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ABSTRACT
This paper discusses the concurrent design of a feed-

forward time-delay filter and a linear state feed-back
controller. The optimization is carried out using a
quadratic cost functional which weights both, distur-
bance rejection and control tracking performance. A
minimax optimization scheme is employed to achieve
robustness with respect to parameter deviations. An-
alytical gradients are provided for the cost function.
This information can be exploited to expedite con-
vergence of the optimization procedure. The pro-
posed technique is illustrated on the Floating Oscil-
lator benchmark problem.

INTRODUCTION
Vibration control has been subject to intense re-

search, aiming at applications as diverse as maneu-
vering of large space structures,1 flexible arm robots,2

computer disk drives,3 and cranes.4 In most of these
applications, the goal is to minimize the maneuver
time, while ensuring quiescent final states. During
this exhaustive research, multifarious constraints have
been added to the problem formulation, such as limits
on the fuel consumed,5 robustness to modelling uncer-
tainties,67 and maximum permitted deformation.8

Traditionally, there are two approaches to the con-
trol of flexible structures, either avoiding excitations
by shaping the control input appropriately or damp-
ing vibration by the application of a suitable feed-back
control law. As separate entities, both of these ap-
proaches have been exhaustively investigated and a
variety of solutions have been developed. These ap-
proaches will be briefly reviewed.

One specific method of forming the control input
which does not excite vibrations is by the use of time-
delay filters. This technique was initially developed
by Smith9 in 1957 and was termed “Posicast”. It is
based on dividing a step input into a number of spaced

excitations, which are chosen such that there is no re-
manent vibrational energy at the end of the maneuver.
In this initial work, robustness issues had not been
considered. In 1990, Singer and Seering6 suggested a
practice to design input shapers addressing the sen-
sitivity issues. All these techniques are based in the
time domain. Singh and Vadali7 pointed out that a
time delay filter which cancels the underdamped poles
of a system results in the same control profile as the
input shaping controller. Thus, input prefilters can
also be designed using frequency domain techniques
and properties.

Recently, other techniques have been developed to
address the issue of desensitizing the controller to mod-
elling errors. Singh10 proposed a minimax formulation
to desensitize the input-preshaping controller with re-
spect to modelling errors. Muenchhof and Singh11

considered limitations on the time rate of change of
the control input for both single-input and multi-input
systems. They illustrate the reduction of energy in the
power spectrum at the higher frequencies, which is de-
sirable for flexible structures. The tutorial by Singh
and Singhose12 summarizes the results obained in this
area of research.

A variety of design methods for feed-back control
systems have been developed for both linear and non-
linear systems. For linear systems, the linear state
feed-back is the prevailing control setup due to its ease
of application and the multitude of applicable design
methods such as pole placement or the linear quadratic
regulator setting.13 The latter technique, abbreviated
LQR, allows for the design of linear state feed-back
controllers which minimize a quadratic cost function
weighting both deviation of the states from the de-
sired final value and the control effort expended. Many
methods have been proposed which extend the basic
idea behind the linear quadratic regulator. Among
them are methods to robustify the regulator with re-
spect to parametric uncertainties of the plant and
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methods to design regulators for plants subject to
white or colored noise excitation. Mills and Bryson14

proposed a minimax technique, where the cost func-
tion is evaluated not only for the nominal set of system
parameters but also for a number of perturbed sys-
tems. They also presented this design technique for
white noise disturbances, designing a linear-quadratic-
gaussian controller with parameter robustness.15

The advantages of the two aforementioned ap-
proaches complement one another. On the one hand,
it is much better to prevent residual vibration by using
a feed-forward control scheme than trying to eliminate
these vibrations once they came into existence. On the
other hand, feed-forward controllers cannot cope with
unmeasured disturbances. This is where the feed-back
controller can show its full potential. Those consid-
erations lead to the idea of using a hybrid control
approach. Different controller structures evolve de-
pending on whether the input-prefilter is also part of
the feed-back loop16 or not.

In this paper, a controller structure consisting of a
time-delay filter and linear state feed-back is consid-
ered. The input prefilter is not part of the feed-back
loop. Quadratic cost functions are used to rate the
control tracking performance as well as the disturbance
rejection capabilities. The controller design has been
posed as a minimax optimization problem. This per-
mits increasing the robustness of the controller with
respect to parametric uncertainties. Statistical infor-
mation about the uncertain parameters, such as lower
bounds, upper bounds, and the expected value can
easily be included. The level of insensitivity can be
increased arbitarily, trading maneuver time for robust-
ness.

This paper is divided as follows: First, the prob-
lem is formulated and the cost functions are described.
This is followed by the development of analytical gra-
dients for the cost functions. Next, the minimax ap-
proach is illustrated. Finally, numerical examples are
presented, which detail the performance of the new
control technique for the Floating Oscillator standard
benchmark problem.17

PROBLEM FORMULATION
The paper discusses the design of a combined feed-

forward/feed-back controller for linear systems. Linear
systems can be described by the first order differential
equation

ẋ(t) = P (p) x(t) + Q(p) u(t) + Qw w(t)
y(t) = R(p) x(t),

(1)

where P is the state matrix, Q the input distribution
matrix and R the output matrix. It is assumed that
there is no direct feed-through from the input to the
output. The parameters of the system are uncertain,
which means that they depend on the uncertain vector

p, bounded by
pL ≤ p ≤ pU . (2)

In addition to these parametric uncertainties, the sys-
tem is also subject to a white noise disturbance w(t),
which is acting on the states as described by Qw.

The system is controlled by a time-delay filter which
is described by the transfer function

GF (s) =
N∑

k=1

Ak e−s Tk , (3)

whwre T1 = 0. This feed-forward controller is aug-
mented by a linear state-feed-back-controller, which
has the form

u(t) = −K x(t). (4)

The system setup is depicted in Fig. 1.
The engineer designing a control system has two

goals: Rejection of disturbances and fast control ac-
tion. To accomodate these demands, a weighted com-
bination of two cost functions will be chosen. The first
cost function rates the control performance. Here, the
residual energy was chosen, thus

FRE =
1
2
xT (t) X x(t)

+
1
2

(x(t) − xfinal)
T (t) Y (x(t) − xfinal) ,

(5)

where xfinal is the desired final value of the states.
The equation is evaluated for t = TEval. The last term
had to be inserted to account for rigid body modes, i. e.
modes, which do not necessarily have to return to zero
at the end of the maneuver. It is suggested to choose
X as

X =
[
Ksys 0

0 Msys

]
, (6)

where Ksys is the system’s stiffness matrix and Msys

the corresponding mass matrix. Furthermore, Y is set
up as

Y =
[
Khyp 0

0 0

]
, (7)

where Khyp is a diagonal matrix, which contains the
“spring stiffness” of hypothetical springs, which are
thought to be connected to rigid body modes of the
structure and would be deformed as long as the rigid
body mode has not reached its desired final displace-
ment. This way, the rigid body mode does also turn
up in the cost function. Upon this selection of X and
Y , the quadratic cost can easily be interpreted as the
sum of potential and kinetic energy stored in the sys-
tem at the time instant TEval. This snapshot of the
energy distribution is a measure of the amount of resid-
ual vibration. The time of evaluation, TEval, can be
chosen in two ways. First, it can be chosen such that
TEval = const, in which case the cost function is eval-
uated at a fixed instant in time located somewhere
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Fig. 1 System Setup

after the end of the maneuver. The second case is to
evaluate the cost function always at the end of the ma-
neuver, for which case TEval = Tn. In this paper, the
former approach is chosen.

The second cost function was chosen as the expected
value of the quadratic cost for the system being sub-
jected to white noise w(t). The cost function is given
as the expected value of the time integral

FN = E
[

lim
tf→∞

1
2tf

∫ tf

0

(yT By + uT Du)dt

]
(8)

with the cost matrix B penalizing the deviation of
states, the cost matrix D weighting the control effort
and E [. . .] is the expectation operator.

The closed loop dynamics are determined by the
state matrix P̃ , given as

P̃ = P − Q K. (9)

The cost function in Eq. 8 is calculated using the LQR
theory. Here, the cost can be calculated by first solving
the Lyapunov equation14

P̃ Z + Z P̃T + QW W QT
W = 0. (10)

Here, W is the covariance matrix of the noise and Z
is the solution of the Lyapunov equation, which will
then be used to calculate the cost functional

FN = tr (Z S) , (11)

where
S = RT B R + KT D K. (12)

The total cost is given as a linear combination of the
individual cost functions,

F = α FRE + (1 − α) FN , (13)

where the factor α with 0 < α < 1 weights the two
cost functions. The two extremal cases represent the
design of either only a robust linear state-feed-back
controller or only a robust time-delay filter. For the
case α = 0, the design variables which define the time
delay filter do not turn up in the cost function. For
α = 1, the effect of noise is not considered.

ANALYTICAL GRADIENTS

In this section, analytical gradients are provided for
both cost functions. For the residual energy, given in
Eq. 5, the first derivative with respect to the ampli-
tudes of the time-delay filter is given as

∂FRE(t)
∂Ai

= xT (t) X
∂x(t)
∂Ai

+ (x(t) − xfinal)
T (t) Y

∂x(t)
∂Ai

(14)

and requires knowledge of the derivative of the states
with respect to the time delay filter amplitudes. These
derivatives can easily be calculated as

∂x(t)
∂Ai

=
∫ t

Ti

eP̃ (t−τ) Q dτ if t ≥ Ti (15)
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Next, the derivative with respect to the switching
times is determined,

∂FRE(t)
∂Ti

= xT (t) X
∂x(t)
∂Ti

+ (x(t) − xfinal)
T (t) Y

∂x(t)
∂Ti

,

(16)

which necessitates calculation of the first derivative
of the states evaluated at TEval with respect to the
switching times, which is found to be

∂x

∂Ti

∣∣∣∣
t=TEval

= −Ai eP̃ (TEval−Ti) Q. (17)

In order to calculate the derivative

∂FRE(t)
∂ki

= xT (t) X
∂x(t)
∂ki

+ (x(t) − xfinal)
T (t) Y

∂x(t)
∂ki

,

(18)

the partial derivative of the states with respect to the
controller gains must be determined. An augmented
state space system is constructed as[

ẋ(t)
∂ẋ(t)
∂ki

]
=
[
P − Q K 0
−Q ∂K

∂ki
P − Q K

] [
x(t)
∂x(t)
∂ki

]
+
[
Q
0

]
ur(t).

(19)
The newly introduced state variables contain the
derivative of the system states with respect to the con-
troller gain ki. Solving this differential equation up to
time TEval yields the derivative of the states with re-
spect to the controller gains at the time instant TEval.

For the second cost function, which is a measure of
the system dynamics due to excitation at input w(t),
the gradients are easier to calculate. This cost function
depends neither on Ai nor on Ti. The only derivatives
to be calculated are the ones with respect to the con-
troller gains. They can be obtained by

∂FN

∂ki
= tr

(
∂Z

∂ki
S + Z

∂S

∂ki

)
, (20)

where Zi = ∂Z
∂ki

is the solution of the Lyapunov equa-
tion

P̃T Zi + Zi P̃ +
∂P̃

∂ki
Z + Z

(
∂P̃

∂ki

)T

= 0. (21)

The partial derivative of S with respect to ki is given
as

∂S

∂ki
= 2

(
∂K

∂ki

)T

D K (22)

Since the final cost function is a weighted linear com-
bination of the individual cost functions, the deriva-
tives of the entire cost function are simply a linear
combination of the individual derivatives.

INCREASING ROBUSTNESS
The goal of this paper is to design a concurrent feed-

forward/feed-back controller with increased robustness
towards parameter deviations. This is achieved by a
minimax approach,

min
{K, T, A}

max
p

F (K, T, A, p, α) (23)

The cost function is evaluated not only at the nom-
inal point, but also at the corners of the uncertain
space, which is bounded by pL and pU . The optimiza-
tion algorithm starts off with a controller designed for
the nominal system. This initial feasible solution can
easily be calculated since many methods already exist
for both linear state feed-back controllers and time-
delay filters provided only the nominal parameter set
is taken into account and the problems are looked at
separately. Once this initial guess has been obtained,
the algorithm starts to look at the performance of all
perturbed systems in addition to the performance of
the nominal system. The bounding box of the uncer-
tain space, which was originally limited to just one
point, namely the nominal parameter set, is now re-
peatedly increased until the total uncertain space is
covered. This method is depicted in Fig. 2 for a sys-
tem with three uncertain parameters.

Nominal System

First Uncertain Cube

Second Uncertain Cube

(p (1),p (2),p (3))L L L (p (1),p (2),p (3))U L L

(p (1),p (2),p (3))U L U

(p (1),p (2),p (3))L U L

(p (1),p (2),p (3))L U L

(p (1),p (2),p (3))L U U

(p (1),p (2),p (3))U U U

Fig. 2 Relaxing Bounds of the Uncertain Space
Considered

NUMERICAL EXAMPLES
The plant under consideration in this section on

numerical examples is the Floating Oscillator, a
two-mass/spring-and-damper system as illustrated in
Fig. 3. This plant represents a standard benchmark
problem with one rigid body mode and one flexible
mode.17 The system’s dynamics are governed by[

m1 0
0 m2

] [
ÿ1(t)
ÿ2(t)

]
+
[

c −c
−c c

] [
ẏ1(t)
ẏ2(t)

]

+
[

k −k
−k k

] [
y1(t)
y2(t)

]
=
[
1
0

]
u(t) +

[
1
0

]
uw(t).

(24)

The plant has four uncertain parameters, which are
the two masses m1 and m2, the spring stiffness k and
the damping coefficient c, represented by the uncertain
vector p. The nominal system parameters are listed in
Table 1 along with their respective uncertainty.
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Table 1 Nominal System Parameters

Number Parameter Value Uncertainty
1 k 1.0 ±1.0 σ
2 c 0.1 ±0.1 σ
3 m1 1.0 ±1.0 σ
4 m2 1.0 ±1.0 σ

Fig. 3 Floating Oscillator With Damping

Table 2 Control Profile Parameters for α = 0.9 and
σ = 20%

Nom Rob 1 TDF 2 TDF
k1 0.7669 0.8184 0.8203 0.8205
k2 0.2331 0.1832 0.1844 0.1847
k3 1.2298 1.1350 1.1346 1.1354
k4 1.1226 1.0168 1.0159 1.0167
T1 — — 1.9580 2.0668
A1 — — 0.4133 0.4674
T2 — — — 4.3328
A2 — — — 0.1819

For α = 0.9, different controllers will now be de-
signed. For reasons of comparison, a standard LQR
controller for the nominal system is designed (“Nom”).
Also, a robust LQR controller will be designed for the
system (“Rob”). This is then compared with two con-
trollers designed using the combined controller design
technique. One is a controller with one time delay (“1
TDF”) whereas the other is a controller with two time
delays (“2 TDF”). Each side of the uncertain hyper-
cube has a length of 2 σ = 2 × 0.2. The parameters
of the resulting control profiles have been collected in
Table 2. In this table, the feedback controller gains
are given as

kT = [k1, k2, k3, k4] (25)

and the time-delay prefilter’s step response is given by

u(t) =
(
1 − Σk

i=1Ai

)
+ Σk

i=1Ai H (t − Ti) , (26)

where H denotes the Heavyside function.
For the time delay filter, the number of switches can

be chosen arbitrarely. In general, more delays make
the filter more robust, whereas less switches allow for
a faster response at the nominal parameter point. For
the example presented in this paper and an assumed

maximum parameter deviation of 20% in each direc-
tion, a two-delay time delay filter is sufficient to obtain
good system performance. The introduction of more
delays into the filter decreases the cost only marginally.

Figures 4 and 5 compare the different controllers on
the same system. The step responses indicate the su-
perior performance of the hybrid controller since the
system comes to rest more quickly and barely displays
oscillations. Similar results can be seen for the step
responses of the nominal system shown in Figure 4 as
well as for a perturbed system. Figure 5 shows the sys-
tem response for corner number 2. This corner number
is a binary encoded specification of whether the lower
bound(bit=0) or upper bound(bit=1) is used. The
corner shown in the first diagram is the corner num-
ber 2 or 0010bin, i. e. the uncertain vector supplied
has been p = (pL(1), pL(2), pU (3), pL(4)).

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y 1 2 TDF
1 TDF
Rob
Nom

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y 2

t

Fig. 4 Step Response (Nominal System), Con-
troller Optimized for σ = 20% and α = 0.9
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Fig. 5 Step Response (Corner 2), Controller Op-
timized for σ = 20% and α = 0.9

Figures 6 and 7 show the control input, which is act-
ing on the system. The diagrams clearly illustrate that
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the control energy expended for the maneuver is also
reduced by the use of a time-delay input prefilter. Due
to the staircase shape of the prefiltered reference, at
t = 0, the full control is not applied to the system, but
only a fraction of it. Later, as the time delayed inputs
have propagated, the control acting on the system will
be increased. However, since the system is already re-
acting to the inital control input, the control difference
will in general be smaller.

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

t

2 TDF
1 TDF
Rob
Nom

Fig. 6 Control Input (Nominal System), Con-
troller Optimized for σ = 20% and α = 0.9
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Fig. 7 Control Input (Corner 2), Controller Op-
timized for σ = 20% and α = 0.9

As a gauge for the disturbance rejection capabili-
ties, the impulse response has been calculated. This
is shown in Fig. 8 and 9. The noise rejection capa-
bilities have hardly been affected. This was expected
since the time-delay filter is primarily targeting the
step response performance and will by itself not alter
the disturbance rejection capabilities. Since the cost
function judges both, disturbance rejection and step
response characteristics, the gains of the feedback con-
troller will be reasonalby tuned and do not concentrate
on the step response only.
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Fig. 8 Impulse Response (Corner 2), Controller
Optimized for σ = 20% and α = 0.9
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Fig. 9 Impulse Response (Nominal System), Con-
troller Optimized for σ = 20% and α = 0.9

Figure 10 displays the change in the residual energy.
The residual energy is a measure for the input track-
ing capability. One can clearly see the contribution
of the added time-delay filter to the control perfor-
mance. Figure 11, which graphs the quadratic cost
rating the disturbance rejection capabilities, evinces
that the performance was not affected by the added
time delay filter.

Figure 12 shows the parameter margin for con-
trollers designed with different σ bounds. The pa-
rameter margin plots the inverse cost of the worst
corner over the parameter deviation σ. Where the
curve crosses the σ axis, the system becomes unsta-
ble. From Fig. 12 it can be seen, that as the variable
σ, which is a metric of uncertainty is increased, the pa-
rameter margin increases with a simultaneous decrease
in the performance of the nominal system.

The diagrams shown in Fig. 13 and Fig. 14 shows the
position of the poles of the closed loop system as the
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Table 3 Control Profile Parameters for α = 0.999
and σ = 0.2

Nom Rob 1 TDF 2 TDF
k1 0.7669 0.8184 0.8602 0.8429
k2 0.2331 0.1832 0.1462 0.1642
k3 1.2298 1.1350 1.3219 1.1609
k4 1.1226 1.0168 0.8428 0.9659
T1 — — 2.1091 2.1336
A1 — — 0.4511 0.4983
T2 — — — 4.2446
A2 — — — 0.1385

parameters are varied. The position of the poles for
the nominal system parameters are denoted by ”N”.
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Fig. 13 Position of the Closed-Loop Poles for the
Nominal LQR controller
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Fig. 14 Position of the Closed-Loop Poles for the
Robust LQR controller

To show the effect of the change in α on the con-
troller gains, another controller design has been carried
out, this time for a weighting factor of α = 0.999. The
results have been tabulated in Table 3.
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CONCLUSIONS

In this paper, a design method for combined feed-
back/feed-forward controllers was developed. The con-
troller consists of a time delay filter which is aug-
mented by a linear state-feed-back controller. This
combination was selected to overcome difficulties typ-
ically encountered in the control of flexible structures.
The time-delay filter is used to avoid excitation of the
oscillatory modes of the flexible structure. The feed-
back controller, which is a linear state feed-back con-
troller is used to damp out any remaining vibrations
which could originate from disturbances or parametric
uncertainties.

The controller is designed using a minimax opti-
mization scheme. This permits accounting for para-
metric uncertainties and including statistical informa-
tion such as mean values, lower and upper bounds.
The algorithm first designs both controller for the
nominal system using well understood methods. Then,
the optimization program will look at a hypercube in
the uncertain space which is repeatedly increased un-
til the entire uncertain space is spanned. The cost
function is a weighted sum rating both control track-
ing and disturbance rejection. For all cost functions,
analytical gradients are supplied.

Numerical examples show the feasibility of the pro-
posed design approach and also illustrate the increase
in control performance which could be gained. The
system under consideration for all examples is the
Floating Oscillator, a standard benchmark problem.

ACKNOWLEDGEMENTS

This work was completed during the second au-
thor’s sabbatical stay at the Technical University of
Darmstadt under the sponsorship of the von Humboldt
Stiftung. The second author gratefully acknowledges
their support.

References
1Junkins, J. L., Rahman, Z., and Bang, H., Near-

Minimum Time Maneuvers of Flexible Vehicles: A
Liapunov Control Law Design Method, Mechanics and
Control of Large Flexible Structures, AIAA Publica-
tion, Washington, DC., 1990.

2Ballhaus, W. L., Rock, S. M., and Bryson, A. E.,
“Optimal Control of a Two-Link Flexible Robotic
Manipulator Using Time-Varying Controller Gains,”
Amer. Astronautics Soc. paper 92-055 , 1992.

3Bhat, S. P. and Miu, D. K., “Minimum Power and
Minimum Jerk Control and its Application in Com-
puter Disk Drives,” IEEE Transactions on Magnetics,
Vol. 27, No. 6, 1991, pp. 4471–4475.

4Singhose, W. E., Porter, L. J., and Seering, W. P.,
“Input Shaped Control of a Planar Gantry Crane with
Hoisting,” 1997 American Control Conference, 1997.

5Singhose, W., Singh, T., and Seering, W., “On-
Off Control with Specified Fuel Usage,” ASME Jour-
nal of Dynamic Systems, Measurement and Control ,
Vol. 121, No. 2, 1999, pp. 206–212.

6Singer, N. C. and Seering, W. P., “Preshap-
ing Command Inputs to Reduce System Vibrations,”
ASME Journal of Dynamic Systems, Measurement
and Control , Vol. 115, 1990, pp. 76–82.

7Singh, T. and Vadali, S. R., “Robust Time-Delay
Control of Multimode Systems,” International Journal
of Control , Vol. 62, No. 6, 1993, pp. 1319–1339.

8Banerjee, A. K. and Singhose, W. E., “Minimum
Time Fuel Efficient Maneuver of Flexible Spacecraft
with Vibration Amplitude Constraint,” AAS Astrody-
namics Specialist Conference, Vol. AAS 95-318, Hali-
fax, Nova Scotia, 1995.

9Smith, O. J. M., “Posicast Control of Damped
Oscillatory Systems,” Proceedings of the IRE , 1957,
pp. 1249–1255.

10Singh, T., “Minimax Design of Robust Controllers
for Flexible Structures,” To appear in the AIAA Jour-
nal of Guidance, Control and Dynamics, 2002.

11Muenchhof, M. and Singh, T., “Desensitized Jerk
Limited Time Optimal Control of Multi-Input Sys-
tems,” Journal of Guidance, Control and Dynamics,
Vol. 25, No. 3, 2002, pp. 474–481.

12Singh, T. and Singhose, W., “Tutorial on Input
Shaping/Time Delay Control of Maneuvering Flexible
Structures,” American Control Conference 2002 , An-
chorage, Alaska, 2002.

13Dorato, P., Abdallah, C., and Cerone, V., Linear
Quadratic Control: An Introduction, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

14Mills, R. and Bryson, A., “Parameter-Robust
Control Design Using a Minimax Method,” Journal
of Guidance, Control, and Dynamics, Vol. 15, No. 5,
1992, pp. 1068–1075.

15Mills, R. and Bryson, A., “Linear-Quadratic-
Gaussian Controllers with Specified Parameter Ro-
busteness,” Journal of Guidance, Control, and Dy-
namics, Vol. 21, No. 1, 1998, pp. 1068–1075.

16Kapila, V., Tzes, A., and Qiguo, Y., “Closed-Loop
Input Shaping for Flexible Structures Using Time-
Delay Control,” ASME Journal of Dynamic Systems,
Measurement and Control , Vol. 122, 2000, pp. 454–
460.

17Wie, B. and Bernstein, D., “Benchmark Prob-
lems for Robust Control Design,” Journal of Guidance,
Control, and Dynamics, Vol. 15, No. 5, 1992, pp. 1057–
1058.

8


