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ABSTRACT
The focus of this paper is on the design of time optimal

control profiles for flexible structures subject to deflection con-
straints. The benchmark floating oscillator is used to illustrate
the variation in the structure of the control profile as a func-
tion of permissible deflection. The transition from a 5 switch
bang-bang to a 7 switch bang-bang to finally, a 7 switch profile
which includes non-saturating intervals, is demonstrated. The
loss of anti-symmetry of the control profile and the transition of
the structures of the deflection constrained time-optimal control
profiles for damped systems is also presented.
Keywords: Time-Optimal, Deflection constraint, Benchmark
Problem.

1 INTRODUCTION
Vibration control of slewing flexible structures has been a

subject of research interest in both the aerospace and robotics
community [1]- [2]. These studies encompass a number of
lightweight flexible structures; such applications include large
spacecraft and space structures [3], robotic arms [4], gantry
cranes [5], hard disk drives [6], etc. In 1957, Smith [1] proposed
a wave cancelation technique, termed “Posicast”, to drive asys-
tem with one resonant mode to its final position in finite time.
Singer and Seering [7] arrived at the same results as Smith with
an input shaping approach. In addition, they proposed a tech-
nique for making input shaping commands insensitive to errors in
the model parameters which involved forcing the system’s resid-
ual energy, and derivative with respect to the natural frequency or
damping, to zero. Singh and Vadali [2] derived the same results
as Singer and Seering [7] with the design of a time delay prefilter
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Figure 1. Undamped Floating Oscillator

which provided zeros to the system so as to cancel the poles.
Liu and Wie [8] proposed an approach for desensitizing time-
optimal control profiles to model uncertainties, which involved
decoupling the equations of motion into rigid and flexible body
modes. Robustness is achieved by forcing the partial derivative
of the decoupled states with respect to natural frequency tozero
at the final maneuver time. Singh and Vadali [9] improved the ro-
bustness of time-optimal control strategies by applying the pole
cancelation technique and requiring the control sequence to sat-
isfy robustness constraints.

The aforementioned techniques essentially concentrate on
eliminating residual vibration and increasing the robustness of
input shaping and minimum time controllers. None, however,
address the problem of limiting the large deflection amplitudes
normally associated with them. Take for example the system il-
lustrated in Fig.1, it may be necessary to move the structurea
finite distance in minimum time while limiting the maximum ex-
tension/contraction that occurs in the spring. Singhose etal. [10]



proposed the first approach for developing deflection-limited in-
put shaping commands. In their paper, a technique for applying
deflection limits at instances where local extrema points occur
in the transient deflection is presented. However, the expres-
sions are only derived for control impulse amplitudes of±1
warranting the development of bang-off-bang control sequences
which are not time optimal. Robertson and Singhose [11]- [12]
arrived at the same results as the aforementioned with a dis-
crete approach. Later they presented an approach for devel-
oping closed form expressions to the deflection-limiting com-
mands [11]. Their technique incorporated magnitude restricted
coasting periods in the preshaped profile. One year later, they
also developed a robust approach which involved an extension in
the number of profile switch times [12].

The aforementioned papers constrain the control profile to
be either bang-off-bang [10], or non-saturating bang-off-bang
[11]- [12] which are control profiles which do not correspond
to the time-optimal solutions. In Section 2 the optimal control
problem is described. The following section presents the param-
eterizations of the control profiles. The numerical resultssec-
tion presents the time-optimal solutions for specific deflections.
Charts which illustrate the variation of the switch times asa func-
tion of the permitted deflection are presented for both the damped
and undamped benchmark problem.

2 MATHEMATICAL FORMULATION
For time optimal control of flexible structures, it is desir-

able to establish a control strategy that results in quiescent ter-
minal states in the shortest time possible. To guarantee thecon-
trol input is obtainable in real situations, constraints are placed
on the magnitude of the available control input. Furthermore
these structures contain permissible deflection limits forthe flex-
ible appendages which ensure they are not driven to the point
of yielding or failure. To avoid this, constraints on the amount
of transient state deformation the system experiences during the
maneuver are included.

The traditional time-optimal control problem consist of de-
termining the controlu(t), which drives the system statesx, gov-
erned by ˙x(t) = Ax(t)+Bu(t), from their specified initial statex0

to their desired final statex f while minimizing the performance
index

min J =

∫ t f

0
dt (1)

To guarantee the input magnitude is physically obtainable
and the actuators are capable of performing the desired maneuver
it must also satisfy the constraint:

umin ≤ u(t) ≤ umax (2)

To ensure the states are not driven beyond the systems per-
missible level of deflection it must additionally satisfy

∆xmin ≤ x1(t)− x2(t) ≤ ∆xmax (3)

For simplicity the control limits are assumed to be sym-
metric. In addition, for generality purposes, the control input
is constrained to−1≤ u(t) ≤ 1, and the state deflection is con-
strained to−δ≤ x1(t)−x2(t)≤ δ, whereδ is the specified deflec-
tion limit. The resulting problem statement for deflection-limited
time-optimal control is

min J =

∫ t f

0
dt (4a)

subject to ˙x(t) = Ax(t)+ Bu(t) (4b)

x(t0) = x0 x(t f ) = x f (4c)

−1≤ u(t) ≤ 1 ∀t (4d)

− δ ≤ x1(t)− x2(t) ≤ δ ∀t (4e)

3 PARAMETERIZATION OF CONTROL PROFILE
Deformation limiting control strategies are a modification

of conventional control strategies [13]. The time optimal control
strategy for an undamped system is a bang-bang profile which is
antisymmetric about the mid maneuvering point. In additionthe
time optimal profile is fully saturated throughout the entire ma-
neuver, ensuring the final maneuver time is minimized. However,
if throughout the maneuver the system experiences excessive de-
formation then a decrease in control input is needed [13]. Intu-
itively when the deformation constraint is reached the states of
the system must approach the same velocity. As long as the con-
straint remains active the velocities must remain equal. There-
fore the ideal profile would be a bang-bang to initialize the veloc-
ity states, then a period of coasting where the velocities remain
equal. As with the traditional time optimal control profile we
still require the same antisymmetric characteristic to guarantee
the states reach the desired set point. Thus the proposed control
profile is illustrated in Fig. 2. It is characterized by sevenswitch
times and has a mid maneuver point atT4. The first half of the
maneuver accelerates the system while maintaining controlover
deformation and vibration, the second half decelerates thesystem
in the same manner. This control strategy can be characterized
by a set of Heaviside function shown in Eq. (5).

u(t) = 1−2H (t −T1)+(1+∆)H (t −T2)

− (1+∆)H (t −T3)+2H (t −T4)− (1+∆)H (t −T5)

+(1+∆)H (t −T6)−2H (t −T7)+H (t −T8)

(5)

Here ∆ represents the input magnitude necessary for the
coasting period of the two masses. It was previously stated
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Figure 2. Deformation Limited Time Optimal Control

that during this maneuvering period the velocities of each mass
needed to remain equal. While the input magnitude remains con-
stant,u(t) = ∆, in order for the velocity states to remain equal,
ẋ1(t) = ẋ2(t), each mass must accelerate at the same constant
rate. Thus the acceleration states must be equal and constant,
represented by

ẍ1(t) = ẍ2(t) = const (6)

Substituting the equations of motion into Eq. (6) and letting
the control input assume the valueu(t) = ∆ leads to

∆
m1

−
k(x1(t)− x2(t))

m1
=

k(x1(t)− x2(t))
m2

(7)

Solving for Eq. (7) in terms of∆ gives

∆ =
(m1 + m2)k

m2
(x1(t)− x2(t)) (8)

Recall that during this maneuver the position states are
coasting along the constraint bound. That is the displacement
between the two masses is being held at the maximum or mini-
mum allowable deformation, or

[x1(t)− x2(t)]|u(t)=∆ = δ (9)

Substituting Eq. (9) into Eq. (8) leads to

∆ =
(m1 + m2)k

m2
δ (10)

Eq. (10) represents the magnitude of control input needed to
preform the coasting periods of the maneuver. This expression

is further reduced when the parameters assume a value of unity,
m1 = m2 = k = 1

∆ = 2δ (11)

Substituting this expression back into Eq. (5) gives

u(t) = 1−2H (t −T1)+(1+2δ)H (t −T2)− (1+2δ)H (t −T3)

+2H (t −T4)− (1+2δ)H (t −T5)+

(1+2δ)H (t −T6)−2H (t −T7)+H (t −T8)

(12)

Eq. (12) represent the fully parameterized control strategy
as a function of switch timesTi and permissible deformationδ.

3.1 Deformation Constraint
The control strategy along with all the constraint equations

are parameterized in terms of switch times. Therefore it would
be desirable to derive a closed form expression for the systems
deformation in terms of the switch times.

The total deformation in the Laplace domain may be repre-
sented as

X1(s)−X2(s) =
1

s2 + ω2U(s) (13)

By taking the inverse Laplace transformation of the Eq. (13)
the deformation expression may be derived as a function of time,
resulting in

ω2(x1(t)− x2(t)) =[1− C (ωt)−2(1− C (ω(t−T1)))H (t −T1)

+ (1+2δ)(1− C (ω(t−T2)))H (t −T2)

− (1+2δ)(1− C (ω(t−T3)))H (t −T3)

+2(1− C (ω(t−T4)))H (t −T4)

− (1+2δ)(1− C (ω(t−T5)))H (t −T5)

+ (1+2δ)(1− C (ω(t−T6)))H (t −T6)

−2(1− C (ω(t−T7)))H (t −T7)

+ (1− C (ω(t−T8)))H (t −T8)]

(14)

whereC (.) = cos(.).
Therefore the state deformation that occurs between any two

switch times, may be represented by

x1(t)− x2(t) =
1

ω2 [1−C (ωt)+
i

∑
j=1

A j(1−C (ω(t−Tj)))] (15)



∀t ∈ [Ti Ti+1], wheren represents the total number of profile
switch times andAi denotes the input magnitude change at each
corresponding switch timeTi.

Note that Eq. (15) is only valid for timet existing in the in-
terval t ∈ [Ti Ti+1]. Therefore Eq. (15) may be used to compute
a series of deformation expressions between each switch time in-
terval in the control profile. To satisfy the inequality constraint
the deformation values that are in strictest violation of the con-
straint bound have to be considered. Therefore the maximum
deformation occurring in each switch interval needs to be deter-
mined. We begin by taking the time derivative of Eq. (15) which
is given by

d
dt

[x1(t)− x2(t)] =
1
ω

[sin(ωt)+
i

∑
j=1

A j(sin(ω(t −Tj)))] (16)

∀t ∈ [Ti Ti+1]. By equating Eq. (16) to zero and solving fort, the
time at which a local maxima or minima occurs may be repre-
sented by

tm =
1
ω

arctan{
∑i

j=1A j sin(ωTj)

1+ ∑i
j=1 A j sin(ωTj)

}+
πk
ω

(17)

for k = 0,1,2, .... Note that Eq. (17) is nonlinear and therefore
can generate multiple solution in intervals ofπ

ω . Therefore if
one or more solutions to Eq. (17) lie within the interval,tm ∈
[Ti Ti+1], then a local extreme point exist. The deformation value
at these times may then be determined by evaluating Eq. (15) at
tm. However, there are certain cases when no local extreme points
exist in the interval of interest. In these instances the maximum
deformation can only occur at the interval boundaries. Therefore
the maximum deformation that occurs in any switch time interval
may be represented by

∆xmax(i) = max|∆x(Ti) ∆x(tm) ∆x(Ti+1)| (18)

∀tm ∈ [Ti Ti+1], where the function∆x in Eq. (18) is a shortened
notation for the deformation expression,x1(t)− x2(t).

Finally, the maximum deformation value that occurs across
the entire time span of the control strategy may be determined by
taking the maximum of∆xmax which occurs in each switch inter-
val. The final state deformation constraint may be represented in
the form

max[∆xmax(i)] ≤ δ f or i = 0...n (19)
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Figure 3. Intermediate Deformation Limited Control

3.2 Intermediate Control Profile
When the allowable level of transient deformation is large,

the parametrization of the deformation limiting control strategy
simply collapses into the conventional time optimal solution.
However, as derived in Eq. (11), the deformation controlledma-
neuvering requiresu(t) = 2δ. Therefore there exist certain levels
of permissable deformation for which the control input willvio-
late its saturation constraint−1≤ u(t) ≤ 1. For this reason we
require the parametrization of an intermediate profile to make the
transition between the time optimal solution and the unsaturated
deformation limiting control in Fig. 2. Figure 3 illustrates the
proposed intermediate control profile which can be represented
in the Laplace domain as

U(s) =
1
s
[1−2esT1 +2esT2 −2esT3 +2esT4

−2esT5 +2esT6 −2esT7 + esT8]
(20)

For each of the parametrization, a parameter optimization
problem can be derived with constraints to satisfy the boundary
conditions and the deflection constraints. Any gradient based
optimization algorithms can be used to solve for the switch time.

4 NUMERICAL SIMULATIONS
In this section, the proposed techniques are illustrated onthe

undamped floating oscillator problem (Fig.1) undergoing a rest-
to-rest maneuver whose equations of motion are

[

m1 0
0 m2

][

ẍ1(t)
ẍ2(t)

]

+

[

k −k
−k k

][

x1(t)
x2(t)

]

=

[

1
0

]

u(t) (21)

with the boundary conditions



x(t0) =

[

0
0

]

ẋ(t0) =

[

0
0

]

x(t f ) =

[

1
1

]

ẋ(t f ) =

[

0
0

]

(22)

4.1 Non-restrictive Deformation
The first simulation was performed using a large enoughδ

that the deformation constraint remained inactive. Thereby the
solution is based solely on the conditions for time optimality.
The control profile was found to be

u(t) = 1−2H (t −1.0027)+2H (t −2.1089)

−2H (t −3.2152)+2H (t −4.2179)
(23)

The control strategy as well as the system response are illus-
trated in Fig. 4. This is the traditional time optimal solution for
this problem.
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Figure 4. Control Profile for Non-restricting δ

4.2 Intermediate Control Profile
In this example, the control profile was computed for an al-

lowable deformation ofδ = 0.50, thus resulting in an intermedi-
ate profile as discussed in Section 3.2. The control profile,

u(t) = 1−2H (t −0.9320)+2H (t −1.2894)−2H (t −1.3954)

+2H (t −2.1359)−2H (t −2.8764)+2H (t −2.8924)

−2H (t −3.3397)+H (t −4.2717)

(24)

remains fully saturated throughout the entire maneuver andis
shown in Fig. 5 along with the evolution of the system states.

The state deformation for this simulation is illustrated in
Fig. 6. The dashed lines represent the deformation limits±δ.
Note that the deformation is saturated for all time during the
coasting maneuver.
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Figure 5. Deformation Limited Control for δ = 0.50
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Figure 6. State Deformation for δ = 0.50

4.3 Deformation limited Control Profile
The allowable deformation in this example was selected to

beδ = 0.25, hence the input limited period, whereu(t) = 2δ, is
no longer saturated. The control strategy was found to be

u(t) = 1−2H (t −0.575)+1.5H (t −0.932)−1.5H (t −1.908)

+2H (t −2.503)−1.5H (t −3.098)+1.5H (t −4.074)

−2H (t −4.432)+H (t −5.006)

(25)

Shown in Fig. 7 is an illustration of this control strategy along
with the system response. In Section 3 the presumption of the
velocity states remaining equal and the acceleration remaining
constant becomes more evident in this figure. Note at the be-
ginning of each coasting period the velocities,x3 andx4, merge
together and track along a straight path; they do not separate until
the next switch time.

Also shown in Fig. 8 is the transient deformation for this
control strategy. Here the limitations,±δ, that are reached during
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Figure 7. Deformation Limited Control for δ = 0.25

the coasting maneuver are better exposed.
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4.4 Switch Time Trajectories
Figure 9 illustrates the transition in control structure based

on the profile switch times for varying magnitudes of allowable
deformation. The figure clearly demonstrates that as the permis-
sible deformation tends toward zero,δ → 0, the maneuver time
tends towards infinity,t f → ∞. In addition it shows the transition
into the intermediate profile whenδ = 0.50. As the allowable de-
formation approachesδ → 0.5477, switch timesT2, T3, T5, and
T6, which characterize the coasting periods for deformation con-
trol, collapse which leads to the time optimal solution. Intuitively
asδ → ∞ the unconstrained time optimal solution remains.
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Figure 9. Trajectories of the Switching Times

4.5 Switch Time Trajectories (Damped System)
The transition in control structure with respect to the per-

missible level of deformation for the benchmark floating oscilla-
tor with a damping ratio of 0.25, is presented in Fig. 10. Simi-
lar to the results in the section on the undamped system, as the
allowable deformation tends toward zero,δ → 0, the final ma-
neuver time tends towards infinity,t f → ∞. However the most
apparent variation between the undamped and damped case is
illustrated by the antisymmetric collapse in the coasting period
switch times, characterized byT2, T3, T5, and T6. As the al-
lowable deformation approachesδ → 0.4938 the first two switch
times, characterized byT2, andT3, collapse, which is just prior to
the deformation limit ofδ = 0.5. This further clarifies why only
five switch times are present in the intermediate profile. More-
over, once the permissible deformation surpasses 0.5 the second
coasting period, characterized byT5, andT6, becomes fully sat-
urated. As the limit tend towardsδ → 0.5438 the second pair
of switch times collapse which leads to the time optimal solu-
tion. Clearly asδ → ∞ the unconstrained time optimal solution
remains.

5 CONCLUSIONS
The variation in the structure of deflection limited time-

optimal control profile for the benchmark floating oscillator is
presented. The control profile is parameterized in terms of the
permissible deflection leading to posing the problem as a param-
eter optimization problem. Results illustrate that the deflection
limited time-optimal control profile varies from a 5 switch bang-
bang form which correspond to large permissible deflection to a
7 switch bang-bang form which is referred to as an intermedi-
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Figure 10. Trajectories of the Switching Times (ζ = 0.25)

ate control profile to a 7 switch non-saturating switching control
profile which corresponds to small permissible deflection.
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