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The main objective of this work is to model and exploit avail-

able contextual information to provide a hypothesis on suspicious

vehicle maneuvers. This paper presents an innovative anomaly de-

tection scheme, which utilizes L1 tracking to perform L2/L3 data fu-

sion, i.e., situation/threat refinement and assessment. The proposed

concept involves a context-aided tracker called the Con-Tracker, a

multiple-model adaptive estimator, and an L2/L3 hypothesis gen-

erator. The purpose of the Con-Tracker is to incorporate the con-

textual information into a traditional Kalman filter-based tracker

in such a way that it provides a repeller or attractor characteristic

to a specific region of interest. Any behavior of the vehicle that

is inconsistent with the repeller or attractor characteristic of the

current vehicle location would be classified as suspicious. Such in-

consistent vehicle behavior would be directly indicated by a high

measurement residual, which then may be used to estimate the

process noise covariance associated with the context-aware model

using a multiple-model adaptive estimator. Based on the rate of

change of the estimated process noise covariance values, an L2/L3

hypothesis generator red-flags the target vehicle. Simulation results

indicate that the proposed concept involving context-aided tracking

enhances the reliability of anomaly detection.
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1. INTRODUCTION

Anomaly detection refers to the problem of finding

patterns in data that do not conform to expected nor-

mal behavior. Anomaly detection is extensively used in

a wide variety of applications such as monitoring busi-

ness news, epidemic or bioterrorism detection, intrusion

detection, hardware fault detection, network alarm mon-

itoring, and fraud detection [13]. Anomaly detection in

target tracking is an essential tool in separating benign

targets from intruders that pose a threat. This paper

presents a new, innovative anomaly detection scheme

using context-aided target tracking.

Various data, feature, and knowledge fusion strate-

gies and architectures have been developed over the last

several years for improving the accuracy, robustness,

and overall effectiveness of anomaly detection technolo-

gies. Singh et al. [41] illustrate the capabilities of hid-

den Markov models (HMMs), combined with feature-

aided tracking, for the detection of asymmetric threats.

In [41], HMMs are integrated into feature-aided track-

ing using a transaction-based probabilistic model and

a procedure analogous to Page’s test is used for the

quickest detection of abnormal events. An information

fusion-based decision support tool is presented in [8]

to aid the identification of a target carrying out a pat-

tern of activity, which could be comprised of a wide

variety of possible sub-activities. Barker et al. [8] pro-

pose the time series anomaly detection methods to pro-

cess multi-modal sensor data, which are then integrated

by a Bayesian information fusion algorithm to provide

a probability that each candidate under observation is

carrying out the target activity. While the traditional

anomaly-based intrusion detection approach builds one

global profile for normal activities and detects intrusions

by comparing current activities with the normal profile,

Salem and Karim [39] propose a context-based profil-

ing methods for building more realistic normal profiles

than global ones. Moreover, contextual information is

also exploited to build attack profiles that can be used

for diagnosis purposes. Jackson et al. [21] propose a

cognitive fusion approach for detecting anomalies ap-

pearing in the behavior of dynamic self-organizing sys-

tems such as sensor networks, mobile ad hoc networks,

and tactical battle management. Fusion of relevant sen-

sor data, maintenance database information, and out-

puts from various diagnostic and prognostic technolo-

gies have proven effective in reducing false alarm rates,

increasing confidence levels in early fault detection, and

predicting time to failure or degraded condition requir-

ing maintenance action. Roemer et al. [38] provide an

overview of various aspects of data, information, and

knowledge fusion, including the places where fusion

should exist within a health management system, the

different types of fusion architectures, and a number of

different fusion techniques. Compared to these existing

context-aided anomaly detection schemes, the proposed
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approach has five main advantages:

² Existing context-aided anomaly detection schemes

are strictly observation-based while the proposed ap-

proach utilizes a dynamic model of the target. In cur-

rent approaches, observations are compared to a nom-

inal/begin target activity, while the proposed approach

compares the target model to that of a nominal model.

² The presented approach can be easily modified so
that the target model refinement is a byproduct of the

proposed anomaly detection scheme.

² The dynamic target model can be used to predict
future target states or activities.

² The proposed scheme is easily compatible with exist-
ing target tracking algorithms.

² The context-aided anomaly detection technique pre-
sented here is more general compared to existing

methods that are tailored to a specific scenario.

While early tracking algorithms have relied almost

exclusively on target location measurements provided

by sensors such as radars [31], [40], more advanced

techniques have incorporated information pertaining to

the orientation, velocity, and acceleration of the target

[18], [25]—[27], [43], [46]. This progression suggests

that increasing the amount of information incorporated

into the algorithm can improve the quality of the track-

ing process. In ground-based target tracking, a map of

terrain features affecting target motion is usually avail-

able. A terrain-based tracking approach that accounts

for the effects of terrain on target speed and direction

of movement is presented in [36]. In [34], it has been

shown that the incorporation of local contextual infor-

mation, such as the terrain data, can significantly im-

prove tracker performance. In recent years, researchers

have explored the overt use of contextual information

for improving state estimation in ground target tracking

by incorporating them into the tracking algorithm as

potential fields to provide a repeller or attractor charac-

teristic to a specific region of interest [44], [45]. In [19],

the local contextual information, termed “trafficability,”

incorporates local terrain slope, ground vegetation, and

other factors to put constraints on the vehicle’s max-

imum velocity. Simulation results given in [19] show

that the use of trafficability can improve estimate accu-

racy in locations where the vehicle path is influenced

by terrain features.

There exist several constrained target tracking algo-

rithms. The kinematic constraints on target state pro-

vides information that can be processed as a pseudo-

measurement to improve tracking performance. For ex-

ample, Alouani [3] shows that the filter utilizing the

kinematic constraint as a pseudo-measurement is un-

biased when the system with the kinematic constraint

is observable and the use of the kinematic constraint

can increase the degree of observability of the system.

Alouani and Blair [1], [2] propose a new formulation

Fig. 1. System flowchart.

of the kinematic constraint for constant speed targets,

which is shown to be unbiased and, under mild restric-

tion, uniformly asymptotically stable. Though the pro-

posed approach exploits contextual information to place

constraints on target velocity, an explicit expression for

the kinematic constraints on target state cannot be easily

obtained since the contextual information depends on

the current target position. Also, the use of a kinematic

constraint as a pseudo-measurement would severely de-

grade the performance of the proposed anomaly detec-

tion scheme.

The main goal of this work is to exploit available

contextual information to provide a hypothesis on sus-

picious vehicle maneuvers and perform L2/L3 data fu-

sion,1 i.e., situation and threat, refinement and assess-

ment (see [24] for the Joint Directors of Laboratories’

description of the various data fusion levels). Although

the approach presented herein can be applied to any

vehicle system, such as air-, ground- or sea-based ve-

hicles, the particular application here involves maritime

tracking and contextual information. For example, it is

desired to “red-flag” a boat that approaches a restricted

high-value unit area. Also, a vessel that is erratically

zigzagging across a marked shipping channel may be

red-flagged for suspicious activity. The process to pro-

vide a hypothesis of this notion is depicted in Fig. 1.

The proposed concept involves exploiting the math-

ematically rigorous approaches of L1 tracking in an

L2/L3 situation and threat, refinement and assessment

scheme. In [37], a statistical anomaly detection scheme

for maritime vessels using adaptive kernel density es-

timation scheme is presented. The methodology pre-

1Level 1 (L1) fusion is aimed at combining sensor data to obtain

accurate system states, Level 2 (L2) fusion dynamically attempts to

develop a description of relationships among entities and events, and

Level 3 (L3) fusion projects the current situation into the future to

draw inferences about threats.
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sented here consist of three main components: a context-

aided tracker, called “Con-Tracker,” a Multiple-Model

Adaptive Estimator, and a hypothesis generator.

The Con-Tracker combines contextual information

with L1 measurement information to provide state esti-

mates (position and velocity). Depth, marked shipping

channel locations, and high-value unit information are

a few examples of contextual information pertaining to

the particular maritime scenario considered here. The

purpose of the Con-Tracker is to use the contextual in-

formation in such a way that it provides a repeller or

attractor characteristic to each region developed through

a grid-spaced map of a particular area of interest. In the

propagation stage of the Con-Tracker, vehicle states are

propagated according to the repeller or attractor char-

acteristic of the current location of the vehicle. Any

behavior of the vehicle that is inconsistent with the re-

peller or attractor characteristic of the current location

would be classified as suspicious. Such inconsistent ve-

hicle behavior would be directly indicated by a high

measurement residual, which may then be used to es-

timate the process noise covariance associated with the

target model. Thus, Con-Tracker accuracy is not only

a function of the contextual information provided; its

performance also depends on the usual Kalman “tuning”

issue, i.e., determination of the process noise covariance

[4], [15]. The tuning process is a function of the actual

vehicle motion, which can vary. This variation is the

key to the hypothesis generator. This is best explained

by an example. Suppose that when a vehicle is heading

towards a high-value unit, the contextual information in-

corporated into the Con-Tracker would repel the vehicle

away from the high-value unit during the propagation

stage of the tracker. However, if the vehicle still pro-

ceeds towards the high-value unit, which is shown di-

rectly through the measurements of the vehicle location,

then in order to provide good tracker characteristics, a

large value of process noise covariance must be chosen,

i.e., tuned.

The aforementioned tuning issue is usually per-

formed in an ad-hoc manner. However, mathematical

tools can be used to automatically tune the tracker.

Multiple-model estimation schemes are useful for the

process noise identification (tuning) problem. Multiple-

model estimation approaches run parallel trackers,

where each tracker uses a different value for the pro-

cess noise covariance. The covariance is identified us-

ing the likelihood function of the measurement residu-

als, which provides weights on each individual tracker

[4]. There exist several multiple-model-based target

tracking schemes, such as the Multiple-Model Adap-

tive Estimator (MMAE), Interacting Multiple Model

(IMM), Adaptive-Interacting Multiple Model (A-IMM),

and Variable Structure-Interacting Multiple Model

(VS-IMM). All of these approaches are based on a

near-constant velocity model in some form. Kastella

and Kreucher [23] describe the design and implemen-

tation of a multiple-model nonlinear filter (MMNLF)

for ground target tracking using ground moving tar-

get indicator (GMTI) radar measurements. While target

tracking in an arbitrarily dense multitarget-multisensor

environment is a formidable problem, the interacting

multiple model algorithm techniques have been shown

to achieve reliable tracking performance [6], [10], [16],

[28]—[30]. The IMM estimator, originally proposed by

Blom [9], is a suboptimal hybrid filter that was shown to

achieve an excellent compromise between performance

and complexity. Munir and Atherton [17], [32], [33]

describe an A-IMM algorithm for maneuvering target

tracking. The algorithm proposed in [33] estimates the

target acceleration using a two-stage Kalman estimator,

and the estimated acceleration value is fed to the sub-

filters in an IMM algorithm, where the subfilters have

different acceleration parameters. A detailed survey of

existing IMM methods for target tracking problems is

presented in [30].

The main difference between IMM-based approach-

es and MMAE schemes is that IMM involves interaction

between the models that require the explicit knowledge

of transition probabilities between the modes. Since the

calculation of transition probabilities could be computa-

tionally expensive, an MMAE approach is utilized here

for the selection of appropriate process noise covari-

ance. The MMAE scheme implemented here consists of

a bank of Con-Trackers, each with a different process

noise covariance. Assuming the estimated process noise

covariance values are consistent with the truth, a small

value of process noise covariance corresponds to a case

where the context-aware target model is an accurate rep-

resentation of the true target, and a large value of pro-

cess noise covariance indicates that the context-aware

target model is a poor representation of the truth and

the target does not comply with the available contextual

information. The process noise covariance is estimated

as a weighted sum of all the process noise covariances

used and the weight associated with each covariance is

calculated using the likelihood of the process noise co-

variances conditioned on the current-time measurement-

minus-estimate residual. The estimated covariance is in-

corporated into an L2/L3 hypothesis scheme that pro-

vides a hypothesis on whether or not a vehicle motion

should be alerted to an analyst. The L2/L3 hypothe-

sis generator red-flags the vehicle based on the rate of

change of the process noise covariance and the contex-

tual information provided. Details of these processes are

provided in the subsequent sections.

2. CON-TRACKER

The main difference between a traditional tracker

and the context-aided Con-Tracker is that the target

model used in the Con-Tracker accounts for the lo-

cal contextual information. The local contextual infor-

mation is incorporated into the Con-Tracker model as

trafficability values. Trafficability is a value between

zero and one, where zero indicates a region that is
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Fig. 2. Maritime trafficability values database.

not traversable and one indicates a region that is

completely traversable. For the maritime applications

considered here, these trafficability values are based

on local traversability information and accounts for the

following four “contextual” data:

² Depth information,
² marked channel information,
² anti-shipping reports (ASR), and
² locations of high-value units (HVU).
The individual trafficability values corresponding to

each contextual information are combined into a single

value, which is used to indicate the repeller or attractor

characteristic of a specific region. Details of this proce-

dure are given next.

First, a particular area of interest is divided into a

grid-field, similar to a 15£ 20 grid-field, as shown in
Fig. 2. In Fig. 2, the purple channels indicate marked

shipping lanes. As shown in Fig. 2, the area of inter-

est contains three high-value units centered around cells

(2,11), (6,14), and (11 : : :15,8). The area also contains

two anti-shipping areas centered about cells (4,2) and

(5,17). Finally, low-depth areas are mainly indicated us-

ing different shades of brown. According to the vehicle

type that is being tracked, a single trafficability value,

ºi, is assigned to each cell. This variable is a decimal

value between 0 and 1 and corresponds to the fraction

of maximum velocity that the vehicle can attain in that

grid location. For example, the grid cell (10,17) has a

trafficability of zero due to the depth information, and

therefore, the vessels are supposed to avoid and navigate

around this particular cell.

Trafficability data is also used to deflect the direction

of target motion given by the past velocity information.

In order to implement this, at each propagation stage

in the Con-Tracker, we consider a 3£ 3 trafficability
grid-field that depends on the current vehicle position.

For example, if the vehicle is located in cell (13,3),

the 3£ 3 trafficability grid-field consists of cells (12,2),
(12,3), (12,4), (13,2), (13,3), (13,4), (14,2), (14,3),

and (14,4). A generic representation of the 3£ 3 traf-
ficability grid-field is shown in Fig. 3. The vehicle is

assumed to be located in square 5 of the 3£ 3 grid. The
3£ 3 grid is continually re-centered about the vehicle as
it moves throughout the region so that it is always lo-

cated in the center (square 5) of the 3£ 3 trafficability
grid-field. In Fig. 3, the unit vector Ĝtg 2 R2 represents
the preferred direction of the vehicle strictly based on

the trafficability information of the surrounding cells,

Ĝ¡ 2 R2 is a unit vector in the direction of target motion
given by the past state information, and the unit vec-

tor Ĝ+ 2 R2 represents the nudged velocity direction. A
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Fig. 3. 3£ 3 Trafficability grid-field: Ĝ¡ is the direction of target
velocity, Ĝtg is the preferred direction of target, Ĝ

+ is the nudged

velocity direction, and ºi indicate the trafficability of ith cell.

preferred direction based on the velocity constraint is
calculated as

Ĝtg =

P
j(ºjĜj)°°°Pj(ºjĜj)

°°° (1)

where j 2 f1,2,3,4,6,7,8,9g. The unit vector Ĝj 2 R2
points from the current vehicle location to the center of
square j. Now the nudged velocity direction of motion
is given as

Ĝ+ =
Ĝ¡+¹Ĝtg
kĜ¡+¹Ĝtgk

(2)

where ¹ is a weighting coefficient that is calculated
based on the absolute average difference in the traf-
ficability values between the current location and the
surrounding feasible locations

¹=

P
j jºj ¡ º5j
8

: (3)

Note that the proposed technique for determining the
nudged velocity direction is chosen because it is least
expensive in terms of computational requirements.

2.1. Filter Algorithm

The theoretical developments of the Con-Tracker
algorithm, which is based on the standard near-constant
velocity tracker, are now shown. The state vector used
in the filter is x 2R4, i.e.,

x= [¸ Á v¸ vÁ]
T (4)

where ¸, Á, v¸, and vÁ are the longitude and latitude
locations of the target vehicle and the corresponding
rates. In the case of the near-constant velocity models
used in the ®-¯ tracker, zero-mean Gaussian white
process noise is added to the model to account for the
possible variations in velocity [7], [22]. Our approach
modifies this concept by using the following discrete-
time model

xk+1 =

26666664

¸+ v¸¢t

Á+ vÁ¢t

º5

q
v2¸+ v

2
Á cosμ

º5

q
v2¸+ v

2
Á sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

+wk (5)

where

E[wkw
T
k ] =¨Qk¨

T

=

266666666664

¢t3

3
q1k 0

¢t2

2
q1k 0

0
¢t3

3
q2k 0

¢t2

2
q2k

¢t2

2
q1k 0 ¢tq1k 0

0
¢t2

2
q2k 0 ¢tq2k

377777777775
with

¨ 2 R4£2 and Qk ´
·
q1k 0

0 q2k

¸
:

The angle μ, the angle between the velocity vector

and the local y-axis (north axis), defines the assumed

direction of motion of the vehicle, Ĝ+, i.e.,

Ĝ+ = [cosμ sinμ]T: (6)

The unit vector Ĝ+ is determined using the trafficabil-

ity data as explained in (2). The coefficient º5 is the

trafficability of the current cell. The
q
v2¸+ v

2
Á term is

simply the magnitude of the vehicle velocity and the

trigonometric terms are used to project this value onto

the appropriate axes. When no trafficability informa-

tion is present, º5 defaults to one, and the trigonometric

terms are given by

cosμ =
v¸q
v2¸+ v

2
Á

, sinμ =
vÁq
v2¸+ v

2
Á

(7)

which reduce (5) to the standard near-constant velocity

model used in the ®-¯ tracker. Notice that the Ĝ¡ in (2)
is given as

Ĝ¡ =

24 v¸q
v2¸+ v

2
Á

vÁq
v2¸+ v

2
Á

35T : (8)

The measurement vector is assumed to be

y= [¸ Á]T+[v¸ vÁ]
T (9)

where v= [v¸ vÁ]
T is the zero-mean Gaussian white-

noise sequence, i.e., E[v] = 0 and E[vjv
T
k ] = R±jk.

Let

H =

·
1 0 0 0

0 1 0 0

¸
then the measurement equation can be written as

yk =Hxk + vk: (10)

The near-constant velocity target model without the

velocity nudging can be written in concise form as

xk+1 =ªxk +wk (11)
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where

ª =

26664
1 0 ¢t 0

0 1 0 ¢t

0 0 1 0

0 0 0 1

37775 :
The estimation error covariance is defined as Pk =

E[(xk ¡ x̂k)(xk ¡ x̂k)T], and the following equations are
used to propagate and update the error covariance ma-

trix

P¡k+1 =ªP
+
k ª

T+¨Qk¨
T (12)

P+k = [I¡KkHk]P¡k (13)

where P¡k = E[(xk ¡ x̂¡k )(xk ¡ x̂¡k )T] is the a priori er-
ror covariance and P+k = E[(xk ¡ x̂+k )(xk ¡ x̂+k )T] is the
a posteriori error covariance. The matrix Kk is the usual

Kalman gain and can be calculated using

Kk = P
¡
k H

T[HP¡k H
T+R]¡1: (14)

The vector x̂¡k is referred to as the a priori state estimate
and the vector x̂+k is referred to as the a posteriori

state estimate. The estimates are propagated and updated

using

x̂¡k+1 =

26666664

ˆ̧ + + v̂+¸ ¢t

Á̂+ + v̂+Á ¢t

º
q
(v̂+¸ )

2 + (v̂+Á )
2 cosμ

º
q
(v̂+¸ )

2 + (v̂+Á )
2 sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

(15)

x+k = x
¡
k +Kk[yk ¡Hx¡k ]: (16)

The Con-Tracker algorithm is summarized in Table I.

Note that the Con-Tracker algorithm is very similar to

that of a traditional Kalman filter-based tracking algo-

rithm without the velocity nudging during the propa-

gation stage. Since the process noise is added to the

context-aware near-constant velocity model to account

for variations in velocity, the process noise covariance

Qk indicates the accuracy of target model in (5), i.e.,

how well a target complies with the given contextual

information and the constant velocity assumption. If

the target vehicle follows the model precisely, then Qk
would be fairly small. If the vehicle maneuvers are er-

ratic and inconsistent with the model, then the process

noise covariance would be large. Since one does not

know the precise value of the process noise covariance,

an MMAE approach is implemented to estimate the pro-

cess noise covariance based on the measurement resid-

ual.

3. MULTIPLE-MODEL ADAPTIVE ESTIMATION

A brief overview of the MMAE approach is pre-

sented in this section. More details on the formulation

of MMAE can be found in [4], [11], [42]. MMAE is a

recursive estimator that uses a bank of filters that depend

TABLE I

Summary of Con-Tracker Algorithm

Initialize x̂(t0) = x̂
¡
0
, P¡
0
= E[(x0 ¡ x̂¡0 )(x0 ¡ x̂¡0 )T]

Kalman Gain Kk = P
¡
k
HT[HP¡

k
HT +R]¡1

Update x̂+
k
= x̂¡

k
+Kk[yk ¡Hx̂¡k ]

P+
k
= [I¡KkHk]P¡k

Velocity Nudging
Ĝ¡ =

"
v̂+
¸p

(v̂+
¸
)2 + (v̂+

Á
)2

v̂+
Áp

(v̂+
¸
)2 + (v̂+

Á
)2

#¯̄̄̄
¯
k

Ĝtg =

P
j
(ºjĜj )°°P
j
(ºjĜj )

°°
Ĝ+ = Ĝ¡+¹Ĝtg

[cosμ sinμ]T = Ĝ+

Propagation P¡
k+1

=ªP+
k
ªT +¨Qk¨

T

x̂¡
k+1

=

26664
ˆ̧ + + v̂+

¸
¢t

Á̂+ + v̂+
Á
¢t

º
p
(v̂+
¸
)2 + (v̂+

Á
)2 cosμ

º
p
(v̂+
¸
)2 + (v̂+

Á
)2 sinμ

37775
¯̄̄̄
¯̄̄̄
¯
k

on some unknown parameters. In the problem under

consideration, these unknown parameters are the pro-

cess noise variances (diagonal elements of the process

noise covariance) denoted by the vector qk = [q1k q2k ]
T.

For notational simplicity, the subscript k is omitted for

q. Initially, a set of distributed elements is generated

from some known probability density function (pdf) of

q, denoted by p(q), to give fq(`); `= 1, : : : ,Mg. Here,
M denotes the number of filters in the filter bank.

The goal of the estimation process is to determine

the conditional pdf of the `th element q(`) given the

current-time measurement yk. Application of Bayes’ law

yields

p(q(`) jYk) =
p(Yk,q

(`))

p(Yk)

=
p(Yk j q(`))p(q(`))PM
j=1p(Yk j q(j))p(q(j))

(17)

where Yk denotes the sequence fy0,y1, : : : ,ykg. The
probabilities p(q(`) jYk) can be written as

p(q(`) jYk) =
p(yk,Yk¡1,q

(`))

p(yk,Yk¡1)

=
p(yk jYk¡1,q(`))p(Yk¡1,q(`))

p(yk,Yk¡1)
:

Since p(Yk¡1,q
(`)) = p(q(`) jYk¡1)p(Yk¡1), p(q(`) jYk)

can be written as

p(q(`) jYk) =
p(yk jYk¡1,q(`))p(q(`) jYk¡1)p(Yk¡1)

p(yk jYk¡1)p(Yk¡1)
:
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Fig. 4. Uniform distribution and Hammersley quasi-random sequence comparison. (a) Uniform distribution. (b) Hammersley

quasi-random sequence.

Now the probabilities p(q(`) jYk) can be computed

through [4]

p(q(`) jYk) =
p(yk j x̂¡(`)k )p(q(`) jYk¡1)PM
j=1[p(yk j x̂¡(j)k )p(q(j) jYk¡1)]

(18)

since p(yk, jYk¡1,q(`)) is given by p(yk j x̂¡(`)k ) in the

Kalman recursion. The recursion formula can be cast

into a set of defined weights $(`)
k , so that

$(`)
k =$(`)

k¡1p(yk j x̂¡(`)k ) (19)

$(`)
k Ã

$(`)
kPM

j=1$
(j)
k

(20)

where $(`)
k ´ p(q(`) j ỹk). The weights at time t0 are ini-

tialized to $
(`)
0 = 1=M for `= 1,2, : : : ,M. The conver-

gence properties of the MMAE are shown in [4], which

assumes ergodicity in the proof. The ergodicity assump-

tions can be relaxed to asymptotic stationarity and other

assumptions are even possible for non-stationary situa-

tions [5]. The conditional mean estimate is the weighted

sum of the parallel filter estimates

x̂¡k =
MX
j=1

$
(j)
k x̂

¡(j)
k : (21)

Also, the error covariance of the state estimate can be

computed using

P¡k =
MX
j=1

$
(j)
k [fP¡k g(j) + (x̂¡(j)k ¡ x̂¡k )(x̂¡(j)k ¡ x̂¡k )T]:

(22)

The specific estimate for q at time tk, denoted by q̂k,
and error covariance, denoted by Pk, are given by

q̂k =

MX
j=1

$
(j)
k q

(j) (23a)

Pk =
MX
j=1

$
(j)
k (q

(j)¡ q̂k)(q(j)¡ q̂k)T: (23b)

Equation (23b) can be used to define 3¾ bounds on the

estimate q̂k.
At time t0, all the filters have the same weight

associated with them and there are many possibilities for

the initial distribution of the process noise covariance

parameters. A simple approach is to assume a uniform

distribution. We instead choose a Hammersley quasi-

random sequence [20] due to its well-distributed pattern.

A comparison between the uniform distribution and the

Hammersley quasi-random sequence for 500 elements

is shown in Fig. 4. Clearly, the Hammersley quasi-

random sequence provides a better “spread” of elements

than the uniform distribution. In low dimensions, the

multidimensional Hammersley sequence quickly “fills

up” the space in a well-distributed pattern. However,

for very high dimensions, the initial elements of the

Hammersley sequence can be very poorly distributed.

Only when the number of sequence elements is large

enough relative to the spatial dimension, the sequence

is properly behaved. This is not much of a concern for

the process noise covariance adaption problem since the

dimension of the elements will be much larger than the

dimension of the unknown process noise parameters.

4. L2/L3 HYPOTHESIS GENERATOR

As mentioned in Section 2, the estimated process

noise covariance is indicative of how well the target ve-

hicle follows the context-aware near-constant velocity

model. If the target vehicle follows the model precisely,

then the estimated process noise covariance would be

fairly small, and if the vehicle maneuvers are erratic

and inconsistent with the model, then the process noise

covariance would be large. The incorporation of con-

textual data into the model allows variations in target

vehicle velocity that are consistent with the given con-

textual information. For example, if the target vehicle

in cell (7,13) of Fig. 2 that is traveling toward cell

(5,15) makes a sharp right turn to avoid the high value

unit in cell (6,14), then the sudden change in the ve-

hicle’s velocity is consistent with the contextual data

provided, and therefore, would not result in an increase
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in the estimated process noise covariance. However, if

the target vehicle in cell (6,3) that is traveling toward

cell (3,1) continues to travel in a straight line with a

constant velocity, then there would be an increase in

the estimated process noise covariance and the vehicle

would be red-flagged despite its consistent behavior in

accordance with the near-constant velocity model. This

is because its passage into cell (5,2) is in contrast to

the anti-shipping activities reported in that area. Thus,

a hypothesis on suspicious vehicle maneuvers can be

synthesized based on the change in estimated process

noise covariance.

The near-constant velocity model combined with the

trafficability information is given by

xk+1 =

26666664

¸+ v¸¢t

Á+ vÁ¢t

º5

q
v2¸+ v

2
Á cosμ

º5

q
v2¸+ v

2
Á sinμ

37777775

¯̄̄̄
¯̄̄̄
¯̄̄̄
k

+wk: (24)

Any abrupt maneuver of the target vehicle that is in-

consistent with the context-aware model can be treated

as system process noise. This would, in turn, result in

a sudden increase in the process noise covariance es-

timated by the MMAE. The two main objectives of

the L2/L3 hypothesis generator is to red-flag a vehicle

based on the anomalies in its behavior that are indicated

by the change in process noise covariance and identify

the reason behind the red-flagging.

Since any anomaly in target behavior is indicated

by a change in estimated process noise covariance, the

proposed red-flagging algorithm is based on two sets

of process noise covariance values. One set, fq̂1k , q̂2kg,
is the MMAE estimate based on the Con-Tracker mea-

surement residual values and the second set, f³q1k , ³q2kg,
is a second pair of MMAE estimates obtained using

the standard Kalman filter-based tracker. The only dif-

ference between these two trackers is that the standard

Kalman filter-based tracker does not make use of any

contextual information. The second set of estimates,

f³q1k , ³q2kg, is used to normalize the first set of process
noise covariance values. The normalized process noise

covariances values are given as

q̄1k =
q̂1k
³q1k
, q̄2k =

q̂2k
³q2k
: (25)

Normalization would eliminate any minor deviations

in the process noise covariance values due to additive

measurement noise. It also helps to clearly identify any

abrupt maneuver of the target vehicle that is inconsistent

with the given contextual information. After normaliz-

ing the elements of the process noise covariance matrix,

their Euclidian norm is calculated as

kqkk=
q
(q̄1k )

2 + (q̄2k )
2: (26)

The rate of change of the normalized process noise

covariance norm can be calculated as

¢qk =
1

¢t
[kqkk¡kqk¡1k]: (27)

The “change” in process noise covariance indicates the

“occurrence” of target activity that is inconsistent with

the prior knowledge. Therefore, a vehicle is red-flagged

if the rate of change on the normalized process noise

covariance norm is greater than a prescribed threshold,

i.e.,

¢qk >¢qmax) Red-Flag: (28)

Considering the rate of change of the normalized pro-

cess noise covariance norm instead of the absolute mag-

nitude helps to circumvent the slow transient response

of the MMAE and thus, to avoid red-flagging a target

long after the occurrence of an anomaly.

A second red-flagging algorithm can be formulated

based on a simple Â2-test [7], [12], [35]. Suppose that

a measurement residual is defined by ek = yk ¡Hx¡k ,
where yk is the measurement and Hx

¡
k is its correspond-

ing estimate. For our case, the length of the measure-

ment vector is m= 2, corresponding to longitude and

latitude coordinates. The theoretically correct covari-

ance associated with ek, denoted by Ek, can be derived

from the Kalman filter equations, i.e., it is known from

the Kalman tracking process. Define the following nor-

malized error square (NES)

"k = e
T
kEkek: (29)

The NES can be shown to have a Â2 distribution with

m degrees of freedom. A suitable check for the NES is

to numerically show that the following condition is met

with some level of confidence

Ef"kg=m: (30)

Typically, one writes the Â2 variable with its degrees of

freedom as Â22. A probability region can be constructed

by cutting off the percent-difference upper tail. For

example, a 99% probability region for a Â2 variance can

be taken as the one-sided probability region (cutting off

the 1% upper tail)

[0, Â22(0:99)] = [0, 9:210]: (31)

Other values can be found on page 84 of [7]. If the

calculated Â2 value from (29) falls within this region,

then an Â2 test indicates that the vehicle follows the

Con-Tracker model with a high confidence of 99% and

should not be red-flagged.

The red-flagging reasoner deals with identifying the

contextual information that is conflicting with the cur-

rent target vehicle location. For example, the grid cell

(2,11) of Fig. 2 has a trafficability of zero due to the

high-value unit location. Therefore, if a vehicle is lo-

cated in cell (2,11), then the conflicting contextual in-

formation is the high-value unit locations. Since the
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Con-Tracker is assumed to have access to all the con-

textual information, the simplest red-flagging reasoner

can be synthesized by identifying which of the four

contextual data contributes to the zero trafficability at

the current location. The main assumption behind this

approach is that there is only one piece of contextual

information that is contributing to the zero trafficability

at any specific time.

A second red-flagging reasoner can be formulated

as a hypotheses testing problem. Assuming that the

hypotheses for the red-flagging reasoner problem can

be stated as:

² H1: Track is influenced by all contextual data except
depth.

² H2: Track is influenced by all contextual data except
marked channels.

² H3: Track is influenced by all contextual data except
anti-shipping factor.

² H4: Track is influenced by all contextual data except
high-value unit factor.

² H5: Track is influenced by all contextual data.
Five different Con-Trackers can be designed according

to the five different hypotheses given above. The hy-

pothesis corresponds to the Con-Tracker that has the

maximum likelihood value p(yk j x¡k ) is selected as the
candidate hypothesis. The a priori probability density

function p(yk j x¡k ) can easily be obtained from the ap-

propriate Con-Tracker equations.

5. RESULTS

In order to evaluate the performance of the a priori

subsystem, a test case scenario is developed where we

consider Hampton Roads Bay, Virginia, near the Nor-

folk Naval Station. The area of interest is first divided

into a 15£ 20 grid-field as shown in Fig. 2. Afterward,
a trafficability value is assigned to each cell based on

the target vessel type and the individual contextual data.

Since we consider four different contextual data here, a

combined trafficability value is also assigned to each

cell by combining the four individual trafficability val-

ues. As shown in Fig. 2, the harbor area contains three

high-value units centered around cells (2,11), (6,14),

and (11 : : :15,8). The harbor area also contains two anti-

shipping areas centered about cells (4,2) and (5,17).

There are several marked shipping lanes in the harbor

area that are indicated by shaded purple channels. For

simulation purposes, we consider four different target

vessels.

1) Two Ski Boats: Both ski boat tracks are indicated by

red lines in Fig. 2. Details on the individual ski boats

are given below:

² Ski Boat 1: Ski boat 1 starts in cell (15,8) and
travels toward cell (2,1). Ski boat 1 crosses over two

different marked channels at cells (14,7) and (11,5).

Finally, the ski boat 1 crosses over a anti-shipping

Fig. 5. Ski boat 1 trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

area located around cell (14,2) and travels towards

cell (2,1).

² Ski Boat 2: Ski boat 2 starts in cell (15,1) and
travels toward cell (4,20). Ski boat 2 crosses over a

marked channel in cell (11,7) and an anti-shipping

area located around cell (5,17) while traveling to-

ward cell (4,20).

2) Tugboat: Tugboat starts in cell (1,20) and travels

along the marked channel toward cell (13,1). Its

track is indicated by green lines in Fig. 2.

3) Sailboat: This boat is considered as a distressed

vessel that is stranded in cell (7,3) due to low water

depth.

For simulation purposes, the measurements are as-

sumed to be obtained from an X-band coastal radar

with a sampling frequency of 1/6 Hz. More details on

state-of-the-art maritime surveillance technologies can

be found in [48] and [47]. The measurement covariance

is assumed to be of magnitude 1£ 10¡7 to 2£ 10¡7.
In the MMAE algorithm, 200 different filters are im-

plemented using process noise covariance values in the

range of 1£ 10¡10 to 2£ 10¡20. The initial error covari-
ance is selected to be 10¡6£ I4 and the initial process
noise covariance estimate is selected to be the ensemble

mean of process noise covariance values. Details of the

simulation results are given next.

5.1. Ski Boat 1

As shown in Fig. 2, ski boat 1 starts in cell (15,7)

and travels toward cell (2,1). Fig. 5 shows the measured

and estimated trajectories for ski boat 1. Fig. 5 contains

the estimated trajectories from both context-aided Con-

Tracker (denoted as ConT) and the traditional Kalman

filter-based tracker (denoted as Trac). Fig. 6(a) shows

the estimated process noise covariance variance values

from the Con-Tracker/MMAE fq̂1k , q̂2kg and the Kalman
filter tracker/MMAE f³q1k , ³q2kg. The normalized process
noise covariance norm, kqkk, is given in Fig. 6(b). Note
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Fig. 6. Con-Tracker & tracker-estimated process noise covariance and normalized norm for ski boat 1. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 7. Rate of change of normalized process noise covariance norm and trafficability values for ski boat 1. (a) Rate of change of kqkk.
(b) Trafficability values.

the sudden increase in kqkk at times 50 sec, 150 sec,
and 350 sec. The first increase in the process noise co-

variance values occur when the ski boat crosses over the

marked channel located about cell (14,7). The second

increase in process noise covariance values occurs when

the ski boat crosses over the second marked channel lo-

cated about the cell (11,5) at around 145 sec. The final

increase in the process noise covariance values occurs

when the ski boat enters the anti-shipping area located

about cell (4,2) at around 350 sec.

Shown in Fig. 7 are the rate of change of normalized

process noise covariance norm, ¢qk, and the trafficabil-

ity values, º, for ski boat 1. The target vehicle (ski boat

1) is red-flagged based on the rate of change of nor-

malized process noise covariance norm. The maximum

allowable ¢qk is selected to be ¢qmax = 0:8. Note that

at times 50 sec, 150 sec, and 350 sec, ¢qk is higher than

its threshold value, and therefore, the target vehicle is

red-flagged at these instances. Also note the low traffi-

cability values at these instances as shown in Fig. 7(b).

Fig. 8(a) shows μ, which is the angle between the

velocity vector and the local y-axis, for the Con-Tracker

and the traditional Kalman filter-based tracker. The an-

gle is measured positive clockwise and negative coun-

terclockwise. Note that the angle obtained from the

Kalman filter based tracker is much smoother compared

to the one obtained from the Con-Tracker. The discrep-

ancies in the Con-Tracker’s angle is due to the velocity

nudging that occurs when the target vehicle encounters

a zero-trafficability area. Also note that when the boat

is traveling in a completely traversable region, μ ob-

tained for the Con-Tracker and the traditional Kalman

filter-based tracker are very similar. Fig. 8(b) shows the

red-flag alerts for ski boat 1. Here, zero indicates a no

red-flag alert and one indicates a red-flag occurrence.

Note that the red-flag occurrence and the large devia-

tions in μ are consistent with the results shown in Fig. 7.

5.2. Ski Boat 2

As depicted in Fig. 2, the second ski boat starts

in cell (15,1) and travels toward cell (4,20). Fig. 9

shows the measured and estimated tracks for ski boat

2. Fig. 10(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE
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Fig. 8. Con-Tracker & tracker-estimated direction and red-flag indicator for ski boat 1. (a) Boat direction. (b) Red-flag indicator.

Fig. 9. Ski boat 2 trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

Fig. 10. Con-Tracker & tracker-Estimated process noise covariance and normalized norm for ski boat 2. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 10(b) shows the normalized process

noise covariance norm, kqkk, for ski boat 2. Note the
sudden increase in kqkk at times 400 sec and 850 sec.
The first increase in the process noise covariance values

occurs when ski boat 2 crosses over the marked chan-

nel located about cell (11,7). The second increase in the

process noise covariance occurs when ski boat 2 enters

the anti-shipping area located about cell (5,17) around

850 sec.

Shown in Fig. 11 are the rate of change of nor-

malized process noise covariance norm, ¢qk, and the

trafficability values, º, for ski boat 2. The maximum

allowable ¢qk for ski boat 2 is also selected to be

¢qmax = 0:80. Note that at times 400 sec and 850 sec,

¢qk is higher than its threshold value, and therefore, the

target vehicle would be red-flagged at these instances.

Also note the low trafficability values at these instances

as shown in Fig. 11(b).
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Fig. 11. Rate of change of normalized process noise covariance norm and trafficability values for ski boat 2. (a) Rate of change of kqkk.
(b) Trafficability values.

Fig. 12. Con-Tracker & tracker-estimated direction and red-flag indicator for ski boat 2. (a) Boat direction. (b) Red-flag indicator.

Fig. 13. Tugboat trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

Fig. 12(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Similar to the results

obtained for ski boat 1, the angle obtained from the

Kalman filter-based tracker is much smoother compared

to the one obtained from the Con-Tracker. The discrep-

ancies in the Con-Tracker’s angle is due to the velocity

nudging that occurs when the target vehicle encounters

a zero-trafficability area. Fig. 12(b) shows the red-flag

alerts for ski boat 2. Note that the red-flag occurrence

and the large deviations in μ are consistent with the re-

sults shown in Fig. 11.

5.3 Tugboat

The tugboat starts in cell (1,20) and travels along

the marked channel toward cell (13,1). Fig. 13 shows

the measured and estimated tracks for the tugboat.

Fig. 14(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 14(b) shows the normalized process

noise covariance norm, kqkk, for the tugboat. Shown
in Fig. 15 are the rate of change of normalized pro-

cess noise covariance norm, ¢qk, and the trafficability

values, º, for the tugboat.
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Fig. 14. Con-Tracker & tracker-estimated process noise covariance and normalized norm for tugboat. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 15. Rate of change of normalized process noise covariance norm and trafficability values for tugboat. (a) Rate of change of kqkk.
(b) Trafficability values.

Fig. 16. Con-Tracker & tracker-estimated direction and red-flag indicator for tugboat. (a) Boat direction. (b) Red-flag indicator.

Fig. 16(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Fig. 16(b) shows the

red-flag alerts for the tugboat. Note that there is no red-

flag occurrence for the tugboat since it remains in the

marked shipping channel.

5.4 Sailboat

A sailboat is considered as a distressed vessel that

is stranded in cell (7,3) due to low water depth. Fig. 17

shows the measured and estimated tracks for the sail-

boat. Fig. 18(a) contains the estimated process noise co-

variance variance values from the Con-Tracker/MMAE
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Fig. 17. Sailboat trajectories: Measured position (Meas),

Con-Tracker estimate (ConT) & tracker estimate (Trac).

fq̂1k , q̂2kg and the Kalman filter-based tracker/MMAEf³q1k , ³q2kg. Fig. 18(b) shows the normalized process

noise covariance norm, kqkk, for the sailboat. Shown
in Fig. 19 are the rate of change of normalized process

Fig. 18. Con-Tracker & tracker-estimated process noise covariance and normalized norm for sailboat. (a) Estimated q1 and q2.

(b) Normalized process noise covariance norm.

Fig. 19. Rate of change of normalized process noise covariance norm and trafficability values for sailboat. (a) Rate of change of kqkk.
(b) Trafficability values.

noise covariance norm, ¢qk, and the trafficability val-

ues, º, for the sailboat. The maximum allowable ¢qk
for the sailboat is also selected to be ¢qmax = 0:80.

Fig. 20(a) shows the the angle between the velocity

vector and the local y-axis, for the Con-Tracker and

the Kalman filter-based tracker. Fig. 20(b) shows the

red-flag alerts for the sailboat. Note that the red-flag

occurrences of the sailboat are consistent with the low

trafficability values given in Fig. 19(b).

6. FINAL REMARKS

The objective of this work is to develop a context-

aware target model and exploit available contextual

information to provide a hypothesis on suspicious target

maneuvers. The proposed concept involves utilizing the

L1 tracking approach to perform L2/L3 situation and

threat, refinement and assessment. A new context-aided

tracker called the Con-Tracker is developed here. This

tracker, which has its foundation in the standard Kalman

filter based tracker, incorporates the available contextual

information into the target vehicle model as trafficability

values. Based on the trafficability values, the target
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Fig. 20. Con-Tracker & tracker-estimated direction and red-flag indicator for sailboat. (a) Boat direction. (b) Red-flag indicator.

vehicle is either attracted or repelled from a particular

area. Though the traditional Kalman filter-based tracker

uses a near-constant velocity model, the Con-Tracker

allows reasonable variations in velocity that are consis-

tent with the contextual information. Any abrupt vari-

ations in velocity that is inconsistent with the context-

aware target model would account for suspicious target

maneuvers. Also, target maneuvers that are inconsistent

with the given contextual information are also consid-

ered to be suspicious. Similar to the traditional Kalman

filter-based tracker, the accuracy of the Con-Tracker es-

timates depends on the estimator parameters, such as the

measurement noise covariance and the process noise co-

variance. While the measurement noise covariance can

be readily obtained from sensor calibration, the process

noise covariance value is usually treated as a tuning pa-

rameter. The proposed scheme utilizes a MMAE to esti-

mate the process noise covariance value. Since the pro-

cess noise is added to the near-constant velocity model

to account for reasonable variations in velocity, target

maneuvers involving large variations in velocity that are

inconsistent with the contextual information would re-

sult in an increase in the estimated process noise covari-

ance value. Based on the rate of change of the estimated

process noise covariance values, an L2/L3 hypothesis

generator red-flags the target vehicle. Simulation results

indicate that the context-aided tracking enhances the re-

liability of erratic maneuver detection.

There are several parts of the proposed scheme that

can be further modified and improved. The current

L2/L3 hypothesis generator uses the process noise co-

variance estimated using the MMAE approach. One of

the main drawbacks of the MMAE approach is that it

requires a long convergence period. Once the process

noise covariance value increases due to an erratic vehi-

cle maneuver, the MMAE approach requires the vehicle

to travel through a perfect trafficability area for a long

period of time before the process noise covariance value

settles back at its initial low value. The convergence

properties of the MMAE can be improved by incorpo-

rating correlations between various measurement times,

i.e., replacing the MMAE with the generalized MMAE

(see [14]). The red-flagging design considered here de-

pends on a threshold value for the rate of change of

the normalized process noise covariance norm. A prob-

abilistic red-flagging scheme, which integrates the cur-

rent posterior error covariance and estimated process

noise covariance, may be considered for future work.

Finally, the accuracy and performance of the proposed

scheme can be improved by considering more refined

trafficability grid-field and more frequent and accurate

measurements.
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