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ABSTRACT

The focus of this paper is on the design of time optimal
control profiles for flexible structures subject to deflectann-
straints. The benchmark floating oscillator is used to tithte
the variation in the structure of the control profile as a func
tion of permissible deflection. The transition from a 5 sWwitc
bang-bang to a 7 switch bang-bang to finally, a 7 switch profile
which includes non-saturating intervals, is demonstratéte
loss of anti-symmetry of the control profile and the traositof
the structures of the deflection constrained time-optimatml
profiles for damped systems is also presented.
Keywords: Time-Optimal, Deflection constraint, Benchmark
Problem.

1 INTRODUCTION

Vibration control of slewing flexible structures has been a
subject of research interest in both the aerospace andicsbot
community [1]- [2]. These studies encompass a number of
lightweight flexible structures; such applications inauldrge
spacecraft and space structures [3], robotic arms [4], rgant
cranes [5], hard disk drives [6], etc. In 1957, Smith [1] prsed
a wave cancelation technique, termed “Posicast”, to drisysa
tem with one resonant mode to its final position in finite time.
Singer and Seering [7] arrived at the same results as Smith wi
an input shaping approach. In addition, they proposed & tech
nique for making input shaping commands insensitive torgiiro
the model parameters which involved forcing the systens&lre
ual energy, and derivative with respect to the natural feeqy or
damping, to zero. Singh and Vadali [2] derived the same t&sul
as Singer and Seering [7] with the design of a time delay peefil
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Figure 1. Undamped Floating Oscillator

which provided zeros to the system so as to cancel the poles.
Liu and Wie [8] proposed an approach for desensitizing time-
optimal control profiles to model uncertainties, which itwesl
decoupling the equations of motion into rigid and flexiblelyo
modes. Robustness is achieved by forcing the partial desgéva

of the decoupled states with respect to natural frequenzgno

at the final maneuvertime. Singh and Vadali [9] improved the r
bustness of time-optimal control strategies by applyirgpble
cancelation technique and requiring the control sequamsatt

isfy robustness constraints.

The aforementioned techniques essentially concentrate on
eliminating residual vibration and increasing the robasmof
input shaping and minimum time controllers. None, however,
address the problem of limiting the large deflection amgétsi
normally associated with them. Take for example the system i
lustrated in Fig.1, it may be necessary to move the stru@ure
finite distance in minimum time while limiting the maximum-ex
tension/contraction that occurs in the spring. Singhosé §t0]



proposed the first approach for developing deflection-&chin- To ensure the states are not driven beyond the systems per-
put shaping commands. In their paper, a technique for applyi  missible level of deflection it must additionally satisfy

deflection limits at instances where local extrema pointauoc

iq the transient deflection is preser_1ted. Howeve_zr, the expre AXrin < X (t) — Xo(t) < AXrax 3)
sions are only derived for control impulse amplitudesiof
warranting the development of bang-off-bang control seqas
which are not time optimal. Robertson and Singhose [11]} [12
arrived at the same results as the aforementioned with a dis-
crete approach. Later they presented an approach for devel-
oping closed form expressions to the deflection-limitingneo
mands [11]. Their technique incorporated magnitude et
coasting periods in the preshaped profile. One year latey, th
also developed a robust approach which involved an extemsio

For simplicity the control limits are assumed to be sym-
metric. In addition, for generality purposes, the contrgiut
is constrained te-1 < u(t) < 1, and the state deflection is con-
strained to-0 < x1(t) — x2(t) < &, whered is the specified deflec-
tion limit. The resulting problem statement for deflectiamited
time-optimal control is

the number of profile switch times [12]. min J — /tf dt (4a)
The aforementioned papers constrain the control profile to 0

be either bang-off-bang [10], or non-saturating bangbaifig subjectto x(t) = Ax(t) + Bu(t) (4b)

[11]- [12] which are control profiles which do not correspond X(to) = X0 X(tf) =X; (4c)

to the time-optimal solutions. In Section 2 the optimal coht
problem is described. The following section presents tharpa
eterizations of the control profiles. The numerical resaés- —8<x(t) —x(t) <3 Vt
tion presents the time-optimal solutions for specific déibes.
Charts which illustrate the variation of the switch timesdisnc-
tion of the permitted deflection are presented for both timeymkd
and undamped benchmark problem.

—1<ut) <1 Vvt (4d)
(4e)

3 PARAMETERIZATION OF CONTROL PROFILE

Deformation limiting control strategies are a modification
of conventional control strategies [13]. The time optimahirol
strategy for an undamped system is a bang-bang profile which i
2  MATHEMATICAL FORMULATION a_mtisymr_netric ab_ou'F the mid maneuvering point. In addi_thm
time optimal profile is fully saturated throughout the eamtina-
neuver, ensuring the final maneuver time is minimized. H@axev
if throughout the maneuver the system experiences exesssiv
formation then a decrease in control input is needed [13]i-In
itively when the deformation constraint is reached theestaff
the system must approach the same velocity. As long as the con
straint remains active the velocities must remain equakrdh
fore the ideal profile would be a bang-bang to initialize thioe-
ity states, then a period of coasting where the velocitiezare
equal. As with the traditional time optimal control profileew
still require the same antisymmetric characteristic torgngee
the states reach the desired set point. Thus the proposé&oicon
profile is illustrated in Fig. 2. It is characterized by segsvitch
times and has a mid maneuver poinfTat The first half of the
maneuver accelerates the system while maintaining cooegl
deformation and vibration, the second half deceleratesytbiem
t in the same manner. This control strategy can be charaeteriz
min J = / dt (1) by a set of Heaviside function shown in Eq. (5).

0

For time optimal control of flexible structures, it is desir-
able to establish a control strategy that results in quigstes-
minal states in the shortest time possible. To guaranteedhe
trol input is obtainable in real situations, constraints placed
on the magnitude of the available control input. Furthemenor
these structures contain permissible deflection limitstferflex-
ible appendages which ensure they are not driven to the point
of yielding or failure. To avoid this, constraints on the amb
of transient state deformation the system experienceagltie
maneuver are included.

The traditional time-optimal control problem consist of de
termining the controli(t), which drives the system statesgov-
erned byx{t) = Ax(t) + Bu(t), from their specified initial state
to their desired final states while minimizing the performance
index

ut) =1-2# (t—T1)+(1+D)# (t—To)
—(A+D)H(t—Ta)+2H (t—Tg) — (L+D)H (t—=Ts) (5)
+(AL+D)H(t—Tg) —2H (t—T7) +H (t—Tg)

To guarantee the input magnitude is physically obtainable
and the actuators are capable of performing the desiredumane
it must also satisfy the constraint:

Here A represents the input magnitude necessary for the
Umin < U(t) < Umax (2) coasting period of the two masses. It was previously stated



A is further reduced when the parameters assume a value gf unit
T T T = =k=1
T, T3 A=25 (11)
A L — |- - k-
Ts
N N o t Substituting this expression back into Eqg. (5) gives
Ts To U(t) =1— 291 (t = To) + (14 28) 9 (t — To) — (1+28)# (t — T3)
Ll e +29 (t=Ta) — (14+20)7 (t—Ts)+ (12)
(1428)H (t—Tg) — 29 (t — Ty) + 9 (t — Tg)

Figure 2. Deformation Limited Time Optimal Control Eq. (12) represent the fully parameterized control stiateg
as a function of switch time§ and permissible deformatidn

that during this maneuvering period the velocities of eaessn

needed to remain equal. While the input magnitude remaimsco 3.1 Deformation Constraint

stant,u(t) = A, in order for the velocity states to remain equal, The control strategy along with all the constraint equation
X1(t) = X(t), each mass must accelerate at the same constantare parameterized in terms of switch times. Therefore itldiou
rate. Thus the acceleration states must be equal and cgnstan be desirable to derive a closed form expression for the syste

represented by deformation in terms of the switch times.
The total deformation in the Laplace domain may be repre-
X1 (t) = %o (t) = const (6) sented as
Substitgting the equations of motion into Eq. (6) and lettin X1(S) — Xa(s) = ﬁu (s) (13)

the control input assume the valug) = A leads to +
A K(xa(t) —xo(t)  K(xe(t) —xa(t)) By taking the inverse Laplace transformation of the Eq. (13)
m m = m (7) the deformation expression may be derived as a functiomn,ti

resulting in

Solving for Eq. (7) in terms of gives
W (X1 (t) — x2(t)) =[1— ¢ (wt) —2(1— ¢ (w(t—To)))# (t — Tp)

A— M‘(Xl(t>_)(2(t)> (8) +(14+20)(1— c(w(t—T2)))7 (t—T2)

me —(1+2)(1—-c(w(t—T3)))7 (t—Ta)
Recall that during this maneuver the position states are +2(1 = C(0(t=Ta)))H (t—Ta)

coasting along the constraint bound. That is the displanéme —(1+20)(1—-c(w(t—Ts)))# (t—Ts)

between the two masses is being held at the maximum or mini- +(14+20)(1—c(w(t—Ts)))# (t —Ts)
mum allowable deformation, or —2(1—c((t—T7)))# (t—T7)
+ (1= c(w(t—Tg)))# (t—Tg)]

[xa(t) =x2(t)]y)—a =0 (9) (14)

Substituting Eq. (9) into Eq. (8) leads to wherec () = cos(.).

Therefore the state deformation that occurs between any two

(M +mp)k 5 (10) switch times, may be represented by

my

A:

Eqg. (10) represents the magnitude of control input needed to xa(t) —Xo(t) = i[l— C(wt) + i Aj(1-c((t—T;)))] (15)
preform the coasting periods of the maneuver. This expassi w? =1



vVt € [Ti Ti+1], wheren represents the total number of profile
switch times andy; denotes the input magnitude change at each
corresponding switch tim@.

Note that Eq. (15) is only valid for timeexisting in the in-
tervalt € [T; Tiy1]. Therefore Eq. (15) may be used to compute
a series of deformation expressions between each switehinim
terval in the control profile. To satisfy the inequality ctramt
the deformation values that are in strictest violation & tion-
straint bound have to be considered. Therefore the maximum
deformation occurring in each switch interval needs to erde
mined. We begin by taking the time derivative of Eq. (15) whic
is given by

G000 )] = GfsineO) + 3 Asinelt =Tyl @5)

vt € [Ti Tit1). By equating Eq. (16) to zero and solving fothe
time at which a local maxima or minima occurs may be repre-
sented by

SjASInGT) | Tic
1+ zij:]_Aj sin(wTj) I ® (7

1
tm = — arcta
m= q

for k=0,1,2,.... Note that Eq. (17) is nonlinear and therefore
can generate multiple solution in intervals §f Therefore if
one or more solutions to Eq. (17) lie within the intervigl, €

[Ti Tit+1], then a local extreme point exist. The deformation value
at these times may then be determined by evaluating Eq. {15) a
tm. However, there are certain cases when no local extreméspoin
exist in the interval of interest. In these instances theimam
deformation can only occur at the interval boundaries. &toge

the maximum deformation that occurs in any switch time waer
may be represented by

DxXmax (i) = max|AX(Ti) AX(tm) AX(Tiy1)] (18)

Vtm € [Ti Tit1], where the functiofx in Eq. (18) is a shortened
notation for the deformation expression(t) — xo(t).

Finally, the maximum deformation value that occurs across
the entire time span of the control strategy may be deterirtige
taking the maximum of\xyax which occurs in each switch inter-
val. The final state deformation constraint may be represkint
the form

maXAxmax(i)] <& fori=0..n (19)
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Figure 3. Intermediate Deformation Limited Control

3.2 Intermediate Control Profile

When the allowable level of transient deformation is large,
the parametrization of the deformation limiting controbstgy
simply collapses into the conventional time optimal saloti
However, as derived in Eq. (11), the deformation controffed
neuvering requires(t) = 20. Therefore there exist certain levels
of permissable deformation for which the control input wilh-
late its saturation constrairtl < u(t) < 1. For this reason we
require the parametrization of an intermediate profile teerthe
transition between the time optimal solution and the unsied
deformation limiting control in Fig. 2. Figure 3 illustratehe
proposed intermediate control profile which can be reptesen
in the Laplace domain as

= }[1 — 261 4 2652 _ 25T 4 26T
s (20)

— 265 4 2656 — 2657 1 €8]

U(s)

For each of the parametrization, a parameter optimization
problem can be derived with constraints to satisfy the bawnd
conditions and the deflection constraints. Any gradienebdas
optimization algorithms can be used to solve for the swittiet

4 NUMERICAL SIMULATIONS

In this section, the proposed techniques are illustrateti®n
undamped floating oscillator problem (Fig.1) undergoingst-r
to-rest maneuver whose equations of motion are

o O 0T (K f) - [Huy e

with the boundary conditions



e

X

o) = [o] (o) = |g] w0 = 7] xt0)

4.1 Non-restrictive Deformation

The first simulation was performed using a large enodgh
that the deformation constraint remained inactive. Thetak
solution is based solely on the conditions for time optityali
The control profile was found to be

u(t) =1— 29 (t —1.0027) + 24( (t —2.1089

—29f (t —3.2152) + 2% (t — 4.2179 23)

The control strategy as well as the system response are illus
trated in Fig. 4. This is the traditional time optimal sotutifor
this problem.
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Figure 4. Control Profile for Non-restricting 0

Intermediate Control Profile
In this example, the control profile was computed for an al-
lowable deformation od = 0.50, thus resulting in an intermedi-
ate profile as discussed in Section 3.2. The control profile,

4.2

u(t) = 1— 297 (t — 0.9320) + 2 (t — 1.2894) — 29/ (t — 1.3954)
429 (t —2.1359 — 29/ (t — 2.8764) + 29( (t — 2.8924) (24)
—29( (t —3.3397) + 9 (t — 4.2717)

remains fully saturated throughout the entire maneuverigind
shown in Fig. 5 along with the evolution of the system states.

The state deformation for this simulation is illustrated in
Fig. 6. The dashed lines represent the deformation limiis
Note that the deformation is saturated for all time during th
coasting maneuver.
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Figure 5. Deformation Limited Control for & = 0.50
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Figure 6. State Deformation for & = 0.50

4.3 Deformation limited Control Profile

The allowable deformation in this example was selected to
bed = 0.25, hence the input limited period, wharg) = 26, is
no longer saturated. The control strategy was found to be

U(t) = 1— 29/ (t — 0.575) + 1.5s¢ (t — 0.932) — 159/ (t — 1.908)
+29( (t — 2.503) — 1.59( (t — 3.098) + 1.5% (t — 4.074) (25)
—29( (t — 4.432) + 7 (t — 5.006)

Shown in Fig. 7 is an illustration of this control strategprad
with the system response. In Section 3 the presumption of the
velocity states remaining equal and the acceleration m@nti
constant becomes more evident in this figure. Note at the be-
ginning of each coasting period the velocitigsandxs, merge
together and track along a straight path; they do not separdi
the next switch time.

Also shown in Fig. 8 is the transient deformation for this
control strategy. Here the limitationsp, that are reached during
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Figure 7. Deformation Limited Control for & = 0.25

the coasting maneuver are better exposed.
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Figure 8. State Deformation for & = 0.25

4.4 Switch Time Trajectories

Figure 9 illustrates the transition in control structuresdxh
on the profile switch times for varying magnitudes of alloveab
deformation. The figure clearly demonstrates that as thaiger
sible deformation tends toward zed®;— 0, the maneuver time
tends towards infinityt; — co. In addition it shows the transition
into the intermediate profile whehn= 0.50. As the allowable de-
formation approaches — 0.5477, switch timedy, Ts, Ts, and
Te, Which characterize the coasting periods for deformatam ¢
trol, collapse which leads to the time optimal solutionultively
asd — oo the unconstrained time optimal solution remains.

i

Switch Times T. (sec)

| | | | |
0.4 0.6 07 0.8 0.9 1

05
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Figure 9. Trajectories of the Switching Times

4.5 Switch Time Trajectories (Damped System)

The transition in control structure with respect to the per-
missible level of deformation for the benchmark floatingilbesc
tor with a damping ratio of 0.25, is presented in Fig. 10. Simi
lar to the results in the section on the undamped systemgas th
allowable deformation tends toward zef— 0, the final ma-
neuver time tends towards infinitit, — . However the most
apparent variation between the undamped and damped case is
illustrated by the antisymmetric collapse in the coastiegqu
switch times, characterized bl, T3, Ts, and Ts. As the al-
lowable deformation approach&s- 0.4938 the first two switch
times, characterized blg, andTs, collapse, which is just prior to
the deformation limit o® = 0.5. This further clarifies why only
five switch times are present in the intermediate profile. édor
over, once the permissible deformation surpasses 0.5 toade
coasting period, characterized By, andTg, becomes fully sat-
urated. As the limit tend towards — 0.5438 the second pair
of switch times collapse which leads to the time optimal solu
tion. Clearly asd — o the unconstrained time optimal solution
remains.

5 CONCLUSIONS

The variation in the structure of deflection limited time-
optimal control profile for the benchmark floating oscillats
presented. The control profile is parameterized in term$ief t
permissible deflection leading to posing the problem as arpar
eter optimization problem. Results illustrate that the atgibn
limited time-optimal control profile varies from a 5 switchrmg-
bang form which correspond to large permissible deflectica t
7 switch bang-bang form which is referred to as an intermedi-
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Figure 10. Trajectories of the Switching Times ({ = 0.25)

ate control profile to a 7 switch non-saturating switchingtcol
profile which corresponds to small permissible deflection.
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