Redmond (1993) presented an exact numerical solution for fuel optimal reboost control
problem for flexible spacecraft by using an adaptive Grid Bisection method. Singh, Kabamba,
and McClamroch (1989) revealed the antisymmetric time property of time-optimal control
profiles for rest-to-rest slewing maneuvers of flexible spacecrafts. They determined the
switch times of an open-loop controller by solving a set of nonlinear algebraic equations.

The weighted fuel/time optimal control problem has been investigated with considerably
less attention even though it is characterized by general applicability Vander Velde and

He (1983) presented a general approach for fuel/time optimal control of flexible structures
with any number of flexible modes and any number of thrusters. The switching logic of the
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feedback controller with &dquo;bang-oi~ bang&dquo; type profile is based on the gradient of the optimal
cost function for any initial condition by decoupling the optimal control problem into separate
subproblems for rigid body and flexible mode control. This technique has inherent difficulties
in forcing the state to its final destination (origin of the state space). Lopes de Souza (1988)
improved the final behavior of the control system by replacing the approximate solution of the
flexible mode subproblem with the exact one. Wie et al. ( 1993) examined the robust fuel/time
optimal control problem of undamped flexible structures with one and two flexible modes.
They concluded that the &dquo;bang-off-bang&dquo; pulse sequences are the fuel/time optimal profiles.
Recently, Singh and ~adali (1994) introduced a frequency domain approach to solve the time-
optimal control problem. This technique was exploited to determine the closed-form solution
of the fuel/time optimal control of a floating undamped oscillator (Singh, 1995).

The present work includes a frequency domain approach for the design of open-loop
fuel/time optimal controllers for flexible space structures. The optimization addresses the
minimization of a weighted combination of fuel consumed and final maneuver time. This
problem is attractive since it covers the fuel-optimal and time-optimal cases in the limits of
the weighting parameter a (a ~ oo and a -~ 0, respectively). The system to be controlled
is represented by a linearized dynamic model with one rigid body mode and multiple flexible
modes. The planar (single-axis) control maneuvers considered here are performed by using
nonthrottleable on-off type actuators, which are commonly used for space structure control
applications. Saturation limits of the actuator are taken into account by imposing magnitude
constraints on the control signal. The open-loop control system consists of a time-delay
filter, which generates an optimal control profile of the &dquo;bang-off-bang&dquo; type when subject
to a step input. Such a design facilitates reformulation of the optimization problem as the
optimization of the time delays of the filter. The parameter optimization problem is subject
to constraint equations to satisfy the boundary conditions of the rest-to-rest maneuver and to
prevent residual vibrations of the flexible modes, which are susceptible to being excited by
the discontinuous nature of the control input.

The number of switches in the control profile not only is dependent on the number of
flexible modes but also is a function of the weighting parameter. This leads to transition

profiles for small values of the weighting parameter, which, in the limits of its valid range,
is able to generate the time-optimal and the fuel/time optimal control profile (Singh, 1995).
The points of transition of the control profiles correspond with the collapse of pulses in the
control profile, whose exact determination is considered in this work.

The paper is organized as follows. The problem is formulated in Section 2. In Section 3,
the control scheme and the corresponding design technique are introduced. Next, in Section 4,
the constraints of the control optimization problem are stated, before the actual determination
of the fuel/time optimal control profile is detailed in Section 5, which also includes remarks
about optimality conditions. A simple numerical example illustrates the proposed design
technique in Section 6. The number of switching points in the optimal control profile as a
function of the weighting parameter leading to transition profiles is described in Section 7.
The paper concludes with some observations in Section 8.

2. PROBLEM FORMULATION

The design of a controller for reorienting flexible space structures, which minimizes a
performance index-a weighted combination of the maneuver time and fuel consumed-
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is considered here. The final time is not prespecified, and the fuel flow rate is assumed to be
proportional to the time the control is on. Thus, the design of fuel- and time-optimal control
can be stated as the minimization of the performance index

where the performance index J is a summation of the final maneuver time tf and the control
fuel used. The weighting parameter, a > 0, is chosen to indicate the relative importance of
elapsed time and fuel expended.

The linearized dynamic model of a flexible space structure with one rigid body mode and
flexible modes can be represented in the state space form:

where x e ~2&dquo;+2 are the system states, A is the system matrix (2n + 2) x (2n + 2), and B
is the control influence matrix. The problem considered here is a single input system, where
B is a column matrix (2n + 2) x 1 and the control input u is constrained such that

2.1. Boundary Conditions of the System

The flexible space structure considered in this paper is assumed to have no structural damping
and can be represented by the vector differential equation of motion:

where M is the mass matrix, K the stiffness matrix and b is the control influence vector, and
x and u are the generalized coordinates and the scalar control input, respectively.

The boundary conditions for a rest-to-rest maneuver, which indicates no residual

vibrations, are

Decoupling the systems equation (equation 4) by a similarity transformation with the matrix
of eigenvectors of the system 4l, we have

where q, is the ith modal coordinate, 0J, is the corresponding eigenfrequency (i = 1 to n),
and 0 is the rigid body coordinate. The new control influence vector is

 at PURDUE UNIV LIBRARY TSS on April 12, 2015jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


798

The transformed rigid body and flexible mode boundary conditions are

where

To ensure that the controller satisfies these boundary conditions (equations 7 and 8), we will
derive appropriate constraint equations after we have parameterized the control profile.

3. PARAMETERIZATION OF THE CONTROL PROFILE

The design of the fuel/time optimal controller is reformulated as the design of a time-delay
filter whose output is a bang-off-bang control profile after being subjected to a step-input
signal (Figure 1). The amplitude of the filter signals is constrained to satisfy the control
bounds (equation 3). Besides satisfying the actuator limits, the transfer function of the time-
delay filter is required to cancel the poles of the system to prevent residual vibrations of the
flexible modes at the final maneuver time (equation 7). The design of the time-delay filter
also takes into account the boundary condition for the rigid body mode as stated in equation
8. We now solve a constrained parameter optimization problem where the parameters to be
optimized for are the time delays of the filter that correspond to the switch times of the bang-
off-bang control profile.

In previous works, the time-optimal control profile for undamped systems was noted
to be antisymmetric about mid-maneuver time (Singh, 1989). As we assume no structural
damping in our system, we also use a transfer function of an antisymmetric profile, which
can be shown to cancel two poles at the origin of the s-plane. Furthermore, the antisymmetry
of the control reduces the number of parameters to be optimized for.

While the optimization theory (Pontryagin’s minimum principle) leads to bang-bang
profile in time-optimal control, it results in a bang-off-bang profile in the fuel- and time-
optimal cases. The intuitive justification for penalizing the fuel consumed for large values of
the weighting parameter, a , leads to the assumption of a control structure with only positive
pulses in the acceleration phase before mid-maneuver time and only negative pulses in the
deceleration phase after mid-maneuver time, as also seen in Wie et al. (1993).
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Figure 1. Time delay filtec

Thus, the bang-off-bang control input profile is expressed in the frequency domain as a
summation of time-delayed step-inputs where the time delays correspond to the switch times
of the control:

where TN is the mid-maneuver time, T, (i = 1... N-1) are the switching times before mid-
maneuver time, and 2TN - T, are the corresponding switching times after mid-maneuver
time.

The transfer function of the time-delay filter consequently is

This transfer function has to satisfy all boundary conditions (equations 7 and 8), which can
be achieved by canceling all poles of the system.

As will be illustrated in the following sections, the number of parameters to be
determined, N, are not linearly related to the number of flexible modes n but are given as
follows:

This implies that the same number of switches are required for the system with even number of
modes n and the system with odd number of modes n + 1. The case-dependent relationship
between number of modes and number of switches is inherent for fuel- and time-optimal
control and will be discussed later.
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4. CONSTRAINTS OF FUEL/TIME OPTIMAL CONTROL PROBLEM

4.1. Rigid Body Constraint

The fuel/time optimal controller has to satisfy the rest-to-rest constraint of the rigid body
mode. To derive the rigid body constraint in terms of the unknown parameters, we consider the
Laplace transformed decoupled rigid-body mode equation of motion with the parameterized
control input:

Evaluating the inverse Laplace transformation of equation (11) and equating the rigid body
mode 0 at final time tf = 2TN to Of,,,,, leads to the following constraint equation:

4.2. Pole Cancellation Constraint

The transfer function (equation 10) has to cancel all poles of the system to avoid residual
vibrations at the final time as expressed in the boundary conditions for the flexible modes
(equation 7). The undamped system we consider has two rigid body poles at the origin of the
s-plane and n complex conjugate poles along the imaginary-axis. The transfer function G(s)
has two zeros at the origin (s = 0), as

therefore canceling the two rigid body poles, and thus the velocity constraint of the rigid body
mode, at final time, is automatically satisfied.

As all other flexible mode poles of the system at sk = -:tjWk (k = 1... n) are required
to be canceled to satisfy the final time-flexible mode constraint (equation 7), we force
the transfer function zeros to coincide with the location of the system poles by deriving
appropriate constraint equations.

The imaginary poles sk = -:tjOJk are canceled by G(s) if
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Substituting sk = jcvk in equation (13) and equating both real and imaginary parts to
zero, leads to

These equations can be rewritten after algebraic manipulations as

Satisfaction of the equation

implies the satisfaction of equations (16) and (17) and leads to n constraint equations. We
now have n + 1 constraints in N parameters, where N is always greater than or equal to n + 1.

5. DE ATION OF THE FUEL/TIME OPTIMAL CONTROL

The fuel/time optimal control profile can be determined by solving the constrained parameter-
optimization problem. The performance index to be minimized (equation 1) can be rewritten
in terms of the unknown parameters as

The parameter optimization problem can be stated as the minimization of J subject to the
constraints:
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and

where

for odd number of flexible modes

for even number of flexible modes.

A sequential quadratic programming algorithm with user-supplied gradients of the per-
formance index (19) and the constraints (20-22) is used to solve the constrained optimization
problem.

S.l. Necessary Conditions for Optimality

The necessary conditions for the optimality of the fuel/time optimal controller are listed
below For the fuel- and time-optimal control problem considered here, the Hamiltonian
His

where A E ~Zn+2 is the costate vector. u* is called an optimal control if the following set of
necessary conditions is satisfied:

Equation (27) is a necessary condition since the final time tf is free and H does not contain t
explicitly (Athans and Falb, 1966; Kirk, 1970). Pontryagin’s minimum principle is expressed
by equation (26) and indicates that the optimal control u* has to minimize the Hamiltonian

.3~
H along the optimal trajectory. The minimum principle is used, since ~u - 0 cannot&eth;u
be determined analytically With the knowledge that the optimal control minimizes the
Hamiltonian, we need to consider only those terms of the Hamiltonian that are functions
of u:

u
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With the control constraint u ~ < 1, the switching logic

minimizes the Hamiltonian. Thus, a switch in u* (t) occurs if the switching function A*’ (t)B
crosses the horizontal lines with ordinate intercept of a or -a at the switching times
T = Tl, T2,..., TN-l. With the definition of the deadzone function:

u* (t) can be expressed as follows:

Therefore, the optimal control u* (t) can be uniquely specified as a function of the switching
function BT A* (t), if the switching function has no singular interval. Hartmann (1994) has
shown that the problem considered is normal, which precludes singular intervals.

5.2. Solving for Optimal Control

By excluding singular intervals in the switching function as shown in Hartmann (1994) we
assume normality of the problem and thus the optimal control u* (t) is determined by the
optimal costates A* (t). The costates are given by the solution of equation (25), which is

Thus, solving for A* (0) also determines the optimal control profile u* (t). To determine

A* (0) E ~2n+2 , we need a set of 2n + 2 independent equations.
From the switching logic (equation 28) we know the exact value of the switching function

at the (2N- 2)-switch times Ts = 7i,..., 7~-i, 2TN - TN_1 , ... , 2TN - T

Substituting equation (29) in equation (30), we obtain equations that have to be satisfied at
every switch time:
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In the case of an even number of flexible modes, N = n + 2 and equation (31 ) provide
2n + 2 equations that are sufficient to compute A (0) E ~2&dquo;+2 . But we will include another
optimality condition and a costate-characteristic to obtain two more linearly independent
equations. This allows us to have a sufficient set of independent equations for determining
A (0) even in the case of an odd number of flexible modes where N = n + 1.

As stated previously, the Hamiltonian H is not explicitly a function of time and the final
time in the fuel- and time-optimal problem is free, thus the necessary condition (equation 27)
of the Hamiltonian being equal to zero for Vt E [0, tf gives us:

or

Furthermore, it was shown in Hartmann (1994) that for our problem the costates

corresponding to every state representing velocity are equal to zero at mid-maneuver time
TN and thus the switching function at mid-maneuver time is

We can express equation (33) in terms of~,*(0) by

Equations (32) and (34) provide us with two linearly independent equations, which enables
us to solve for A* (0) even in the case of odd number of flexible modes. Thus, A* (0) can be
determined by solving the matrix equation (equation 35), which combines equations (31),
(32), and (34):

where P is a square matrix for the case with an odd number of flexible modes (N = n + 1).
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Figure 2. Three-mass-spring system.

After substituting the parameters Ti, T2, ... , TN obtained from the parameter
optimization algorithm into the matrix equation (35), we can solve for A* (0), and therefore
the optimal control profile, by the switching logic stated in equation (28). If the control

profile u(t) determined by the optimized parameters Ti, T2,..., TN switches exactly at the
switching times of the optimal control u* (t) (equation 28),

the (necessary) conditions for optimality are satisfied and the control can be considered to be
optimal.

6. NUMERICAL EXAMPLE

Singh (1995) has solved the fuel- and time-optimal control problem for the benchmark two-
mass-spring system in closed form. Since a system with an increased complexity cannot be
solved exactly, we consider the fuel- and time-optimal control problem of a three-mass-spring
system to demonstrate the feasibility of the proposed design technique.

6.1. Three-Mass-Spring System

The system dynamic is characterized by the masses mi, m2, m3 and the stiffness of the springs
kl, k2 (Figure 2). The control u(t) is applied on the first mass with the objective of controlling
the displacement of all masses of the system.

The matrix equation of motion for this system is

with the boundary conditions for a rest-to-rest maneuver being
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Decoupling equation (36) with the matrix of eigenvectors 4l leads to

where OJ1 and OJ2 are the eigenfrequencies of the system. The decoupled boundary conditions
are

Since we have an even number of flexible modes (n = 2), we need to determine N =
n + 2 = 4 parameters for the corresponding fuel- and time-optimal control profile, which is
determined by the transfer function of the time-delay filter

The optimization problem is to minimize

subject to the constraint equations

and
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6.2. Equivalent Rigid Model

The fuel- and time-optimal control for a corresponding rigid model of the flexible structure
can be solved analytically in closed form and serves as a reference to compare the results of
the flexible system. Thus, the mass of the equivalent rigid model is identical with the total
mass of the three-mass-spring system and its equation of motion is

where x is the rigid body displacement and u the control input

is parameterized in terms of the first switch time T¡ and the mid-maneuver time T2. Solving
equation (45) in terms of the parameterized control u, so as to satisfy the boundary conditions
(equation 37), we have

The performance index can be expressed in terms of7i as

The minimization of J,, is given by which leads to the optimized parameter

The corresponding optimal performance index is

The variation of J*, 7~, and 2T*2 for the rigid model as a function of a are compared with
the corresponding value for the flexible structure to exemplify the peculiarities of the optimal
control solution for the flexible structure.

6.3. Effects of Variation of a

The effect of the weighting parameter a on the optimal control is studied next. We use the
nominal values of the parameters with ml = ~2 = m3 - 1 and k1 = k2 = 1 with
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Figure 3. Performance index as a function of a.

appropriate units to obtain the variation of the optimal solution as a function of a. The

corresponding eigenfrequencies are oil = 1, OJ2 = V3, and for a rest-to-rest maneuver with
ty(tf ) = 1, the quotient of the rigid body boundary constraint equation (equation 44) is

Four parameters have to be solved in the previously described optimization problem with
three constraint equations. The presence of trigonometric functions in the constraint
equations results in multiple admissible solutions, all of which satisfy the constraint
equations. Thus, the optimization algorithm converges to different solutions that are strongly
dependent on the initial guess. To obtain the optimal solution, the results have to be filtered
by the optimality conditions as described in 5.2. The variation of the optimal performance
index as a function of a, (a > 1) is shown in Figure 3.

Each piecewise linear curve of the highlighted graph corresponds to the optimal control
in a certain range of a. At the location of the discontinuities, the optimal solution jumps to
another set of switching parameters as clearly shown in the variation of the final switch time
as a function of a (Figure 4). The piecewise linear characteristic was also observed in the
closed-form solution of the two-mass-spring system by Singh (1995) and can be attributed
to the fact that the constraint equations are a function of trigonometric expressions leading to
multiple optimal solutions. Generally, increasing a forces the fuel consumption to decrease
due to shorter pulse width at the expense of the final maneuver time (Figures 4 and 5). Figure
3 illustrates that the optimal performance index of the flexible structure resides in the vicinity
of the corresponding rigid structure.
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Figure 6. Transition from time-optimal to fuel/time optimal control.

For large values of a , the changes within the range of one set of optimal solutions become
very small. Thus, the change in the performance index in this range is mainly caused by the
variation of a itself.

7. TRANSITION PROFILE

7.1. Profile for Small Values of 0:

The fuel- and time-optimal control problem includes the time-optimal control case (a = 0).
The optimization theory (Pontryagin’s minimum principle) establishes that the time-optimal
control profile is of the &dquo;bang-bang&dquo; type as shown in Figure 6(a). Each switch in the bang-
bang profile corresponds with the switching function changing signs (a = 0). As soon as
a > 0, an interval exists between +a and -a in which the switching function requires the
control to be zero. This forces the bang-bang into a bang-off-bang profile as shown in Figure
6(b). This transition profile is marked by negative (decelerating) pulses in the acceleration
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phase (t < TN ) and positive (accelerating) pulses in the deceleration phase (t > TN ), which
tend to collapse with an increasing a, which penalizes the fuel-consumption. The value of
a corresponding to the collapse of these pulses is denoted with a trans and determines the
transition from the small a profile to the fuel- and time-optimal control profile as shown in
Figure 6(c). In the limits a = 0 and a = a trans, the transition profile structure can generate
both the time-optimal profile and the fuel- and time-optimal profile described in the previous
section.

7.2. Number of Switching Points in the FuellTime Optimal Control Profile

The number of switch times,p, in the time-optimal profile is linearly dependent to the number
of flexible modes n (Singh and Vidali, 1994) and is given by the relationship

Since the antisymmetry of the time-optimal profile reduces the number of parameters N
determining the profile structure, the relationship of the number of parameters to be solved,
to the number of flexible modes is

With a > 0, every switch of the time-optimal profile leads to two switches of the transition
profile, leading to

where ptrans is the number of switches and Ntrans the number of parameters to be determined
in the transition profile. The bang-off-bang structure of the generated transition profile reveals
n pulses, which collapse for a = a r,.a,~ in the case of an even number of flexible modes, and
n + 1 pulses collapse in the case of an odd number of flexible modes. Each collapsing pulse
corresponds to the reduction of two parameters. The case-dependent number of collapsing
pulses causes the resulting case-dependent number of parameters to be determined for the
fuel- and time-optimal profile (a > a trans) detailed in the previous section with

Thus, the structure of the transition profile changes due to increased penalization of fuel
consumption with a > a trans, which results in the collapse of all fuel-wasting pulses and
leads to the case-dependent number of switch times in the fuel- and time-optimal control
profile.

7.3. Determination of atrans

The value of a trans where the fuel- and time-optimal control profile for large a transforms
into the transition profile for small a is determined by using the switching function BT A (t)
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Figure 7. Large a control profile with a ~ atrans,

corresponding to a ~.a&dquo;S. This switching function tangentially touches the lines parallel to the
abscissa with ordinate intercept value of a r,.a,~ at the time t~.a,~ and the line with ordinate
intercept value of -a trans at tf - tt,.~, respectively, as shown in Figure 7. This leads to the
following equations:

To solve the nonlinear equations (51 )-(54) for the two unknowns a trans and ttrans ~ the

corresponding switching function has to be evaluated. A (0), which determines the switching
function, can be computed from the matrix equation (35) detailed in Section 5.2.

With ~,(0) = P-1 [-a - a ... a a - 1 - a 0]~, the set of nonlinear equations can be
written as
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Figure 8. Small a profile for three-mass-spring system.

which can be solved for a trans and t~.a&dquo;S by a nonlinear equation-solving algorithm. Due to the
variation of Tl, T2,..., TN with a, the optimization algorithm has to be implemented into
the nonlinear equation-solving algorithm to provide the equation solver with the appropriate
values of Tl, T2, ... , TN and P-l, respectively.

7.4. Numerical Examples of atrans

The effect of the mechanical properties of the flexible structure on a trans is studied for the

three-mass-spring case, where only one transition switch point and one additional pulse-pair
exist (Figure 8).

Increasing both stiffness-coefficients, kl and k2, simultaneously by a stiffness factor,
changes the frequencies of the vibratory modes proportionally The effect of the variation
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Figure 11. Transition profiles in the small a range for four-mass-spring system.

of the stiffness on a trans and the transition switch point ttra&dquo;S is shown in Figures 9 and 10,
which were generated by the procedure delineated in the previous section.

As the stiffness increases, the value of the transition weighting parameter converges
toward zero and increases rapidly with a decreasing stiffness factor lower than 1. Hence,
paying attention to the existence of the small a profile (transition profile) becomes very
important in a soft structure. Figure 10 also reveals that with the stiffness of the structure, the
transition switch point for the additional pulse of the small a profile approximates the switch
points of its neighbored switch times, indicating short off-periods and a small transition region
for a fairly stiff system.

7.5. Transition Profile for Four-Mass-Spring System

The four-mass-spring system represents the class of structures that have more than one pair
of fuel-wasting pulses in the small a profile. Increasing a in the valid range of the transition
profile reveals that all the fuel-wasting pulses do not collapse simultaneously ata trans, which
denotes the value of complete transformation. The first decelerating pulse in the acceleration
phase collapses at a trans! < a trans, leading to different transition profiles in the small a range
(0 < a < a r,.a,~). The two different transition profiles for the four-mass-spring system are
shown in Figure 11.

The presence of different transition weighting parameters enables us to determine each
transition point separately by the procedure presented above. The number of pulses Ps that
vanishes with a > a ~rans is related to the number of flexible modes n and is given by
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Figure 12. Time- and fuel/time optimal control profiles according to the number of flexible modes.

Figure 12 gives an overview of the effects of number of vibratory modes of the structure to
the optimal control profile.

8. CONCLUSIONS

A frequency domain approach to design fuel- and time-optimal controller for rest-to-rest
maneuver of undamped flexible structures has been presented. It has been shown that the
fuel- and time-optimal control consists of an on-off pulse sequence (&dquo;bang-off-bang&dquo; type).
The optimal solution is dependent not only on the system boundary constraints but also on
the number of flexible modes of the structure. The variation of the weighting parameter a
penalizing the fuel consumption reveals two fundamental properties of the fuel- and time-
optimal control:
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1. Discontinuities in the switch times and final maneuver time as a function of the weight-
ing parameter. Furthermore, for large values of a, the optimal solution is almost con-
stant over a certain range of a .

2. The existence of transition profile(s) in the small a range, which, in its limits, is able
to generate both time-optimal and fuel- and time-optimal control profiles. The small
a profile is marked by decelerating pulses in the acceleration phase and accelerating
pulses in the deceleration phase, which collapse completely at a certain value of a ~.a&dquo;S.

The influence of the systems parameter on the solution in the transition region was
examined. The knowledge about the transition region and its influencing factors is important,
since it crucially determines the structure of the controller.

The complex constraints that permit multiple solutions lead to numerical difficulties in
the optimization. Current research efforts are directed at extending the frequency domain
approach to solve fuel/time optimal controller for damped system and to determine control
profiles that are robust to errors in system parameters.
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