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Abstract— Two adaptive impulsive control techniques de-
signed to eliminate steady state error for a rigid body system
subject to friction, and undergoing a point-to-point maneuver
are implemented. Pulse width and pulse amplitude pulse width
modulations are explored. It is shown that the results of the
pulse amplitude modulation never generates limit cycles and
has lower steady-state error than the pulse width modulation.

I. I NTRODUCTION

The significance of friction to the control community is
in its effects on positioning systems and velocity tracking
operation. Positioning apparatuses include telescopes, anten-
nas, machine tools, disk drives and robot arm positioning.
Velocity control is also relevant in machine tool, disk drive
and robot arm industrial applications which require the
accurate tracking of a pre-determined trajectory. The effect
of friction becomes magnified in the low velocity region near
the reference position.

The majority of work done on control of frictional systems
is on rigid body systems. Yang and Tomizuka [1] exploited
a simple relationship between a pulse input width and the
displacement of the rigid body. This utilizes the fact that
the rigid body subject to a pulse input never changes the
direction of the velocity and thus the Coulomb friction acts
like a bias to the input. This scheme, known as Pulse Width
Control (PWC), is presented in an adaptive control setting
where an estimate of the friction is provided. Wijdeven
and Singh [2], modified the PWC approach to increase
accuracy in actual discrete implementation of the input. Their
technique modulates the pulse height to compensate for a
rounded up pulse width and is called Pulse Amplitude Pulse
Width Control (PAPWC).

Additional schemes developed for rigid body systems
include internal-model following error control [3], PID and
state feedback linearization control [4] and variable structure
control in order to try to handle qualitatively different fric-
tion regimes [5], [6]. Nonlinear PID control has also been
developed to overcome the stick-slip behavior of friction [7].

In this paper two techniques, the Adaptive Pulse Width
Control (PWC) and the Adaptive Pulse Amplitude Pulse
Width Control (PAPWC) proposed by [1] and [2] respec-
tively, are presented for the rigid body system, subject to
stiction and Coulomb friction. These techniques are imple-
mented experimentally on the setup presented in section III-
A.

Experiments and simulations are presented for qualitative
comparison only. This is due to the fact that the actual fric-
tion in the system is unknown and an assumed actual value
must be used for the simulation. Generally, the assumed
value used for the simulation is close to the final estimation
of friction obtained during the corresponding experiment run.
This accounts for some quantitative comparison obtained
from the simulation.

II. M ATHEMATICAL FORMULATION

The equation of motion of the rigid body in consideration
subject to a positive pulse input, is given as:
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The input to the systemuH can be expressed as:

uH = fpmH(t − T1) − fpmH(t − T2),

wherefpm is the pulse height magnitude andH(t−T ) is the
Heavy-side function which is equal to one for time greater
thanT .

The Coulomb friction only appears as a bias force since
the direction of the rigid body will never change during a
single pulse. This eliminates thesgn

(

θ̇
)

term in the con-
ventional Coulomb friction model permitting linear analysis.

The total distance travelled by the rigid body due touH

can be found by solving equation (1). Ignoring damping, the
distance travelled is given as [1]:

θ(tend) = ±
fpm (fpm − fc) t2p

2J1fc

(2)

Equation (2) is the basis of the development of the control
schemes presented in this paper.

A. Pulse Width Control Formulation (PWC)

The essential idea of the Pulse Width Control (PWC), is to
provide a single pulse to the system near the reference point,
such that the total energy (from inertia, damping, control,
and friction) is zero at the reference point. This exploits the
ability of the friction force to slow down the system with no
added control effort (coasting).



The total distance travelled by the inertia subject to viscous
damping is
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Yang and Tomizuka [1], were the first to use this rela-

tionship to come up with an adaptive means of controlling
rigid body systems subject to stiction and Coulomb friction.
They prove that, for smalltp, the predominant variation of
the distance travelled,d, is due to variations in the Coulomb
friction. This provides a justification for the use of (2) in
all further discussions involving PWC and its variations. As
stated, the condition for this assumption to be valid is that
the pulse width,tp, is short. This is practical due to the
intended use of these techniques, i.e. to be used near the
reference point.

It is assumed that the inertia is known and due to the
fluctuation of friction, fc is considered as an unknown
variable. Equation (2) can be rewritten as:

d = bt2psgn(fp) (4)

whereb comprises all of the coefficients oft2p andfp is the
pulse height shown in equation (5).

fp = fpmsgn(e), (5)

wheree is the difference between the desired reference point
and the current position. Thesgn(fp) is present in order to
account for the± term in equation (2) due to a positive or
negative desired displacement respectively.

It is seen from equation (5) thatsgn(fp) = sgn(e) and
therefore equation (4) can be written as:

d = bt2psgn(e) (6)

It is useful to lump all of the coefficients, known and
unknown, into one parameter,b, due to the simplicity of
the resulting relationship between the pulse width and dis-
placement. Another advantage of this definition is that the
coefficient to be estimated now comprises of terms that
are known. This allows the adaptation algorithm, which
estimatesb, to be more robust to the large unknown variations
in the friction coefficient,fc.

The adaptive algorithm, proposed in [1], estimates the
coefficient b in equation (6) using a standard recursive
identification algorithm. An estimation based on this type
of algorithm along with equation (6) is called a self-tuning
regulator (STR).

Since b is unknown and varying, it will generally take
more than one pulse to reach the desired reference point.
Subsequently it is necessary to formulate recursive discrete
time equations that describe the motion of the system.
Rewriting equation (6) in discrete time results in

d(k + 1) = bup(k) (7)

up(k) = t2p(k)sgn(e(k)), (8)

whered(k + 1) is the distance traveled after thekth pulse
has been applied. The variablek should not be viewed as
the kth sample. It is thekth stoppage of the inertia.

Since equation (7) has one degree of freedom, namely the
pulse width, a feedback control law is formulated forup(k)
to ensure stability of the controller. Assumingb to be known,
thenup(k) is written as

up(k) =
1

b
Kce(k), (9)

If Kc is chosen to be1, the distance traveled,d(k + 1), will
be the current error and thus the system will reach the desired
position. This is how the STR is formulated: “assuming the
unknown parameters to be known, what controller will force
the error to zero.”

Sinceb is actually unknown, (9) is replaced by

up(k) =
1

b̂(k)
Kce(k) (10)

and the STR proposed for̂b(k) is

ǫ0
0
(k + 1) = d(k + 1) − b̂(k)up(k) (11)

F−1(k + 1) = λ1F
−1(k) + λ2u

2

p(k) (12)

b̂(k + 1) = b̂(k) + F (k)up(k)ǫ0
0
(k + 1) (13)

0 < λ1 ≤ 1, 0 ≤ λ2 < 2, F (0) > 0, (14)

whered(k+1) is the actual displacement after thekth pulse.
F is referred to as the time-varying gain matrix andλ1 and
λ2 are related to the forgetting of previous data.F , is also
known as the adaptation gain if it is a scaler, as it is in this
development.

B. Pulse Amplitude Pulse Width Control

The inherent flaw of the PWC, introduced in Section II-
A, is that during implementation, the pulse width cannot be
exactly what is calculated from equation (8). This is due
to the necessary discretization of the pulse width to be a
multiple of the sampling time. This is the motivation for the
PAPWC scheme.

This has the same principle idea and origins as PWC,
except that it creates an extra degree of freedom by varying
the pulse heightfp(k), while constraining the pulse width
to be a multiple of the sampling time. The expectation is an
increase in accuracy.

It is still desired to have the inertia move to a desired
distance assuming knowledge of all parameters. This makes
equation (6) valid ignoring the effects of damping for small
maneuvers. It is now, however, a function ofTp = nT . This
is depicted as

d(tp) = d(Tp) (15)

b t2psgn(e) = b∗ T 2

p sgn(e) (16)

fpm (fpm − fc)

2J1fc
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)
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T 2
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In order to ensure that the energy input into the system
is such that equation (15) is satisfied, the constantb must
becomeb∗. From the definition ofb, this suggests that the



pulse height,fpm, must be modulated tof∗

pm. The pulse
width is chosen to be rounded towards infinity to ensure that
f∗

pm ≤ fpm (ie. the maximum pulse height).
Solving equation (17) forf∗

pm results in

f∗

pm = .5fc ± .5

√

f2
c + 4fpm (fpm − fc)

t2p

T 2
p

(18)

Since the term under the square root is always larger than
fc, the + will yield a feasible value off∗

pm, as opposed to
a minus sign.

As in equation (9),b must be estimated because the friction
coefficient is unknown. It is desired that this be done using
Recursive Least-Squares (RLS) Adaptive Filters due to its
simplicity. In order to formulate the adaptive algorithm, the
output of the system, equation (7), is first written as:

d(k + 1) = aT u(k), (19)

where

a =

[

1

2J1fc

−
1

2J1

]T

and
u(k) =

[

f2

p (k)t2p(k) fp(k)t2p(k)
]T

.

The adaptation algorithm will estimate the vector of un-
knowns,a, which in-turn will yield an estimate forfc. It
should be noted thatf∗

p (k) andTp(k) can also be used for
the calculation ofu(k) in equation 19 instead offp(k) and
tp(k).

The adaptation algorithm proposed in [8] is:

π(k) = P (k − 1)u(k) (20)

K(k) =
π(k)

λ + uH(k)π(k)
(21)

ξ(k) = d(k) − âH(k − 1)u(k) (22)

â(k) = â(k − 1) + K(k)ξ∗(k) (23)

P (k) =
[

I − K(k)uH(k)
]

λ−1P (k − 1), (24)

where H is the Hermitian transpose and( )∗ means‘the
complex conjugate of’. K(k) and P (k) are known as the
gain vectorand inverse correlation matrixrespectively. The
purpose of calculating the gain vector in two steps instead
of one is that it is advantageous from a finite-precision
arithmetic point of view [8].λ is the forgetting factor, and
λ = 1 weights all previous data equally.

III. E XPERIMENTAL SETUP AND RESULTS

A. Hardware, Software, System Identification

An experimental testbed of a rotational rigid body subject
to friction, is built and the proposed controllers are imple-
mented. A picture of the experiment is shown in Figure 1.

The motor that is used is theMircoMo 4490 024Bmodel,
with a recommended no load torque operation of0.192 [N-
m]. The nominal torque that is used throughout this work
is approximately3.5× 10−3 [N-m]. This was calculated for
an inertial load of2.75 × 10−4 [kg-m2] and a max velocity
of approximately4π [rad/s] reached in 1 [s] (ie. the angular

acceleration:α = 4π [rad/s2]. This torque value is used as
a reference point for nominal torque values and is not a
restrictive bound.

Fig. 1. Rotational Rigid Body Subject to friction

The corresponding amplifier that is used is aMircoMo
MVP2001 A01 Driver Electronics(MVP). The motor is
commanded via serial commands to theMVP. The dynamics
of the electronics of motor (MVP, magnetic fields, etc.) are
assumed to be negligible. An identification of the Amplifier
and Motor shows that a model of a rigid body system subject
to damping can be fit reasonably well. Therefore, the inertia
and damping of the motor and amplifier can be lumped with
that of the rotating mass. AUSDigital E6Sseries encoders
with 2048 cycles per revolution quadrature (4 pulses per
cycle) output is used to query the position of the masse. A
Formula Evoluzione 9.5 Disk Brake Setwas used to mount
the inertias and apply the desired friction. In order to translate

System Variable Estimated Value

Ĵ [N-m-s2] 1.35× 10
−5

ĉ
h

kg-m
s

i

1.35× 10
−5

f̂c [N-m] 4.32× 10
−4

f̂s [N-m] 1.58× 10
−3

TABLE I

EXPERIMENTAL PARAMETERS OF THE RIGID BODY EXPERIMENT.

from physical units to voltage that the hardware understands,
equation (25) is used.

1[N-M] = 0.0063V (25)

The units throughout this paper are interchanged depending
on the appropriateness in the application. LabVIEW1 is
used as the real time data processing software for all the
experiments ([9]). Through extensive system identification,
the system parameters are estimated and are shown in Table
I.

1LabVIEW is a registered trademark of National Instruments, Inc.



B. Controller Implementation Results

Ten experiments were performed for both control schemes,
the PWC and the PAPWC. The final estimation of the
friction coefficient, ˆb(k), is set as the initial estimate for the
subsequent run. In order to maintain a relatively low variation
in the friction coefficient, the position of the mass is reset
after each experiment.

The sampling time is taken to beTs = 0.005 [s]. The
desired reference position is assumed to be.2 [rad]. The
tolerance values for convergence are taken to be±0.005
[rad] and are shown in the figures. The pulse height,fpm

is taken to be0.5 [V], corresponding to.0032 [N-m]. The
initial friction value is estimated to befc(0) = .075 [V]
corresponding to4.725 × 10−4.The algorithm stops when
the inertia is stuck and within the chosen tolerances.

For the experiments, the inertia was considered stuck when
q = 3 consecutive queries of the encoder are the same. This
is an accurate assumption when the encoder resolution is
high relative to the sampling of LabVIEW.

The learning gainKc was taken to be0.85 for the PWC
and 1.2 for the PAPWC. This was chosen to achieve good
performance across all estimates of the friction coefficient.
The reason for choosing different learning gains for the two
control schemes is due to the fact that the pulse height is a
variable in PAPWC and the development is such that it is
always less thanfpm as seen in equation (18). For a control
gain of0.85, the calculated pulse heightf∗

pm tends to be too
small to achieve satisfactory results. In regards to the effect
of the validity of the comparison of the two methods; the
learning gain will effect to speed of convergence only and
not the accuracy of the algorithms. Despite that, a more valid
comparison is made in Section III-C.

Figures 2 and 3 show the first experimental and simulation
results of the PWC and PAPWC algorithms respectively. The
fact that the friction coefficient is uncertain and varying,
multiple pulses are required to converge within the desired
tolerance.

Due to the lower pulse height values,f∗

pm, as compared
to fpm, the convergence time for the PAPWC is longer than
that of the PWC. The undershoot in the experimental results
indicates that the initial friction estimate, along with the
current control gainKc, is underestimated.

The discrepancies between the simulations and experi-
ments are due to friction uncertainties. The true friction
value, fc, doesn’t actually exist. In order to perform the
simulation, however, a true friction value must be chosen.
fc for the simulation was determined from the friction
estimation in the experiment. Assuming that the friction
estimate at the end of the experiment is closest to the true
friction value. Since friction will vary depending on position
of the mass as well as the wear of the friction pad, a different
fc for each simulation run is used.

Figures 4 and 5 shows the experimental and simulation
results of both the PWC and PAPWC respectively for the
10th iteration. Both techniques show improvement, showing
the effectiveness of the adaptation algorithm. The resultsalso
indicate that despite the fact that the friction is varying and
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(b) Input pulse sequence.

Fig. 2. PWC: Experimental and Simulation results (1
st iteration).
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(b) Input pulse sequence.

Fig. 3. PAPWC: Experimental and Simulation results (1
st iteration).

uncertain, experimental conditions can be setup such that the
variation is controlled.

The pulse sequence of the PWC indicates that a single
pulse was required to achieve the desired position tolerance.
This is an improvement as compared to the first iteration
(Figure 2) The PAPWC has also improved performance
as compared to Figure 3. A single pulse, however, is not
something which is guaranteed after a certain amount of
iterations. If 10 more experiments are performed the same
results might not be obtained due to the variation of friction
and other un-modelled nonlinearities. Despite that, therestill
should be improvement from the first iteration.
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Fig. 4. PWC: Experimental and Simulation results (10
th iteration).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.05

0

0.05

0.1

0.15

0.2
Exp
Sim

θ
d
−

θ
[r

ad
]

t [sec]

(a) Evolution of the error in position.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Exp
Sim

u
P

A
P

W
C

t [sec]
(b) Input pulse sequence.

Fig. 5. PAPWC: Experimental and Simulation results (10
th iteration).

C. PWC and PAPWC Comparison Results

Thus far, all of the experimental algorithms have had a
convergence tolerance of.005 [rad]. This tolerance is chosen
to ensure that a limit cycle does not occur. Due to the nature
of PWC, the possibility of a limit cycle around the reference
point will occur if the final error is less than the minimum
distancedmin. The minimum distance,dmin, is defined as
the minimum distance that the actual inertia can move due
to a single pulse of widthT , whereT is the sampling time.

From equation (3),dmin for the PWC is calculated as

dmin =
fpmT
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c2
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m
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)
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(26)
If the error is less than this minimum distance, the inertia
will enter a limit cycle.

Since in the PAPWC, the pulse height can take a value
anywhere betweenfpm andfs, wherefs is the stiction value,
the minimum displacement possible in PAPWC is therefore

dmin =
fsT
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−
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+ 1
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(27)

That is, the smallest pulse widthT and the smallest pulse
heightfs.

This is the reason for the higher accuracy as compared to
PWC. Furthermore, due to the development of the PAPWC,
when the minimum pulse height is reached, the inertia will
simply not move because of stiction and a limit cycle does
not occur. These results are verified in the subsequent section.

Two experiments are performed in order to compare
qualitative behavior between PWC and PAPWC. For the first
experiment, the pulse height,fpm is taken to be.55 [V].
The learning gain is set toKc = 0.725 and θd remains
unchanged at0.2 [rad]. The sampling time remains atT =
0.005. The convergence tolerance is chosen to be.0005. The
different values are used to get satisfactory results for the new
tolerance level.

As in the previous sections, due to the nature of experi-
mental data and the nonlinear behavior of friction, the sim-
ulations are shown along with the experiments to illustrate
qualitative behaviors only. It is possible, however, to compare
them numerically to some extent.

As is mentioned in [2], the difference between PAPWC
and PWC, is that PAPWC should considerably reduce the
steady state error. In simulation this can be seen easily
by reducing the convergence tolerance to past the PWC
tolerance limit but before the PAPWC convergence limit.
This results in convergence of the PAPWC to a tolerance
that the PWC cannot meet. This is not possible in the
experimental setups, however, due to the resolution of the
encoder being the limiting agent.

As is mentioned in Section III-A, the encoder counter res-
olution is 2048 cycles per encoder revolution, corresponding
to approximately7.67 × 10−4

[

rad
count

]

. The most accurate
that the encoder can get to the desired position of.2 [rad]
is after 261 counts where it is at.200187 [rad]. The final
error of either algorithm will be no better than at this
encoder count. It should be noted that due to what has been
mentioned with regards to the encoder resolution, there will
be a different tolerance levels for different desired reference
points.

If the convergence tolerance is set to greater than the
encoder resolution then both of the algorithms will eventually
converge due to the encoder resolution, otherwise there will
never be convergence. This is independent of the value of
dmin. Meaning, despite the possibility thatdmin is greater



than the final error defined, and thus cause an overshoot,
eventually there will be a coasting period where the final
error is within the given tolerance. This is because the
coasting period will vary in the experiment, making it just
a matter of time that the system converges to within the
encoder resolution limits.

In the simulation, however, if the system starts operating
in a limit cycle then it will remain in one. This is because
the coasting period for each subsequent pulse will be the
same and thus the system will never be able to coast into
the tolerance range. The coasting period doesn’t change in
the simulation because the ‘true’ friction coefficient doesn’t
change throughout one simulation run. This is seen in Figure
6(a) where the tolerance for the PWC is at±5× 10−4 [rad]
anddmin = 1.034 × 10−2 [rad]. However, the experimental
results illustrate that the system eventually converges after
some initial oscillations since the variation of friction results
in some pulses driving the states into the convergence region.

Figure 6(b) is the corresponding results of the PAPWC.
The system reaches the tolerance zone quicker than the PWC
due to the flexibility provided by modifying both the pulse
width and the pulse amplitude. This is consistent with the
analytical derivation ofdmin for the PAPWC which is1.64×
10−3 [rad].

It should be noted that it is possible that the PAPWC
calculates|f∗

p (k)| such that it is less thanfs, resulting in
the system being stuck outside the tolerance limits, whereas
if the PWC stops operating due to convergence, it is within
the desired tolerances. This will depend on values ofKc and
P (0).

Figures 7(a) and 7(b) are compared for an error tolerance
of ±1E − 4. Since this is less than the encoder resolution,
which can only get as accurate as≈ 2E − 4 [rad], neither
of the two algorithms can converge. It is seen, however, that
PWC enters a limit cycle, whereas PAPWC gets stuck near
the reference trajectory after some overshoot.
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(a) PWC: Evolution of error in position.
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(b) PAPWC: Evolution of error in position.

Fig. 6. PWC/PAPWC: Results of1st comparison.
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(a) PWC: Evolution of error in position.
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Fig. 7. PWC/PAPWC: Results of2nd comparison.

IV. CONCLUSIONS

Two adaptive pulse control schemes, PWC and PAPWC,
are implemented on the rigid body subject to friction. Results
show that the PAPWC control yields more accurate results
than the PWC. It is further shown that the convergence of
the experimental setup depends on the encoder resolution and
both techniques will eventually converge. If the convergence
tolerance is set smaller than the encoder resolution, the PWC
will result in an infinite limit cycle, whereas the PAPWC will
cause the system to get stuck outside the tolerance level.
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