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Minimax Design of Robust Controllers for Flexible Systems
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The design of robust time-delay and saturating controllers based on the range of expected variation of uncertain
parameters from their nominal values is investigated. A minimax optimization problem is formulated with the
objective of minimizing the maximum value of the cost function over the range of the uncertain parameter. By
the adoption of the residual energy as the cost function, the optimization problem formulation is simple because
it requires only one equation that is used both as the cost function and constraint. To expedite the optimization
process, equations are derived for the gradient of the cost and constraint functions with respect to the parameters
of the controller. The proposed technique is illustrated on two examples. The � rst is a spring–mass–dashpot and
the second is the two-mass–spring benchmark problem.

I. Introduction

C ONTROL of vibratory structures by � ltering the reference in-
put to the system has been addressed by numerous researchers

including Smith,1 Singer and Seering,2 Junkins et al.,3 Singh and
Vadali,4 and others. Smith1 proposed a wave cancellation technique
to drive a second-order system to its � nal position in � nite time.
However, this technique was sensitive to modeling errors. Singer
and Seering2 proposed an approach referred to as input shaping
which resulted in the same solution as Smith’s.1 They then pro-
posed a simple technique to desensitize the input shaper to modeling
errors.2 This involved design of a sequence of impulses that forced
the magnitude of the residual energy and its derivative with respect
to damping or natural frequency to zero. Singh and Vadali4 arrived
at the same results of Singer and Seering2 by the design of a time-
delay � lter that canceled the poles of the system. They also showed
that by cascading the time-delay � lter designed to cancel the poles
of the system, the resulting � lter was insensitive to errors in modeled
damping and frequency.4 The idea of locating multiple zeros of a
time-delay � lter at the estimated location of the poles of the system
has been exploited to design robust time-optimal control,5;6 robust
fuel-time optimal control,7 fuel constrained time-optimal control,8

etc. Liu and Singh9 extended this idea to nonlinear systems undergo-
ing rest-to-rest maneuver by requiring the sensitivity of the system
states with respect to uncertain parameters be zero at the � nal time.

Techniques to increase the range of uncertain parameters where
the residual vibration is below a prespeci� ed amount has been ad-
dressed by Singhose et al.10 This was referred to as the extra in-
sensitive input shaper. Pao et al.11 proposed including the probabil-
ity distribution of the uncertain parameters into the design process
to arrive at input shapers that weighted the nominal value of the
uncertain parameter the most.

The design of time-optimal controllers, extra insensitive con-
trollers, etc., involves formulating an optimization problem with
numerous constraints that correspond to satisfaction of the bound-
ary conditions for rest-to-rest maneuvers. For instance, for the de-
sign of the time-optimal control pro� le for the � oating oscillator
benchmark problem, which is a fourth-order system, four equality
constraints need to be satis� ed. The formulation of the problem, in
addition to being time consuming, results in an optimization prob-
lem with numerous equality constraints. In this paper, a simple tech-
nique is proposed that uses only one equation, which is referred to
as the pseudoenergy of the system. This equation is used both as the
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objective function and as a constraint equation when it is evaluated
at the nominal values of the uncertain parameters of the model. This
technique, thus, results in anoptimization problem that is easy to for-
mulate. The focus of this paper is on the development of a technique
to design time-delay � lters that minimize the maximum magnitude
of the residual vibration over the range in which the uncertain pa-
rameter resides. The resulting controller will be referred to as the
minimax time-delay controller. Sections II and III will review the
development of the time-delay control and saturating controllers,
respectively. This will be followed by the development of the min-
imax time-delay controller in Sec. IV. The Van Loan12 identity is
used to arrive at equations that represent the gradients of the cost
and constraint equations with respect to the parameters of the con-
troller in Sec. V. The proposed technique is illustrated on numerical
examples in Sec. VI, and Sec. VII summarizes results generated in
this paper.

II. Time-Delay Control
The time-delay control can be considered as a � ltering technique

that modi� es the reference input to a system whose dynamics are
characterized by underdamped response (Fig. 1). Singh and Vadali4

propose a single time-delay � lter with a transfer function

u.s/=r.s/ D A0=.A0 C 1/ C e¡sT
¯

.A0 C 1/ (1)

to minimize the residual vibration of a single-mode underdamped
system and show that to cancel a pair of complex conjugate poles
located at

s D ¡³! § j!
p

1 ¡ ³ 2 (2)

we require

A0 C e³ !T cos
¡
!

p
1 ¡ ³ 2T

¢
D 0 (3)

e³ !T sin
¡
!

p
1 ¡ ³ 2T

¢
D 0 (4)

This results in the solution

A0 D exp
¡
³¼

¯p
1 ¡ ³ 2

¢
; T D ¼

¯
!

p
1 ¡ ³ 2 (5)

To address the issue of sensitivity of the pole cancellation time-
delay � lter, a two time-delay � lter is proposed with the constraint
that the derivative of the pole cancellation constraint with respect to
³ or ! be forced to zero. The resulting time-delay � lter was shown
to consist of two single time-delay � lters [Eq. (1)], in cascade. This
process of cascading a series of single time-delay � lters will pro-
gressively increase the insensitivity of the � lter to modeling errors.
However, the penalty of increased settling time of the response of
the system can be signi� cant.
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Fig. 1 Single time-delay controlled system.

The design of time-delay � lters to cancel two or more pairs of
stable complex conjugate poles follows the same procedure out-
lined earlier. However, the possibility of determining a closed-form
solution for the parameters of the time-delay � lter with a transfer
function

u.s/=r.s/ D A0 C A1e
¡sT1 C A2e¡sT2 C ¢ ¢ ¢ (6)

is remote. To design a multimode time-delay � lter, we need to solve
a set of nonlinear coupled equation derived by substituting

s D ¡³i !i C j!i

p
1 ¡ ³ 2

i ; i D 1; 2; : : : (7)

into Eq. (6) and equating it to zero. The issue of robustness to mod-
eling errors is addressed by cascading time-delay � lters designed to
cancel the poles of the system, in series.

III. Saturating Controllers
Cost functions such as time, fuel, and weighted fuel-time result

in optimal control pro� les that are bang–bang or bang–off–bang.
These control pro� les are very sensitive to uncertainties in modeling,
and there is, thus, a need to design controllers that are insensitive to
modeling errors. This has been addressed by Liu and Wei,6 Singhose
et al.,8 Singh and Vadali,5 and others,where anoptimization problem
has been formulated that involves design of a time-delay � lter that
is required to locate multiple zeros of the time-delay � lter at the
estimated location of the poles of the system. The constraints for
the optimization problem are derived by requiring that the boundary
conditions for rest-to-rest or spin-up maneuvers be satis� ed for the
nominal values of the model parameters. Additional constraints that
require the sensitivity of the � nal states to the uncertain parameters
be zero are included in the optimization problem. For instance, the
transfer function of a time-delay � lter for the benchmark � oating
oscillator (Fig. 2) is

1 ¡ 2e¡sT1 C 2e¡sT2 ¡ 2e¡sT3 C e¡sT4 (8)

The time-optimal control pro� le is generated by driving the time-
delay � lter with a step input. The constraints for a rest-to-rest ma-
neuver with zero initial conditions can be shown to be

¡2T1 C 2T2 ¡ 2T3 C T4 D 0 (9)

1 C 2
3X

i D 1

.¡1/i e³ !Ti cos
¡
!

p
1 ¡ ³ 2Ti

¢

C e³ !T4 cos
¡
!

p
1 ¡ ³ 2T4

¢
D 0 (10)

2
3X

i D 1

.¡1/i e³ !Ti sin
¡
!

p
1 ¡ ³ 2Ti

¢

C e³ !T4 sin
¡
!

p
1 ¡ ³ 2T4

¢
D 0 (11)

T 2
4

¯
2 ¡ .T4 ¡ T1/2 C .T4 ¡ T2/2 ¡ .T4 ¡ T3/

2 D 2mµ f (12)

where µ f indicates the total displacement of the rest-to-rest
maneuver.5 The parameters of the time-delay � lter are derived by
� nding a solution that satis� es all of the constraints and minimizes
T4 . To desensitize the controller to modeling errors, additional time
delays are added to the � lter, and constraints are derived by forcing
the derivatives of Eqs. (10) and (11) with respect to ! or ³ to be zero.

Fig. 2 Two-mass–spring system.

IV. Minimax Time-Delay Control
The time-delay controller and the saturating controllers described

earlier are designed using the nominal values of the model parame-
ters. Robustness is arrived at by studying the sensitivity states eval-
uated at the nominal value of the system parameters. However, with
the knowledge that the uncertain parameters lie within a speci� ed
range, it is desirable to design a controller with the worst model
in mind.13 This can be achieved by considering the performance of
the time-delay � lter in the range of the uncertain parameter. In this
paper, a design technique is proposed that minimizes the worst per-
formance of the system. The metric used to gauge the performance
of the system corresponds to the residual energy of the system at
the end of the maneuver. The goal of the optimization problem is
to minimize the maximum magnitude of the residual energy in the
entire range of the uncertain parameters.

For an asymptotically stable mechanical system undergoing rest-
to-rest maneuvers, the model can be represented as

M Ry C C.p/ Py C K .p/y D Dr (13)

where M is a positive-de� nite matrix and K and C are positive
semide� nite. K is positive semide� nite when the model of the sys-
tem includes rigid-body modes and is positive de� nite otherwise.
Here, p is a vector of uncertain parameters whose elements satisfy
the constraints

plb
i · pi · pub

i (14)

where plb
i and pub

i represent the lower and upper bounds on the
parameters respectively. The objective here is to design a time-delay
� lter that pre� lters the reference input r to the system with the
objective of minimizing the maximum value of the residual energy:

min
x

max
p

F

F D
q

1
2

PyT M Py C 1
2
.y ¡ y f /

T K .y ¡ y f / (15)

where x is a vector of parameters that de� ne the robust time-delay
� lter, and y f corresponds to the � nal displacement states of the sys-
tem. Equation (15) will be referred to as the pseudoenergy function
because it is associated with a hypothetical spring whose potential
energy is zero when y D y f . The pseudoenergy function is evaluated
at the � nal time, that is, the end of the maneuver. If K is positive
semide� nite, the objective function is

min
x

max
p

F

F D
q

1
2 PyT M Py C 1

2 .y ¡ y f /
T K .y ¡ y f / C 0:5.yr ¡ yr f /

2

(16)

where yr corresponds to the rigid-body displacement and yr f refers
to the corresponding desired � nal displacement. The last term is
added to make the cost function positive de� nite. Note that the
parameters of the time-delay � lter for systems with a rigid-body
mode should be selected to locate two poles at the origin. For an
undamped system this is equivalent to requiring the control pro� le
to be antisymmetric about the midmaneuver time.
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The preceding formulation weights every point in the uncertain
region uniformly. If the designer is provided with information re-
garding the probability distribution of the uncertain parameters, this
information can be included in the optimization problem. For in-
stance, if a Gaussian distribution is assumed for the uncertain param-
eter, the objective function de� ned by Eq. (15) can be rewritten as

min
x

max
p

F

F D exp
£
¡.p ¡ pnom/T 0¡1.p ¡ pnom/

¤q
1
2 PyT M Py C 1

2 .y ¡ y f /
T K .y ¡ y f / (17)

where 0 is the covariance matrix of the Gaussian distribution and
pnom is a vector of nominal values of the parameters.11 Without loss
of generality, we can assume that the initial displacement states
are zero for the study of rest-to-rest maneuvers. We will derive
the necessary equations for the optimization problem based on this
assumption.

V. Closed-Form Equations
Given a state-space model for a system

Pz D Az C Bu; where z D
µ

y

Py

¶
2 Rn ; u 2 R1 (18)

where, for systems without rigid-body modes, u is parameterized as

u D A0 C
nX

i D 1

Ai H.t ¡ Ti / (19)

where H.t ¡ Ti / is the Heaviside function, or u is

u D 1 C
nX

i D 1

2.¡1/i H.t ¡ Ti / C H.t ¡ Tn C 1/ (20)

for a time-optimal controller for systems with rigid-body modes,
given that abs.u/ is less than 1. Assuming a rest-to-rest maneuver
where the initial conditions of the system are zero, the states of
the system represented by Eq. (18) can be solved for easily by the
technique proposed by Van Loan.12 To determine the response of a
linear system [Eq. (18)] to a unit step input, construct a matrix

P D
µ

A B

0 0

¶
(21)

that is an Rn C 1 £ n C 1 matrix. Using the Van Loan identity12 one can
show that

Z D ePT D

"
eAT

R T

0
eA.T ¡ ¿ / B d¿

0 I

#
(22)

It can be seen that the upper-right-hand term of the matrix Z is
the convolution integral of the system given by Eq. (18) subject
to a unit step input. Thus, the value of the states at time T for
a unit step input are given by the � rst n rows of the last column
of Z . This permits us to calculate the � nal states for a step input
accurately, without numerical integration. This is very attractive for
numerical optimization, where a signi� cant cost of optimizing a
dynamic system is contributed by the numerical simulation of the
response of the system. For instance, the response of the system
represented by Eq. (18) to the input represented by Eq. (19) is given
by the � rst n rows of the last column of the matrix

8 D A0e
PTn C

nX

i D 1

Ai exp[P.Tn ¡ Ti /] (23)

and by the � rst n rows of the last column of the matrix

8 D ePTn C 1 C
nX

i D 1

2.¡1/i exp[P.Tn C 1 ¡ Ti /] (24)

for the time-delay control [Eq. (19)] and the time-optimal control
[Eq. (20)], respectively.

The optimization algorithms that are used to solve minimax
problems are generally gradient based. Thus, the accuracy and the
speed of the optimization can be increased by providing analyt-
ical gradients to the optimization algorithm. Fortunately, for the
time-delay control and the bang–bang and bang–off–bang control
pro� le, closed-form equations representing the gradients of the cost
and constraints can be easily derived, as shown hereafter.

For the optimization algorithm, we require the value of the gra-
dient of the cost F and the constraints with respect to the controller
parameters. For the control given by Eq. (19), the gradients of F
[Eq. (15)] with respect to Ai and Ti are given by
dF

dAi
D

1

2
p

1
2 PyT M Py C 1

2 .y ¡ y f /T K .y ¡ y f /

£
µ

PyT M
d Py
dAi

C .y ¡ y f /T K
dy

dAi

¶
(25)

dF

dTi
D

1

2
p

1
2 PyT M Py C 1

2 .y ¡ y f /T K .y ¡ y f /

£
µ

PyT M
d Py
dTi

C .y ¡ y f /T K
dy

dTi

¶
(26)

To determine dy=dAi ; d Py=dAi and dy=dTi ; d Py=dTi , we require the
derivative of the state equation (18). The solution of the equation

dPz
dAi

D A
dz

dAi
C BH.t ¡ Ti /; i D 0; 1; 2; 3; : : : (27)

can be derived using the Van Loan identity12 as described earlier.
Similarly, the solution of equation

dPz
dTi

D A
dz

dTi
¡ B[Ai ±.t ¡ Ti /]; i D 1; 2; 3; : : : (28)

where ±.:/ is the Dirac delta function, can be shown to be

dz

dTi
.T f / D ¡Ai exp[A.T f ¡ Ti /]B (29)

With the analytical gradients, we can expedite the convergence of
the optimization algorithm. Next, for the control given by Eq. (20),
the gradients of F [Eq. (15)] with respect to Ti are given by Eq. (26),
where

dz

dTi
.T f / D ¡2.¡1/i exp[A.T f ¡ Ti /]B; i D 2; 3; : : : ; n ¡ 1

(30)

The analytical gradients can also be calculated as follows: The state
response for the system

Pz D Az C B
NX

i D 1

Ai H.t ¡ Ti / (31)

can be represented as

z.t/ D
NX

i D 1

Ai exp.At/[exp.¡ATi / ¡ exp.¡At/]A¡1 B (32)
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The sensitivity of the states to the variables Ai and Ti can be calcu-
lated from Eq. (32). For instance, the sensitivity of the states to the
� nal time (T f D TN ) is

dz

dTN
.TN / D

N ¡ 1X

i D 1

Ai exp[ A.T f ¡ Ti /]B (33)

VI. Numerical Examples
A. Spring–Mass–Dashpot

The proposed technique will be illustrated on a rest-to-rest ma-
neuver of a single-mode system whose dynamics are de� ned by the
equation

m Ry C c Py C ky D kr (34)

with the boundary conditions

y.0/ D Py.0/ D 0; y.t f / D 1; Py.t f / D 0 (35)

where t f is the maneuver time.
First, a minimax time-delay controller will be designed, assuming

that only k is uncertain and satis� es the constraint

0:7 · k · 1:3 (36)

where the nominal value of k D 1, m D 1, and c D 0:2. The form of
the transfer function for the minimax time-delay controller is chosen
to be

A0 C A1e
¡sT1 C A2e¡sT2 (37)

which is identical to the robust time-delay controller.4 The optimiza-
tion problem can be stated as the determination of A0; A1; A2; T1,
and T2 of the time-delay � lter to

min
Ti ;Ai

max
k

q
1
2 m Py2 C 1

2 k.y ¡ 1/2 (38)

evaluated at T2 . The initial guess for the minimax optimization prob-
lem is the robust time-delay � lter. To determine the parameters of
the robust time-delay � lter, we need to solve for the nonrobust time-
delay � lter � rst. The transfer function of the nonrobust time-delay
� lter for the nominal system is

0:5783 C 0:4217e¡3:1574s (39)

Fig. 3 Residual vibration distribution.

The minimax problem for the nonrobust time-delay � lter was solved
using the closed-form equation derived in this paper, as well as a
standard differential equation integrator, to determine the terminal
states for the optimizer. Table 1 illustrates the improvement in con-
vergence of the optimizer.

With the knowledge that two nonrobust � lters in cascade will
force the derivative of the square root of the pseudoenergy to be
zero at the nominal value of the system parameters, resulting in
smaller magnitude of residual vibration in the vicinity of the nom-
inal parameters [as illustrated in Fig. 3 (dashed line)], the transfer
function of the robust time-delay controller can be shown to be

0:3344 C 0:4877e¡3:1574s C 0:1788e¡6:3148s (40)

The parameters of the time-delay � lter [Eq. (40)], will be used as
initial guesses for the minimax algorithm. The optimization tool-
box of MATLAB® is used to solve the minimax optimization prob-
lem. The optimal minimax time-delay � lter is given by the transfer
function

0:3452 C 0:4730e¡3:1703s C 0:1818e¡6:2060s (41)

Figure 3 (dotted line) illustrates the variation of the residual en-
ergy of the system as a function of the uncertain parameter k. It
can be seen that the maximum magnitude of the residual energy in
the range of the uncertain parameters occurs at the bounding limits,
k D 0:7; k D 1:3, and at a value of k that lies between the limits. It
is also clear that the maximum magnitude of the residual energy is
signi� cantly smaller than that resulting from the robust time-delay
� lter de� ned by Eq. (40) over the entire range of k. However, at the
nominal value of k D 1, the minimax solution has a large magnitude
of residual vibration. The minimax solution is similar to the extra
insensitive input shaper proposed by Singhose et al.,10 where an
optimization problem is formulated by de� ning the magnitude of
residual vibration permitted at the nominal value of the uncertain
parameter and solving for the magnitudes of a sequence of impulses.

Table 1 Performance of optimizer

Time of No. of � oating-point
Optimizer convergence , s operations

Proposed approach 1.3071 687,148
Numerical integration 37.8023 5,665,488
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Fig. 4 Residual vibration distribution.

The impulse sequence is required to satisfy the constraints that the
magnitude of the residual vibration is zero at two frequencies that
� ank the nominal value, and the slope of the residual energy distri-
bution curve is zero at the nominal value of the uncertain parameter.
These constraints are unnecessary because, as is shown in Fig. 3,
the minimax solution does not force the residual energy curve to
zero in the range of uncertain parameters.

Notwithstanding that the maximum magnitude of the residual vi-
bration over the range of possible value of k has been minimized,
that the residual vibration at the nominal value of k D 1 is large is
a drawback of this controller. To address the aforementioned dis-
advantage, an additional constraint is included into the minimax
optimization problem that requires the magnitude of the residual
vibration to be zero at the nominal value of the uncertain param-
eter. The added constraint necessitates addition of a time delay to
the time-delay � lter de� ned by Eq. (41), resulting in the transfer
function

A0 C A1e¡sT1 C A2e
¡sT2 C A3e¡sT3 (42)

The unknown parametersof Eq. (42) are solved for using the solution
of the parameters of three nonrobust time-delay � lters in cascade as
the initial guess. The transfer function of the minimax time-delay
controller with the constraint to force the residual vibration to be
zero at the nominal value of k can be shown to be

0:2052 C 0:4141e¡3:1652s C 0:3015e¡6:3304s C 0:07924e¡9:4956s

(43)

Figure 4 illustrates the distribution of the residual energy of the time-
delay � lter designed by cascading three nonrobust time-delay � lters
(solid line) and the minimax time-delay � lter (dashed line). It is
clear from Fig. 4 that the maximum magnitude of the residual energy
of the minimax controller over the uncertain range (0:7 · k · 1:3)
is signi� cantly smaller than the robust three-time-delay controller,
which is a metric to gauge the robustness of the controllers.

B. Floating Oscillator
The second example considered for the illustration of the pro-

posed technique is the benchmark two-mass–spring system illus-
trated in Fig. 2. Unlike the � rst example, this system is character-
ized by rigid-body modes, and the sum of the kinetic and potential
energy is not a positive-de� nite function. Therefore, the energy of
the system is augmented with a term that re� ects the energy stored

in a virtual spring whose potential energy is zero when the masses
are at the � nal desired positions. The equations of motion of the
� oating oscillator are

µ
m1 0

0 m2

¶µ
Ry1

Ry2

¶
C

µ
k ¡k

¡k k

¶µ
y1

y2

¶
D

µ
1

0

¶
u (44)

where u is bounded by the constraint

¡1 · u · 1 (45)

The objective of the optimization problem is to design a control pro-
� le for a rest-to-rest maneuver that satis� es the boundary conditions

y1.0/ D y2.0/ D Py1.0/ D Py2.0/ D 0

y1.t f / D y2.t f / D 1; Py1.t f / D Py2.t f / D 0 (46)

The antisymmetric optimal control pro� le is parameterized as

u D 1 C
nX

i D 1

2.¡1/i H.t ¡ Ti / C 2.¡1/n C 1H.t ¡ Tn C 1/

C
nX

i D 1

2.¡1/i H.t ¡ .2Tn C 1 ¡ Ti // C H.t ¡ 2Tn C 1/ (47)

A minimax problem is formulated to solve for the maneuver and
switch times Ti , assuming that k is uncertain and satis� es the
constraint

0:7 · k · 1:3 (48)

where the cost function is

min
Ti

max
k

µ
1

2
[ Py1 Py2]

µ
m1 0

0 m2

¶µ
Py1

Py2

¶

C [y1 y2]

µ
k ¡k

¡k k

¶µ
y1

y2

¶
C

1
2

.y1 ¡ 1/2

¶0:5

(49)

Assuming n D 1 in Eq. (47), and solving the minimax problem
with the constraint that the magnitude of the pseudoenergy func-
tion [Eq. (16)] be zero at k D 1 (the nominal value of the uncertain
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Fig. 5 Optimal control pro� le.

Fig. 6 Residual energy distribution.

parameter), we arrive at the time-optimal control pro� le

u D 1 ¡ 2H.t ¡ 1:0027/ C 2H.t ¡ 2:1089/

¡ 2H.t ¡ 3:2151/ C H.t ¡ 4:2178/ (50)

Solving the minimax control problem without enforcing the re-
quirement that the residual energy should be zero at the nominal
value of the uncertain parameter results in the control pro� le

u D 1 ¡ 2H.t ¡ 0:9430/ C 2H.t ¡ 2:0571/

¡ 2H.t ¡ 3:1713/ C H.t ¡ 4:1143/ (51)

Figure 5 illustrates the control pro� le for the three-switch time-
optimal (solid line) and minimax control pro� le (dashed line).

Figure 6 illustrates the variation of the residual energy of the
� oating oscillator as a function of k for the three-switch control
pro� les. It is clear that the maximum magnitude of the resid-
ual energy of the control pro� le given by Eq. (51) (dashed line)
is smaller than that given by Eq. (50) in the range of uncer-
tain k. Note that the maximum magnitude of the residual vi-
bration occurs at the end of the interval of uncertainty, that is,
k; D 0:7 and k D 1:3. However, the residual energy is not zero at
k D 1.

A � ve-switch control pro� le is selected next, to reduce the max-
imum magnitude of residual energy. The minimax optimization
problem is solved again, with and without the constraint that the
residual energy for k D 1 should be zero. The resulting control
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Fig. 7 Residual energy distribution.

Fig. 8 Optimal control pro� le.

pro� le is

u D 1 ¡ 2H.t ¡ 0:7181/ C 2H.t ¡ 1:6715/ ¡ 2H.t ¡ 2:9526/

C 2H.t ¡ 4:2370/ ¡ 2H.t ¡ 5:1851/ C H.t ¡ 5:8944/ (52)

The solid line of Fig. 7 illustrates the distribution of the residual
energy with constraint that the residual energy be zero at k D 1.
Note that the optimization algorithm resulted in a control pro� le
that forces the slope of the energy distribution curve to be zero at
k D 1, without the explicit requirement of that constraint as in the
work of Singh and Vadali.5 The dashed line of Fig. 7 illustrates that
the elimination of the constraint that the residual energy be zero at
k D 1 results in a signi� cant reduction of the maximum magnitude

of residual energy in the uncertain ranges, which again occur at
the ends of the uncertain region. This residual energy distribution is
similar to the one presented by Singhose etal.10 Note that the residual
energy is not zero at the nominal value of k D 1. The control pro� le
is given by the equation

u D 1 ¡ 2H.t ¡ 0:7256/ C 2H.t ¡ 1:6909/ ¡ 2H.t ¡ 2:9595/

C 2H.t ¡ 4:2281/ ¡ 2H.t ¡ 5:1934/ C H.t ¡ 5:9190/ (53)

Figure 8 illustrates the control pro� le for the � ve-switch time-
optimal (solid line) and minimax control pro� le (dashed line).

In both of the examples presented in this section, optimization
problems were solved with the evaluation of the cost function at 3,
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5, 11, 41, and 81 discrete points in the uncertain region. All of them
resulted in the same solution.

VII. Conclusions
This paper presents a technique for the design of robust controllers

that minimize the maximum magnitude of the cost function over
the uncertain interval. The proposed cost function is the residual
energy of a system that includes the kinetic and potential energy.
For systems with rigid-body modes, a pseudoenergy term is added
to create a positive-de� nite energy function. A simple technique
is proposed for the evaluation of the cost function and constraints
without numerical simulation of the state equations. Furthermore,
closed-form equations for the gradients of the cost and constraint
functions with respect to the parameters to be optimized for are
derived, which aid in the numerical optimization. The proposed
technique is illustrated on two examples. The � rst is a spring–mass–

dashpot and involves the design of a time-delay � lter to minimize the
maximum magnitude of residual vibration for a unit step input. The
second example is the design of a robust bang–bang controller for
rest-to-rest maneuvers of the two-mass–spring benchmark problem.

The proposed technique has been illustrated for systems with
one uncertain parameter. It can easily be extended to design time-
delay � lters that are insensitive to multiple parameters. This entails
determining the residual energy at points in the uncertain space that
are uniformly sampled, to create a vector of costs for the minimax
algorithm. The equations derived in Sec. V are also valid for multiple
parameters.
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