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In general, the uncertainty propagation problem, in which the

uncertain initial condition evolves through a dynamic system driven

by noise, is seen strictly from the producer’s perspective. This

means that uncertainty propagation algorithms are derived and

evaluated based on statistical measures independent of the user’s

decision needs. However accurate the uncertainty evolution given

by a particular method, it may be less than optimal to the user

or the decision maker, who takes decisions based on an implicit or

explicit utility function. While in a static environment, one may be

able to select an appropriate method for uncertainty propagation,

in a dynamic environment with an ever-changing utility function

this becomes a challenging task.

The goal of the present work is to reconcile the two views into

a decision-centric framework which provides both a more accurate

approximation to the relevant probability density function and a

more precise expected utility value for the decision maker. A numer-

ical example using a puff-based dispersion model, for forecasting

downwind concentrations of toxic materials, demonstrates the ca-

pacity of this approach to focus computational resources on regions

of particular interest such as high population density. A second

example shows improvement over alternative methods as measured

by a variety of utility-weighted metrics.
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1. INTRODUCTION

Decision makers increasingly rely on mathematical

models in choosing the right set of actions in critical

situations. The accuracy of mathematical models in pre-

dicting the physical state of the system directly affects

the accuracy of the decision making process. Such sit-

uations are often encountered in deployment of emer-

gency responders in response to extreme events such as

covert release of hazardous material, storm surge due to

a hurricane, wild fire, etc. Disaster response managers

routinely use numerical modeling to assist in hazard re-

sponse and mitigation. However, any numerical model

used to forecast physical state variables and assist in

decision making is a reflection of numerous assump-

tions and simplifications to permit the determination of

a tractable model. The error inherent in any model is a

result of model truncation, errors in model parameters,

and errors in initial and boundary conditions. Together

these factors cause overall prediction model accuracy to

degrade as the simulation evolves. Hence, it is important

to forecast the evolution of a physical state variable with

its attendant uncertainty given the uncertainties in the

inputs to the numerical model. Based on the forecast of

physical state and associated uncertainty, decisions can

be made on deploying emergency responders, evacuat-

ing cities, sheltering or medical gear caching.

The optimal decision under uncertainty corresponds

to maximizing the expected value of a utility function or

minimize the expected value of a loss function [40]. The

utility or its complement, the loss function, are defined

to measure the consequences of the decision making

process. The accurate computation of the expected loss

requires the knowledge of the probability distribution of

the physical state variable due to model and input un-

certainties. The exact time evolution of state probability

density function (pdf) is given by the Fokker-Planck-

Kolmogorov Equation (FPKE) [27].

If FPKE could be solved for the state pdf, it would be

possible to calculate statistical moments like the mean

state and the error covariance at different times as well

as different expectations such as the expected loss. Ana-

lytical solutions for the FPKE exist only for a stationary

pdf and are restricted to a limited class of dynamical

systems [9, 27]. Thus researchers are actively looking

at numerical approximations to solve the FPKE [15—

17, 20, 23], generally using the variational formulation

of the problem. However, these methods are severely

handicapped for even low dimensions because the dis-

cretization of the space over which the pdf lives is, com-

putationally impractical.

To emulate the exact methods, many approximate

techniques exist in the literature to approximate the

uncertainty evolution problem, the most popular being

Monte Carlo (MC) methods [8], Gaussian closure [12],

Equivalent Linearization [28], and Stochastic Averaging

[18, 19]. All of these algorithms except Monte Carlo

methods are similar in several respects, and are suitable
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only for linear or moderately nonlinear systems, because

the effect of higher order terms can lead to significant

errors. The Markov Chain Monte Carlo (MCMC) or se-

quential Monte Carlo methods [31] are other attractive

alternatives in the case of low-order nonlinear systems

to solve the FPKE. Their applicability to higher-order

systems, particularly in “plain-vanilla” forms, is limited

by their high computational complexity and sensitivity

to properties such as the rate of decay of the conditional

pdf. As noted by Daum [7], sequential Monte Carlo

methods are not immune to the “curse of dimensional-

ity,” and their effective use should take into account the

smoothness constraint implied by the FPKE.

Recently Terejanu et al. [36] have proposed the

Gaussian mixture model for accurately solving the

FPKE in a computationally effective manner. The key

idea is to approximate the state pdf by a finite sum of

Gaussian density functions whose mean and covariance

are propagated using linear theory. The weights corre-

sponding to different Gaussian kernels are updated by

requiring the mixture to satisfy the FPKE [36]. With

this formulation, the mixture problem can be solved

efficiently and accurately using convex optimization

solvers, even if the mixture model includes many terms.

Another advantage of the proposed method is that it

decouples a large uncertainty characterization problem

into many small scale problems. As a consequence, the

algorithm can be parallelized on today’s high perfor-

mance computing systems. Although Gaussian mixture

idea has been successfully applied to low and moder-

ate dimension systems (n=O(10)), including the uncer-

tainty propagation through two-body system and toxic

cloud transported by wind [10, 36, 37], like any other

method to solve the FPKE it only provides an approx-

imate description of the uncertainty propagation prob-

lem by restricting the FPKE solution space to a small

number of parameters.

In general, the uncertainty evolution process does

not take into account the knowledge about the decision

making process. Evaluation of the approximate state pdf

provided by different methods is based on statistical

measures, such as minimization of FPKE error, integral

square error between true pdf and its approximation

[36], mean square error [14] or expected exponential

of estimation error [4, 29]. This process is indepen-

dent of the user’s decision needs and is referred here

as the producer’s perspective where the accuracy of the

forecast is the main driver in the algorithm evaluation

[14]. These assumptions make the problem tractable and

computationally efficient, which satisfies the require-

ment of minimizing decision latency, but the approx-

imations may be of little use when computing the ex-

pected loss, since they are not sensitive to the decision

maker’s loss function [37]. For example, an approxi-

mation which underestimates a tail of the forecast pdf

where the main support of the loss function resides.

Ideally the uncertainty evolution should be per-

formed from the user’s perspective [25], i.e., it should

take into account the structure of the utility or loss

function. While in a static environment, one may be

able to select an appropriate method for uncertainty

propagation, in a dynamic environment with an ever-

changing utility function this becomes a challenging

task. The main objective of this work is to reconcile

the two views into a decision-centric framework which

provides both a more accurate approximation to the rel-

evant state probability density function and a more pre-

cise expected utility value for the decision maker. This

is achieved by incorporating contextual loss information

held by the decision maker into the density forecasting

process.

We use a Gaussian mixture approximation to the

state pdf and propose a “non-intrusive” way of com-

puting an approximate pdf that addresses the region of

interest and is closer to the true pdf in the sense of mini-

mizing FPKE error. Non-intrusive refers here to the fact

the we do not require a new uncertainty propagation

method when incorporating the loss function into the

derivation. The interaction level between the Decision

Maker (DM) and Density Forecasting (DF) is acting

at the process refinement level which manages the re-

sources of the density forecasting method, in this case

the location of the Gaussian components.

A progressive selection method is designed to add

new Gaussian components to the initial Gaussian mix-

ture, such that probabilistic support is reaching the re-

gion of interest at the decision time. The initial weights

of the added Gaussian components are set to zero and

they are modified when propagated throughout the non-

linear dynamic system to minimize the error in the

FPKE [36]. Therefore, if there is any probability density

mass in the region of interest it will be represented by

the non-zero weight of the new Gaussian components

at the decision time.

We mention that the similar ideas have been ex-

plored in risk sensitive particle filters [39], which are

not to be confused with risk sensitive filters [4, 29].

The risk sensitive particle filter modifies the sampling

density of the standard particle filter so that more sam-

ples are generated in high risk regions of the state space.

This is achieved with a risk function obtained using a

Markov decision process to approximate the future risk

of decisions from a particular state.

The structure of the paper is as follows: first the

decision making problem is stated in Section 2 and

the Gaussian Sum approximation to the forecast pdf

is presented in Section 3. The progressive selection of

Gaussian components is derived in Section 4 followed

by two numerical examples in Section 5 to motivate

and to illustrate the performance of the method. The

conclusions and future work are discussed in Section 6.

2. PROBLEM STATEMENT

Consider a general n-dimensional continuous-time

noise driven nonlinear dynamic system with uncertain
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initial conditions given by the following equations:

_x(t) = f(t,x(t)) +¡ (t)

x(t0)» p(t0,x0)
(1)

where ¡ (t) represents a Gaussian white noise process
with the correlation functionQ±(t¡ ¿), and uncorrelated
with the initial condition.

We are interested in finding the forecast proba-

bility density function p(t,x(t)) whose time-evolution
is given by the following partial differential equa-

tion known as the Fokker-Planck-Kolmogorov Equation

(FPKE) [27]:

@

@t
p(t,x) =¡@p(t,x)

T

@x
f(t,x)¡p(t,x)Tr

·
@f(t,x)

@x

¸
+
1

2
Tr

·
Q
@2p(t,x)

@x@xT

¸
: (2)

Given a state space region of interest at a particular

decision time, td, which may be represented as a loss

function by the decision maker, L(xd,ad), the expected

loss of an action ad is calculated as follows:

L(ad) =

Z
L(xd,ad)p(td,xd)dxd (3)

where xd is the state of the system at decision time,

t= td.

If the FPKE in (2) can be solved exactly for the

forecast pdf, p(td,xd), it would be possible to obtain
the expected loss and also find the optimal Bayesian

decision [24], if a set of decisions exists. Although

analytical steady state solutions for the FPKE exist

for a limited class of dynamical systems, finding the

solution for the generic nonlinear system in (1) is not

a trivial task. In practice, we only know a numerical

approximation to the state pdf p(td,xd), denoted by

p̂(td,xd). As a consequence of this, we can only compute
an approximated value of the expected loss and hence

optimal decision:

L̂(ad) =

Z
L(xd,ad)p̂(td,xd)dxd (4)

âd = argminad

Z
L(xd,ad)p̂(td,xd)dxd: (5)

The decision making process in the density fore-

casting context is presented in Fig. 1 (left). Obviously

if we have a good approximation for the forecast pdf in

the region of interest the same can be said for the ex-

pected loss. This situation becomes more dramatic when

a large deviation exists between the actual and the esti-

mated forecast pdf in the region of interest. In the case

of evaluation of a single decision, the algorithm may

underestimate the actual expected loss, L̂(ad)¿ L(ad),

or overestimate it, misguiding the decision maker with

respect to the magnitude of the situation. In the case

when a optimal decision has to be chosen, the large

Fig. 1. Left figure represents the classic approach to decision

making in the density forecasting context. The right figure shows the

proposed model.

difference between forecast pdfs may result in picking

not only a suboptimal decision but a very consequential

one.

While one can derive a new method to approximate

the forecast pdf by including the loss function in the

derivation and overweighting errors in the region of in-

terest to better approximate the expected loss, it will

accomplish this at the expense of worsening the global

approximation of the pdf. This will coarsen other es-

timates based on the forecast pdf, independent of the

utility function, such as the mean of the pdf, the modes

of the pdf, etc. The loss in global accuracy in estimat-

ing these statistics may end up misleading the decision

maker with respect to the dominant behavior of the sys-

tem.

In other words, if we name the computation of the

expected loss of a given action as impact assessment and

the computation of the moments and other quantities

based on the pdf as situation assessment, one will require

that both to be as accurate as possible. At the limit, if

we can compute exactly the forecast pdf we accurately

obtain both impact assessment and situation assessment

since we can quantify exactly the probability of all the

outcomes. The proposed decision-centric framework for

density forecasting is in agreement with the information

flow across the fusion levels of the JDL model proposed

in [32]. Both an upward flow and a downward flow is

necessary to obtain relevant inferences.

Since the decision maker holds important informa-

tion regarding the use of the pdf obtained from the den-

sity forecasting method, we can incorporate this infor-

mation in the uncertainty propagation process in a non-

intrusive manner (do not have to derive a new method),

by supplementing the inputs into the density forecast-

ing module. The proposed method is shown in Fig. 1

(right), where a new interaction level is introduced be-

tween the decision maker and the uncertainty propaga-

tion, that uses the contextual information provided by

the decision maker to supplement the inputs of the den-

sity forecasting process. In other words the proposed

method changes the environment in which the density

forecasting method is running.
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Therefore, we want to find an approximation to the

forecast pdf, p̂¤(td,xd), that addresses the interest held
by the decision maker and provides both a better impact

and situation assessment than p̂(td,xd). These objectives
can be captured by the following two relations:Z

jp(td,xd)¡ p̂¤(td,xd)j2dxd ·
Z
jp(td,xd)¡ p̂(td,xd)j2dxd

(6)

jL̂¤(ad)¡L(ad)j · jL̂(ad)¡L(ad)j: (7)

In the present paper, we will design an interaction

level between the decision maker and the uncertainty

propagation module that approximates the pdf using a

Gaussian mixture. The interaction level is adding new

Gaussian components to the initial uncertainty, such that

they will be positioned near the region of interest at

the decision time. Their initial weights will be set to

zero, thus the initial uncertainty is not changed, but

the evolution of the weights is dictated by the error in

the FPKE as in the Adaptive Gaussian Sum algorithm

used to propagate the uncertainty in [36]. Thus if any

probability density mass is moving naturally towards

the region of interest, the weights of the new Gaussian

components will become greater than zero. Therefore

the method will find if there is any probability density

mass in the region of interest.

In this paper we will consider only the forecast of

the pdf when no measurements are available between

the current time and the decision time. A suggestion,

on how this can be used in the case when we have

observations to assimilate between the current time and

the decision time, is given in Section 4. In the following

section we present the uncertainty propagation method

for DF and in Section 4, the algorithm in the DM-DF

interaction level is derived.

3. APPROXIMATION OF THE FORECAST
PROBABILITY DENSITY FUNCTION

In this section, we briefly summarize the Gaussian

mixture model approach to solve the FPKE; more de-

tails can be found in our prior work [30, 36]. The main

idea of this approach is to approximate the state pdf

by a finite sum of Gaussian density functions whose

mean and covariance are propagated using linear the-

ory. The weights corresponding to different Gaussian

kernels are updated by requiring the mixture to satisfy

the FPKE [36].

Let us consider the following equation depicting the

Gaussian mixture model approximation for the forecast

density function, p(t,x):

p̂(t,x) =

NX
i=1

witN (x(t);¹it,Pit)| {z }
pgi

N (x;¹it,Pit) = j2¼Pitj¡1=2

£ exp[¡ 1
2
(x¡¹it)T(Pit)¡1(x¡¹it)]

(8)

where ¹it and P
i
t represent the mean and covariance of

the ith component of the Gaussian pdf, and wit denotes

the amplitude of ith Gaussian in the mixture. The pos-

itivity and normalization constraint on the mixture pdf,

p̂(t,x), leads to following constraints on the amplitude
vector:

NX
i=1

wit = 1, wit ¸ 0, 8t (9)

In [2], it is shown that since all the components

of the mixture pdf of (8) are Gaussian and thus, only

estimates of their mean and covariance need to be

maintained, they can be propagated between t and t0 =
t+¢t using the linear system propagation methods

such as the Extended Kalman Filter (EKF):

_¹it = f(t,¹
i
t) (10)

_Pit =A
i
tP
i
t+P

i
t(A

i
t)
T+Q (11)

Ait =
@f(t,x(t))

@x(t)

¯̄̄̄
x(t)=¹it

: (12)

Although, in this paper we present only the EKF

model to propagate the mean and covariance of each

of the Gaussian component, one can easily use some

advanced linear propagation methods like unscented

Kalman filter [13] or quasi-Gaussian Kalman filter [5]

to propagate the mean and covariance more accurately.

The weights of the Gaussian components are not

known and must be computed as part of the solution

process. Using the following approximation for the

total derivative of the weights, _wit = (1=¢t)(w
i
t0 ¡wit),

the unknown weights wit0 are found by minimizing the

integral square FPKE error as discussed in [35, 36].

Substituting (8) in (2) leads to,

e(t,x) =
@

@t
p̂(t,x) +

@p̂(t,x)T

@x
f(t,x) + p̂(t,x)Tr

·
@f(t,x)

@x

¸
¡ 1
2
Tr

·
Q
@2p̂(t,x)

@x@xT

¸

=
1

¢t

NX
i=1

pgiw
i
t0

+

NX
i=1

Ã
@pTgi
@¹it

_¹it+Tr

·
@pgi
@Pit

_Pit

¸
¡ 1

¢t
pgi

+
@pTgi
@x

f(t,x)+pgiTr

·
@f(t,x)

@x

¸

¡1
2
Tr

"
Q
@2pgi
@x@xT

#!
wit: (13)

Since the FPKE error of (13) is linear in Gaussian

weights, the integral square FPKE error minimization

problem can be written as the following quadratic pro-
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gramming problem:

min
wi
t 0

1
2
wTt0Mcwt0 +w

T
t0Ncwt

s.t 1TN£1wt0 = 1

wt0 ¸ 0N£1

(14)

where wt 2RN£1 is the vector of weights at time t,
wt0 2RN£1 is the vector of unknown weights at time
t0, 1N£1 2 RN£1 is a vector of ones, 0N£1 2 RN£1 is a
vector of zeros and the components of the two matrices

Mc 2RN£N and Nc 2RN£N are given by

mcij =
1

¢t2
j2¼(Pit+Pjt )j¡1=2

£ exp
·
¡1
2
(¹it¡¹jt )T(Pit+Pjt )¡1(¹it¡¹jt )

¸
for i 6= j (15)

mcii =
1

¢t2
j4¼Pitj¡1=2 for i= j (16)

and,

ncij =
1

¢t
pgi

Z
V

Ã
@pTgj

@¹jt
_¹jt +Tr

"
@pgj

@P
j
t

_P
j
t

#
¡ 1

¢t
pgj

+
@pTgj

@x
f(t,x) +pgjTr

·
@f(t,x)

@x

¸

¡1
2
Tr

"
Q
@2pgj

@x@xT

#!
dx: (17)

Details on the derivation of the above relations can

be found in [36, 38]. Notice that to carry out this mini-

mization, we need to evaluate integrals involving Gaus-

sian pdfs over volume V which can be computed ex-

actly for polynomial nonlinearity and in general can be

approximated by the Gaussian quadrature method. By

updating the forecast weights, not only can we obtain a

more accurate estimate but also a better approximation

to the forecast probability density function [35].

The estimated pdf is used to compute the expected

loss. We require that the loss function provided is

positive, finite everywhere and it is able to distinguish

the important states from the unimportant ones. For

simplicity the loss function used in this work has the

following form:

L(xd,ad) =N (xd;¹L,§L): (18)

Due to the approximations used in propagating the

pdf it may happen that no or very little probability

density mass exists in the region of interest at the

decision time, depicted here by the loss function. In the

following section we present an algorithm which adds

new Gaussian kernels to the initial mixture such that

they will be positioned in the region of interest defined

by the loss function at the decision time, increasing the

accuracy of the expected loss.

4. DECISION MAKER—DENSITY FORECASTING
INTERACTION LEVEL

The iterative method proposed here, is adding a set

of Gaussian components to the initial pdf that are sensi-

tive to the loss function at the decision time. After prop-

agation, these Gaussian components will be located near

the center of support of the loss function at the decision

time. Initially the weights of these components are set

to zero, and they will be updated in the propagation

step, using the method in Section 3, if any probability

density mass is moving in their direction. The weights

at the decision time will give their relative contributions

in computing the expected loss with respect to the entire

pdf.

An algorithm, called the Progressive Selection of

Gaussian Components (PSGC), that bears similarity to

the simulated annealing and the progressive correction

used in particle filters [21], is proposed in selecting the

initial Gaussian components sensitive to the loss func-

tion. The means of the new Gaussian components will

be sampled from a proposed distribution, pSmp(t0,x0),

which is recursively constructed to be sensitive to the

contextual loss function. The support of the proposal

distribution or sampling pdf is gradually mapped into

a region that covers the support of the loss function at

decision time.

The main idea in constructing the sampling pdf is

as follows: initially set the sampling pdf equal to the

uncertain initial condition in (1), select the means and

covariances of a set of Gaussian components based on

this distribution, propagate each one of them using the

time update equations in the Extended Kalman Filter,

Eqs. (10)—(11), until the decision time is reached, and

based on the contributions to the expected loss find their

corresponding weights. The new sampling pdf is just the

weighted sum of the of the initially selected Gaussian

components. The sampling process is repeated until all

the Gaussian components are located in the support

region of the loss function at the decision time. The

remainder of the section details the derivation of this

procedure.

Let initially the sample pdf, pSmp(t0,x0), to be equal

to the initial uncertainty given by p(t0,x0), which is

modeled using a Gaussian sum as in (8). Compute the

mean and the variance of the sample pdf:

¹0 = E[x0] =

Z
x0pSmp(t0,x0)dx0 (19)

P0 = E[(x0¡¹0)(x0¡¹0)T]

=

Z
(x0¡¹0)(x0¡¹0)TpSmp(t0,x0)dx0: (20)
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For the first iteration the above two moments are
computed as follows:

¹0 =
NX
i=1

wi0¹
i
0 (21)

P0 =

NX
i=1

wi0[P
i
0 + (¹

i
0¡¹0)(¹i0¡¹0)T]: (22)

Assume that we want to add another M new Gaus-
sian components to the initial pdf with zero weights and
sensitive to the loss function. We sample the means of
these Gaussian components from the proposal distribu-
tion such that their equally weighted sum gives the mean
in (21).

¹i » pSmp(t0,x0) for i= 1 : : :M ¡ 1 (23)

¹M =M¹0¡
M¡1X
i=1

¹i: (24)

The default covariance of the Gaussian components
is D. We want to find the new covariance D¤ such
that the covariance of the new Gaussian components
matches the covariance of the sample pdf, P0. Let
D¤ = °D. Thus we want to find ° such that we minimize
the following expression:

J° = Tr

"
P0¡

1

M

MX
i=1

(°D+(¹i¡¹0)(¹i¡¹0)T)
#
(25)

° =
1

Tr[D]
Tr

"
P0¡

1

M

MX
i=1

(¹i¡¹0)(¹i¡¹0)T
#
:

(26)

Only solutions ° > 0 are accepted. Otherwise we re-
peat the sampling of the means, starting with (23). Once
we have the first two moments of the new Gaussian
components, we propagate them using the time update
equations in the Extended Kalman Filter, Eqs. (10)—
(11), until we reach the decision time. Let ¹id and P

i
d be

their means and covariances at the decision time, t= td.
The Gaussian components will then be weighted based
on their contribution to the expected loss. A larger con-
tribution means a more sensitive component to the loss
function, thus a larger weight.
To be able to compute the weights of the Gaus-

sian components, make sure that all of them are fairly
weighted, we are not running into numerical problems
and also create an indicator to mark the end of the algo-
rithm, we compute an inflation coefficient for the loss
function. Let §¤L = ®§L be the inflated covariance of
the loss function.
The inflation coefficient ® is found such that the

expected loss computed using the most distant Gaussian
component from the loss function is maximized. Let the
mean and the covariance of the most distant component
be denoted by ¹maxd and Pmaxd respectively.

Jmax =

Z
N (xd;¹L,®§L)N (xd;¹maxd ,Pmaxd )dxd

=N (¹L;¹maxd ,®§L+P
max
d ): (27)

An equivalent way to seek ® is by minimizing the

negative logarithm of the above expectation.

Jmin = log[det(®§L+P
max
d )]

+ (¹L¡¹maxd )T(®§L+P
max
d )¡1(¹L¡¹maxd )

(28)

Let us denote K= ®§L+P
max
d and U= (¹L¡¹maxd )

¢ (¹L¡¹maxd )T. We seek ® > 0 such that

@Jmin
@®

= 0 (29)

Tr[K¡1§L¡K¡1UK¡1§L] = 0: (30)

After a few mathematical manipulations, (30) can be

written in the following format:

Tr[K¡1§L(®I+P
max
d §¡1L ¡U§¡1L )K¡1§L] = 0:

(31)

Using the following notation, A=K¡1§L and B=
®I+Pmaxd §¡1L ¡U§¡1L , (31) can be written as Tr[ABA]
= 0. Observe that for ® > 0 the matrix A is symmetric
and positive definite. Hence, by applying Lemma 1 from

Appendix A to (31) we get,

Tr[®I+Pmaxd §¡1L ¡U§¡1L ] = 0: (32)

Therefore we accept solutions ® > 1 that satisfy the

following relation

®=
1

n
Tr[(U¡Pmaxd )§¡1L ]: (33)

For ®· 1 we stop the algorithm, because all the
Gaussian components, including the most distant one,

are located near the center of support of the loss func-

tion. Otherwise, ® is used to compute the inflated co-

variance §¤L = ®§L, and the weights of the Gaussian
components are obtained based on their approximation

to the loss function by solving the following optimiza-

tion problem:

w= argmin
w

1

2

Z Ã
N (xd;¹L,§¤

L)¡
MX
i=1

wiN (xd;¹id,Pid)
!2

dxd:

(34)

The optimization in (34) is equivalent to solving the

following quadratic programming problem:

w= argmin
w

1
2
wTMw¡wTN

subject to 1TM£1w= 1

w¸ 0M£1

(35)
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where w 2 RM£1 is the vector of weights and the entries
of M 2RM£M and N 2 RM£1 are given by:

mij =Nf¹jd;¹id,Pid+Pjdg (36)

ni =Nf¹L;¹id,Pid +§¤Lg: (37)

Given the weights found in (35), the new pdf used

to sample the new means is given by,

pSmp(t0,x0) =

MX
i=1

wiN (x0;¹i,¯D¤) (38)

where ¯ · 1 is a coefficient that controls the decrease of
the initial variance. If ® has decreased from the previous

iteration this means that the Gaussian components are

getting closer to the loss function and therefore we can

decrease the variance of the initial distribution to finely

tune the position of the Gaussian components, otherwise

¯ = 1. The process is repeated starting with (19), only

this time the first two moments in Eqs. (21)—(22), are

computed using the M components that construct the

sample pdf in (38):

¹0 =
MX
i=1

wi¹i (39)

P0 =

MX
i=1

wi[¯D¤+(¹i¡¹0)(¹i¡¹0)T]: (40)

If ® < 1 or the maximum number of time steps has

been reached, then the algorithm is stopped and the new

initial Gaussian mixture is obtained as follows:

pNEW(t0,x0) = p(t0,x0) +

MX
j=1

0£N (x0;¹j ,¯D¤)

=

NX
i=1

wi0N (x0;¹j0,Pi0) +
MX
j=1

0£N (x0;¹j ,¯D¤):

(41)

The entire algorithm to select the Gaussian compo-

nents is presented in Table I and graphical illustrations

are presented in Fig. 2. In the case of multiple loss func-

tions, the algorithm is run once for each one of the loss

functions, creating sets of initial Gaussian components

sensitive to their loss function.

While not the scope of this paper, the above method

can also be applied when measurements are available

between the current time and the decision time. The

PSGC algorithm will be applied every time a measure-

ment has been assimilated and the a posteriori pdf has

been found. The drawback of this procedure is that the

number of Gaussian components will increase linearly

with the number of measurements. Instead of adding

new Gaussian components, a better way to deal with

this situation is to allocate from the total of N Gaussian

components, M which are designated to be sensitive to

the loss function and the restM ¡N to capture the dom-
inant evolution of the pdf.

The Decision-Centric Density Forecasting is ob-
tained by running first the PSGC algorithm, derived in
this section, to supplement the initial uncertainty with
M new Gaussian components sensitive to the loss func-
tion. The new initial Gaussian mixture obtained, (41),
is then propagated using the Adaptive Gaussian Sum
algorithm presented in Section 3. The following section
presents the application of the Decision-Centric Den-
sity Forecasting method to a toxic cloud transported by
wind and a low dimensional numerical example where
a number of performance measures are computed.

ALGORITHM 1 Progressive Selection of Gaussian Com-
ponents
Require: td–decision time

p(t0,x0) =
PN
i=1w

i
0N (x0;¹j0,Pi0)–initial probability

density function
M–number of extra Gaussian components
D–default Gaussian component covariance
wtol–add only Gaussian components with weights
greater than this threshold

L(xd) =Nfxd;¹L,§Lg–loss function
maxiter–maximum number of iterations

1: pSmp(t0,x0) = p(t0,x0), ®=1, ° =¡1
2: while (® > 1) & maxiter do
3: The mean and the covariance of the sample pdf,

if first iteration (21)—(22), otherwise
(39)—(40)

¹0 = E[x0] =
R
x0pSmp(t0,x0)dx0

P0 = E[(x0¡¹0)(x0¡¹0)T]
=
R
(x0¡¹0)(x0¡¹0)TpSmp(t0,x0)dx0

4: while (° < 0) do
5: Get the means of the Gaussian components

Draw ¹i » pSmp(t0,x0) for i= 1 : : :M ¡ 1
Set ¹M =M¹0¡

PM¡1
i=1 ¹

i

6: ° =
1

Tr[D]
Tr

·
P0¡

1

M

PM
i=1(¹

i¡¹0)(¹i¡¹0)Ţ

7: end while
8: Get the covariance of the Gaussian components

Pi0 =D
¤ = °D

9: Propagate the moments from t= t0 to t= td
_¹it = f(t,¹

i
t)

_Pit =A
i
tP
i
t+P

i
t(A

i
t)
T+Q

10: Get the most distant component by computing
the Mahanalobis distance

di = (¹L¡¹id)T(Pid +§L)¡1(¹L¡¹id)
¹maxd ,Pmaxd = argmax(di)

11: Compute optimal ® and the inflated matrix §¤L

®=
1

n
Tr[((¹maxd ¡¹L)(¹maxd ¡¹L)T¡Pmaxd )§¡1L ]

12: if ® < 1 then ®= 1 end if
§¤L = ®§L

13: Elements of M 2RM£M and N 2RM£1
mij =Nf¹jd;¹id,Pid +Pjdg
ni =Nf¹L;¹id,Pid+§¤Lg

14: Compute the weights
w= argminw

1
2
wTMw¡wTN

subject to 1TM£1w= 1 and w¸ 0M£1
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Fig. 2. Illustration for the PSGC algorithm. (a) Steps 1—8. (b) Steps 9—19. (c) Steps 11—12. (d) Steps 13—14. (e) Steps 15—16.

(f) Goto Step 3 if ¾ > 1 and maximum number of iterations not reached.

15: if ® is getting smaller then choose ¯ < 1
else ¯ = 1 end if

16: Set pSmp(t0,x0) =
PM
j=1w

jNfx0;¹j ,¯D¤g
17: end while
18: Set pNEW(t0,x0) = p(t0,x0)+

PM,wj¸wtol
j=1 0

£Nfx0;¹j ,¯D¤g
19: return pNEW(t0,x0)

5. NUMERICAL RESULTS

Chemical, Biological, Radiological, and Nuclear

(CBRN) incidents are rare events but very consequen-

tial, which mandates extensive research and operational

efforts in mitigating their outcomes. Many puff dis-

persion models, such as SCIPUFF [33] and RIMPUFF

[22], try to model the atmospheric transport and diffu-

sion of toxic plumes. Similarly, BIGFLOW [1] can be

used to analyze the contaminant transport problem in the

nonlinear porous media. While inherently stochastic and

highly nonlinear, these mathematical models are able

to capture just a part of the dynamics of the real phe-

nomenon and the forward integration yields an uncer-

tain prediction. The decision maker takes actions based

on the expected loss computed using both the predicted

uncertainty and the loss function, which here maps a

region of interest in the state space into a threat level,

such as the population density in a town. Thus the abil-

ity to propagate the uncertainty and errors throughout

the dynamic system is of great importance. As men-

tioned previously, the present method can be also ap-
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Fig. 3. (a) Chemical release scenario. (b) Evolution of number of people exposed.

plied for nonlinear filtering and smoothing problem

which are relevant for source determination (localiza-

tion and characterization) in the case of covert releases

[3, 6, 34].

5.1. Example 1

To motivate the concept of incorporating contextual

information into the uncertainty propagation algorithm,

we consider the following noise driven nonlinear dy-

namic system that simulates the advection and the dis-

persion of a chemical material released from an uncer-

tain location. A similar system has been previously used

in [26, 34].

The instantaneous amount of material released is

represented using a Gaussian-shaped puff, states of

which evolve using the following equations, which de-

scribe a wind pattern as shown in Fig. 3(a).

_x(t) =¡asin(by(t)) +w1(t)
_y(t) =¡acos(by(t))+w2(t)
_s(t) = a

(42)

where (x,y) is the position of the center of the puff, and

the downwind distance from the source s(tk) = sk is used

to compute the puff radius at time t= tk,

¾k = pys
qy
k : (43)

Due to the simplicity of the model and the lack of

knowledge about the initial conditions, release location

in (44), the model forecast tends to become less accurate

for longer simulations.

p(t0,x(t0),y(t0))

=N ([x,y]T; [40,31]T,diagf[1,9]2g)
s(t0) = 0:

(44)

The puff radius depends on meteorological condi-
tions specified by the Karlsruhe-Jülich diffusion coef-
ficients [22] which are set to py = 0:466, qy = 0:866.

The wind speed is considered to be a= 10 mph and the
variable b depends on the boundaries of the domain and
is set here to ¼=50. The process noise, [w1(t),w2(t)]T,
is a vector whose components are independent Gaus-
sian white noise processes induced in the process model
due to the uncertainty in the wind field. The auto-
correlation function of the process noise is given by
Q= 2I2£2±(t¡ ¿).
The concentration at each grid point, at time t= tk,

is computed using the following relation,

Ck(xg,yg) =
M

2¼¾2k
exp

Ã
¡ (xk ¡ xg)

2 + (yk ¡ yg)2
2¾2k

!
(45)

where xk = x(tk), yk = y(tk), and the instantaneous mass
released is M = 10 kg.
These equations capture the main characteristics of

puff-based dispersion models for a particular wind field.
The weights of different Gaussian components have
been updated every ¢t= 0:25 hr using the error in the
FPKE. The impulse chemical release is done in a region
of 50£ 50 sqmi and the total simulation time is 3.5 hrs.
The source location and its uncertainty as well as the
decision region of interest, here the populated area with
10,000 residents, represented with a Gaussian function,
D(x,y) in (46), are shown in Fig. 3(a).

D(x,y) = 10,000£N ([x,y]T; [15,5]T,diagf[10,5]2g):
(46)

First, we propagate the uncertainty using the first-

order Taylor expansion. We will call this method Classic

Uncertainty Propagation. To evaluate the effect of the

uncertainty propagation in the process of decision mak-

ing, we compute the probability of the chemical concen-

tration exceeding a critical value, ct = 0:0001, which is

assumed to be harmful. The decision maker may de-

cide to evacuate or not the populated area, based on

the evolution of this probability or hazard map and the

number of people placed at risk due to exposure above
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Fig. 4. Hazard maps: Probability evolution of chemical concentrations exceeding the critical value. (a) Classic uncertainty propagation after

1 hr. (b) Classic uncertainty propagation after 2 hrs. (c) Classic uncertainty propagation after 3 hrs. (d) Reference after 1 hr (Monte Carlo

simulation). (e) Reference after 2 hrs (Monte Carlo simulation). (f) Reference after 3 hrs (Monte Carlo simulation). (g) Decision-centric

uncertainty propagation after 1 hr. (h) Decision-centric uncertainty propagation after 2 hrs. (i) Decision-centric uncertainty propagation after

3 hrs.

safe concentration thresholds. Fig. 4(a), (b), (c) shows

the probability evolution of the chemical concentration

exceeding the consequential value for the Classic Un-

certainty Propagation.

As reference, we use a Monte Carlo simulation,

using 5,000 samples to evaluate as close as possible

the probability of consequential concentrations. The

evolution of the probability is presented in Fig. 4(d), (e),

(f). We observe that in reality, consequential chemical

concentrations are well into the populated area after

2 hrs. We refer to this method as Reference.

We apply the method presented in this paper to gen-

erate at most 5 new Gaussian components to be added

to the initial condition. Their means and variances are

returned by the PSGC algorithm, Algorithm 1. The ini-

tial weights of the new Gaussian components have been

set to zero. The default value for the ¯ coefficient is

0:9 and Gaussian components are included only if their

weights are greater than wtol = 10
¡3. The label used for

this method is Decision-Centric Uncertainty Propaga-

tion and its corresponding hazard map is presented in

Fig. 4(g), (h), (i).

By accounting for the populated region, we are able

to track the probability that consequential chemical con-

centrations are reaching that region. The expected num-

ber of people exposed to critical concentrations at dif-

82 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 5, NO. 2 DECEMBER 2010



ferent times are presented in Fig. 3(b) and is computed

using (47). The classic uncertainty propagation is un-

derestimating the magnitude of the situation, misguid-

ing the decision maker to make a consequential decision

such as not evacuating the region.

Ne =

Z
D(x,y)P(Ck(x,y)¸ ct)dxdy: (47)

Our method, while still using the same principles of
first-order Taylor expansion, is able to capture the prob-
ability density mass in the region of interest by adding
Gaussian components that are sensitive to this area and
to estimate the expected number of people exposed in
the same order of magnitude as the Reference.
While this example presents a particular wind pat-

tern, the method can also be applied in more realistic
scenarios using the Lagrangian puff atmospheric dis-
persion model RIMPUFF [22] in connection with any
wind forecasting module such as WRF or MM5 [11].
The next example evaluates the performance of the

decision centric forecasting method against a number of
performance measures.

5.2. Example 2

To better illustrate the steps of the proposed method,
as well as to evaluate its performance against a number
of performance measures, we also consider the follow-
ing low dimensional continuous-time dynamic system
with uncertain initial condition given by:

_x= sin(x) +¡ (t) where Q = 1

p(t0,x0) =N (x0;¡0:3,0:32):
(48)

The noise free dynamic system in (48) is of particu-
lar interest since it exhibits chaotic behavior caused by
multiple equilibrium states. The state space region of
interest is depicted by the following loss function, and
the time of decision is at td = 8 sec.

L(xd) =N
³
xd;
¼

2
,0:12

´
: (49)

First we compute an accurate numerical solution
based on the discretization of the FPKE, and this will
stand as the reference probability density function. The
performance measures for this method will be labeled
as REF. The evolution of the pdf using this method can
be seen in Fig. 5(a).
Three other approximations for the pdf are pro-

vided including the method presented in this paper. The
first approximation propagates the initial uncertainty us-
ing the Extended Kalman Filter time update equations,
Eqs. (10)—(11), labeled later as EKF. The evolution of
the pdf for this method is presented in Fig. 5(b).
For the next approximation method, we add 5 Gaus-

sian components to the initial uncertainty, creating a
Gaussian mixture with 6 components. The means of the
new components are just the result of back propagation
(from td = 8 sec to t0 = 0 sec) of 5 equidistant samples
taken in the 3 sigma bound of the loss function support.
The variance of the new components is set to 10¡10 and
their initial weights are set to zero. The label used for

TABLE 1

Performance Measures–500 Monte Carlo Runs

L̂d R̂err ISD WISD

REF 0.0332 N/A N/A N/A

EKF 4.93E-09 1.0000 0.1840 0.0015

GS BCK 0.0001 0.9968 0.0536 0.0015

GS DEC (mean) 0.0256 0.2300 0.0470 0.0004

GS DEC: Percentile Table–500 Observations

Percent L̂d R̂err ISD WISD

0.0% 0.0010 0.0151 0.0368 0.0002

5.0% 0.0142 0.0230 0.0378 0.0003

10.0% 0.0177 0.0271 0.0380 0.0003

25.0% 0.0229 0.0566 0.0387 0.0003

50.0% 0.0257 0.2270 0.0491 0.0003

75.0% 0.0313 0.3090 0.0514 0.0004

90.0% 0.0323 0.4670 0.0574 0.0006

95.0% 0.0324 0.5710 0.0601 0.0007

100.0% 0.0327 0.9700 0.0705 0.0014

this method is GS BCK and the evolution of the pdf
is shown in Fig. 5(c). While all the means of the new
Gaussian components are positioned in the loss func-
tion support region, their variances get large and the
probability density mass in that region is difficult to be
visualized.
We apply the method presented in this paper to

generate at most 5 new Gaussian components to be
added to the initial condition. Their means and variances
are returned by the progressive selection algorithm,
Algorithm 1. The initial weights of the new Gaussian
components have been set to zero. The default value
for the ¯ coefficient is 0.9 and Gaussian components
are included only if their weights are greater than wtol =
10¡3. The label used for this method is GS DEC and its
corresponding pdf is presented in Fig. 5(d).
The evolution the Gaussian components for the

last two methods is also achieved using the Extended
Kalman Filter time update equations, but it is interrupted
every ¢t= 0:5 sec to adjust the weights of different
Gaussian components using the optimization in (14).
The following performance measures have been

computed for the methods used in the experiment:

L̂d =

Z
L(x)p̂(td,xd)dxd (50)

R̂err =
1

Ld
jLd ¡ L̂dj (51)

ISD =

Z
jp(td,xd)¡ p̂(td,xd)j2dxd (52)

WISD =

Z
L(x)jp(td,xd)¡ p̂(td,xd)j2dxd: (53)

In Fig. 5(e) the forecast pdf is plotted at time td
for all the methods, for a particular Monte Carlo run.
Our method, GS DEC, is able to better estimate the
probability density mass in the region of interest.

In Table I, we present the performance measures

after 500 Monte Carlo runs. The expected loss given
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Fig. 5. The evolution of the forecast pdf and the sampling pdf. (a) REF: Numerical approximation FPKE. (b) EKF: first order Taylor

expansion approximation. (c) GS BCK: back propagated means. (d) GS DEC: progressive selection of Gaussian components. (e) Probability

density function at fd = 8 sec. (f) The evolution of the pdf, psmp(t0,x0), used to sample the means of the Gaussian components.

by the GS DEC method is consistently better over all

the Monte Carlo runs than the EKF and the GS BCK

method. We are also able to consistently give an overall

better approximation to the pdf and in the region of

interest than the EKF method, which justifies the use

of this method. Compared with the GS BCK we do a

better job on average in approximating the pdf which

suggests that there is a trade off in selecting the Gaus-

sian components regarding their means and variances.

In Fig. 5(f) it is plotted the evolution of the pdf,

pSmp(t0,x0), used to sample the means of the new Gaus-

sian components for a particular Monte Carlo run. The

pdf used in the first iteration is our initial uncertainty

and we see how it converges, as the number of iterations

increases, to a particular region in the state space that is

sensitive to the loss function at the decision time.

6. CONCLUSIONS AND FUTURE WORK

A decision-centric view to create an interaction level

between the decision maker and the density forecasting

module has been designed, such that we can incorporate

contextual information held by the decision maker into

the uncertainty propagation process to better approxi-

mate the probability density function and the expected

loss value.

The Progressive Selection of Gaussian Components

algorithm is run once at the beginning of the simulation
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to supplement the initial uncertainty with new Gaussian

components that are sensitive to the loss function at the

decision time. The weights of all the Gaussian compo-

nents are then updated during the propagation based on

the error in the Fokker-Planck-Kolmogorov Equation.

This way we obtain not only a better approximation of

the probability density function in the region of interest

but also a better approximation overall. The cost of this

overall improvement is an increase in the number of

Gaussian components. The principal benefit is not the

modest increase in accuracy overall, but the significantly

enhanced accuracy within the decision maker’s region

of interest.

Although the novel method in this paper is presented

only in the pure forecast context, it is equally relevant

in solving nonlinear filtering problems when measure-

ments are available. The implementation of the method

in stochastic filtering context is briefly discussed in the

paper, and its performance evaluation on numerical ex-

amples is set as future work.

APPENDIX

LEMMA 1 If Tr[ABA] = 0 and A is symmetric and

positive definite then Tr[B] = 0.

PROOF Let A=VSVT be a singular value decompo-

sition of matrix A, where V is a unitary matrix and S

is a diagonal matrix. Our trace can now be written as

Tr[ABA] = Tr[VSVTBVSVT] = Tr[S2B].

If Tr[S2B] = 0 then S2B is a commutator. Thus there

is X and Y such that S2B=XY¡YX. But B= S¡2XY¡
S¡2YX=X¤Y¡YX¤, where X¤ = S¡2X. Therefore B is
also a commutator, hence Tr[B] = 0.
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