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This paper addresses the problem of designing jerk limited time-
optimal control profiles for rest-to-rest maneuvers of flexible
structures. The variation of the structure of the jerk profile as a
function of the permissible jerk is studied. An optimal control
problem is formulated which includes constraints to cancel the
poles corresponding to the rigid body and flexible modes of the
system and to satisfy the boundary conditions of the rest-to-rest
maneuver. The proposed technique is illustrated on the benchmark
Floating Oscillator problem where the jerk profile is parameter-
ized as a bang-off-bang or bang-bang profile.
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1 Introduction
Vibration control of slewing flexible structures has been studied

by numerous researchers with a variety of applications including
maneuvering of large space structures@1#, flexible arm robots@2#,
computer disk drives@3#, and cranes@4#. In applications such as
disk drives and cranes, the objective of the controllers is to mini-
mize the maneuver time with quiescent final states. Additional
constraints such as limits on fuel consumed, robustness to model-
ing uncertainties, maximum deformation permitted etc., have been
included into the problem formulation. Motivated by Smith’s
Posicast Control@5#, Singer and Seering@6# proposed a technique
to design an input shaper addressing the issue of sensitivity of the
Posicast controllers to uncertainties in damping and natural fre-
quencies of the underdamped modes. Singh and Vadali@7# illus-
trated that a time-delay prefilter, which cancels the underdamped
poles of the system, results in the same control profile as the input
shaped controller. They also illustrated that the use of a series of
time-delay filters results in increased robustness to modeling er-
rors.

In this paper, the problem of designing time-optimal control
profiles with constraints on the maximum magnitude of jerk is
addressed. The proposed technique is illustrated on the benchmark
two-mass/spring system undergoing a rest-to-rest maneuver. To
account for the constraint on the jerk, a new state is introduced
into the system model which represents the control input. The
time rate of change of the control input, i.e., the jerk, will now
represent the control input of this augmented system. Following
the formulation of the optimization problem, the technique for the
parameterization of the controller is discussed. It will be shown
that the optimal jerk profile is bang-bang or bang-off-bang and
varies with the magnitude of the maximum permitted jerk. The
spectrum of control profiles includes regions where the constraints
on the control are active and others where the constraints are
inactive. In the inactive regions, the time-optimal control design
requires the jerk profile to be bang-bang and techniques proposed

in the literature@8,9# can be used to verify optimality of the con-
trol profile. Numerical results are presented to illustrate the per-
formance of the proposed controller.

2 Problem Formulation
This paper deals with the design of controllers for flexible

structures, which can be described by the set of differential
equations

Mÿ~ t !1Ky~ t !5Du~ t ! (1)

whereM andK are the mass and stiffness matrices. Representing
u(t) as a new state andv(t) as the new input, the additional state
equation is

u̇~ t !5v~ t ! (2)

The optimal control problem can be stated as the design of the
jerk profile which minimizes the cost function
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subject to the constraints

2J<v~ t !<J;tP@0,Tf inal# (4)

and

21<u~ t !<1;tP@0,Tf inal# (5)

where J is the magnitude of permissible jerk andTf inal is the
maneuver time. The boundary conditions for a rest-to-rest maneu-
ver of unit displacement are given as

y~0!50 y~Tf inal!51

ẏ~0!50 ẏ~Tf inal!50 (6)

ÿ~0!50 ÿ~Tf inal!50.

3 Parameterization of Jerk Profiles
The optimal jerk-constrained control profile will be the combi-

nation of a number of time-delayed ramp functions with different
slopes. The requirement of time-optimality can be satisfied by
ensuring thatu(t) is in saturation for as much time as possible
during the maneuver. This is justified by the bang-bang principle
@10#, which states thatif an optimal control exists, then there is
always a bang-bang control profile that is optimal. Hence, if the
optimal control is unique, it is bang-bang. For the controller pre-
sented in this paper, the jerk is the control variable. Thus, the jerk
profile will be bang-bang, resulting in a ramping control input. For
large permissible amounts of jerk, the control will reach the satu-
ration level. Then a bang-off-bang profile will be used. In the
off-phases, the control inputu(t) remains saturated, exerting the
maximum possible control authority.

It will be assumed that the actuator has symmetric limits in
u(t), therefore,umax52umin51. The time rate of change is lim-
ited by uu̇(t)u<J.

The control profile is realized by a time-delay filter which
drives an integrator as shown in Fig. 1. The transfer function of
this filter is given as

G~s!5
J

s (
i 51

n

Ai e2sTi (7)

with

AiP$22, 21, 1, 2%; i . (8)

For the first switch, i.e.,i 51, A151, andT150. Similarly, for the
last switch, i.e.,i 5n, AnP$21, 1%, andTn5Tf inal .

3.1 Structure of Jerk Profiles for Undamped Systems.
The constraints for the time optimal control problem are derived
using the technique proposed by Singh and Vadali@7#, which re-
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quires cancellation of the poles of the system by the zeros of the
time delay filter. The benchmark system will be the Floating Os-
cillator as shown in Fig. 2. For this system, augmented by an
integrator, there are two undamped poles and three poles at the
origin of the complex plane.

A general result which is exploited in this work is the fact that
a transfer function has at leastn zeros ats0 , if the function evalu-
ated ats0 and its firstn21 derivatives with respect tos, evalu-
ated ats0 , are zero. This can be stated as

G~s!5~s2s0!nR~s!↔G~s!us5s0
50

and

] iG~s!

]si U
s5s0

50; i 51 . . . ~n21!. (9)

In order to cancel three poles at the origin, the transfer function
and its first two partial derivatives with respect tos evaluated at
s50 must all be zero. It can be shown that all of these constraints
are satisfied for a control profile which is point-symmetric about
the mid-maneuver time. Thus, only those control profiles are con-
sidered in the following. By constraining the admissible set of
control profiles to those point-symmetric profiles, the number of
design variables describing the control profile’s shape can practi-
cally be halved. In addition to the three poles at the origin of the
s-plane, care must also be taken of the oscillatory pair of poles.
Zeros of the time-delay filter will be used to cancel this pair of
poles. For control profiles that are point-symmetric to the mid-
maneuver time, the two pole cancellation constraints,R$G( j v)%
50 andI$G( j v)%50, result in the same constraint equation for
any arbitrarys56 j v, vP(01,`).

Finally, a constraint must be imposed that governs the dynamics
of the rigid body mode. It results in the equation

yr~Tmid!5E
0

TmidS E
0

t2 u~t1!

mr
dt1D dt25

1

2
(10)

for a final desired displacement of unity.mr refers to the mass
associated with the rigid body mode.

4 Variation of Jerk Profiles
In this section, the entire spectrum of possible jerk profiles is

described. The structure of the control profiles starting fromJ
→` to J→0 is studied. For each profile, a short explanation will

Fig. 1 Time delay filter structure

Fig. 2 Floating oscillator

Fig. 3 Jerk profiles
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also elucidate the reasons behind its name. The different profiles
evolving during the increasing limitation of the jerkJ are illus-
trated in Fig. 3.

For J→`, the control profile approaches the time optimal
bang-bang-profile reported, e.g., by Singh and Vadali@9#, which
has been termed theInfinite Jerk Profile. Next comes theUncol-
lapsed Jerk Profile. Here, the controlu(t) will go to its upper and
lower limits alternately. As will be seen in the following, some of
the switches will coincide upon limiting the permissible amount
of jerk. This is termedCollapse of Switches. Upon reducing the
maximum allowable amount of jerkJ, this collapse of switches
will happen, thus the namePartially Collapsed Jerk Profile. The
next resulting profile is theIntermediate Jerk Profile, for which
the switches are not far enough apart foru(t) to get saturated in
each interval. For theTransition Control Profile, another collapse
of switches takes place. Here, the resulting control profileu(t)
will touch its limits uu(t)u51 only at two discrete points during
the entire maneuver. Since this is the first non-saturating control
profile, time optimality can be shown using Pontryagin’s prin-
ciple. This technique has been shown in the literature@8,9# for
infinite jerk profiles.

The next profile, which will emerge, is theTotally Collapsed
Jerk Profile. At this point, all pairs of switches have collapsed, so
that uu(t)u,1. The next distinct jerk profile is theTriangular Pro-
file which gets its name from the triangular shape of the resulting
control profile. From here on, new switches have to be introduced
into the jerk profile which finally leads to theVery Small Jerk
Profile.

The jerk profiles starting from theTransition Jerk Profileresult
in control profiles which never reach their limits inu(t). There-
fore, one can exploit Pontryagin’s principle to prove optimality of
the resulting control profile.

The above development has been carried out for undamped
flexible structures. The proposed technique can be extended to
damped structures by eliminating the requirement that the jerk
profile has to be symmetric about the mid-maneuver time.

5 Numerical Example
The existence of all jerk profile structures is illustrated on the

benchmark Floating Oscillator problem~Fig. 2! with m151, m2
51 andk51. Numerical values of the parameters of the optimal
control profile are tabulated in Table 1. The control profile is given
as

u~ t !5(
i

Ai ^t2Ti&, (11)

with ^x&5x H(x) andH(x) denotes the Heaviside function.
The effect of varying the jerk constraint on the switching times

of the optimal jerk profile for a maneuver of unit length is studied.
Figure 4 illustrates the change in the structure of the optimal jerk
profile and the variation of the magnitudes of the switching times.
In the diagram, the thick vertical lines denote borders, i.e., dis-
crete values of jerk where the control profile changes its overall
shape. The boxes show the shape of the control profile in different
intervals. The thin arrows correlate the switches of the control
profiles with the switching time trajectories.

It is clear from the figure that asJ→`, the optimal control
profile tends to the unconstrained time-optimal solution derived
by Wie and Liu@8# and Singh and Vadali@7#. The inner pairs of
switches collapse for a jerk ofJ51.754, followed by the outer
pairs, which collapse for a jerk ofJ51.4451. Finally, for the
transition from theTotally Collapsed Jerk Profileto the Very
Small Jerk Profile, the middle pair of switches collapses for a jerk
of J50.0912, resulting in theTriangular Profile. For a jerk less
thanJ50.0912, two new pairs of switches are introduced into the
optimal jerk profile. This figure also shows the relation between
the maximum allowable jerk and the final time, which is repre-
sented by the topmost line. Reducing the jerk fromJ→` to J
52, for example, increases the final time from 4.2179 to 4.8017.

Figure 5 shows a typical control profile along with the system
response.

6 Conclusions
In this paper, a technique to design time-optimal jerk limited

control sequences is presented. The controller consists of a time
delay filter with a concatenated integrator. The integrator is in-
cluded to account for the finite limits on the jerk. For undamped
systems, the control profile is symmetric about its midpoint. Con-
sidering this property, the number of design variables can be re-
duced drastically. The design method can also be extended to
damped systems by annulling these symmetry requirement.

The proposed technique has been illustrated on the benchmark
Floating Oscillator problem. Upon introducing limits on the maxi-
mum allowable jerk, a number of different control profiles can
evolve, which range from a three switch to a six switch profile.
For specific values of jerk and maneuvers, a triangular control

Table 1 Coefficients for the control sequences

J 2 1.7540 1.6 1.4451 1.2 0.3 0.0912 0.05 0.02

A1 2.0000 1.7540 1.6000 1.4451 1.2000 0.3000 0.0912 0.0500 0.0200
T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A2 22.0000 21.7540 21.6000 22.8901 22.4000 20.6000 20.1824 20.1000 20.0400
T2 0.5000 0.5701 0.6250 0.6920 0.7366 1.2604 2.2214 1.8046 3.4994
A3 22.0000 21.7540 21.6000 2.8901 2.4000 0.6000 0.1824 0.1000 0.0400

T3 0.7687 0.7384 0.7162 1.9584 2.0475 2.9679 6.6643 2.5064 4.5117
A4 2.0000 3.5080 3.2000 22.8901 22.4000 20.6000 20.0912 20.1000 20.0400
T4 1.7687 1.8787 1.9140 3.1071 3.1963 3.8621 8.8858 3.6217 4.7325
A5 2.0000 23.5080 23.2000 2.8901 2.4000 0.6000 0.1000 0.0400
T5 1.9008 3.0189 3.0596 4.3735 4.5073 5.5696 8.0579 10.1482

A6 22.0000 1.7540 1.6000 21.4451 21.2000 20.3000 20.1000 20.0400
T6 2.9008 4.1592 4.2575 5.0655 5.2438 6.8299 9.1732 10.3690
A7 22.0000 1.7540 1.6000 0.1000 0.0400
T7 3.0330 4.3274 4.3486 9.8750 11.3813
A8 2.0000 21.7540 21.6000 20.0500 20.0200

T8 4.0330 4.8976 4.9736 11.6796 14.8807
A9 2.0000
T9 4.3017
A10 22.0000
T10 4.8017
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profile is optimal. The variation of the switching profiles as a
function of jerk has been presented in detail. It has been shown
how the entire range of jerk can be divided into different regions
by the shape of the control profile. Figures have been included
that clearly illustrate the development of the switching times as a
function of the maximum permissible jerk.

Numerical results show that accepting a small increase in the
final time, the jerk can be reduced considerably. The restriction in
the maximum time rate of change of the control inputs also leads
to a roll-off of the high frequency spectrum of the control profile.
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Fig. 4 Trajectories of the switching times „J«†0.11, 500‡…

Fig. 5 Control profile and system response for JÄ0.3
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