
Proceedings of the American Control Conference 
Chicago, Illinois • June 2000 

Desens i t ized  M i n i m u m  Power /Jerk  Control  Profiles for 
Rest - to-Rest  Maneuvers  

T i m o t h y  A. Hindle  Ta run ra j  Singh 

G r a d u a t e  S tuden t  Associa te  Professor  

D e p a r t m e n t  of Mechanica l  and  Aerospace  Eng inee r ing  

SUNY at  Buffalo,  Buffalo,  New York, 14260 

A b s t r a c t  

The focus of this paper is on the development of 
weighted minimum power/jerk control profiles for the 
rest-to-rest maneuver of a flexible structure. To ac- 
count for modeling uncertainties, equations are derived 
which represent the sensitivity of the system states to 
model parameters. The original state-space model of 
the flexible structure is augmented with the sensitivity 
state equations with the constraint that the sensitiv- 
ity state variables are forced to zero at the end of the 
maneuver. This requirement attenuates the residual 
vibration at the end of the maneuver caused by errors 
in system parameters. A systematic procedure for the 
design of the controller is developed by representing the 
linear-time-invariant system in its Jordan form. This 
decouples the modes of the system permitting us to ad- 
dress smaller order dynamical systems. The proposed 
technique is illustrated via a benchmark floating oscil- 
lator problem. 

1 I n t r o d u c t i o n  

The control of the benchmark two-mass/spring/damp- 
er system undergoing a rest-to-rest maneuver is con- 
sidered in this paper. This problem, representative of 
many flexible structures, has one flexible mode and one 
rigid body mode. A fairly comprehensive treatment of 
this family of problems has been presented by Junkins 
and Turner [1]. In previous research on this topic, time 
optimal control profiles have been derived by Singh et 
al. [2], Ben-hsher et al. [3], and Hablani [4]. Desensi- 
tizing the control profiles to modeling errors has been 
addressed by Liu and Wei [5] and Singh and Vadali 
[6]. Closed-form solutions have been obtained for the 
optimal control of the rest-to-rest maneuver using min- 
imum power and minimum jerk cost functions by Bhat 
and Miu [7]. Recently, it has been of interest to de- 
velop optimal solutions using a weighted cost function, 
such as the weighted fuel/time optimal control consid- 
ered by Singh [8]. Here, the closed-form solution for 
the optimal control of the rest-to-rest maneuver using 
a weighted minimum power/jerk cost function is of in- 
terest. In the weighted cost function considered here, 
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the user can select the relative importance of power (or 
equivalently control effort) to jerk (or equivalently the 
rate of change of control effort). 

The solution for the control profile obtained for linear- 
time-invariant systems, like the system considered in 
this paper, often assume known constant system pa- 
rameters. This assumption is not valid in actual physi- 
cal systems since the system parameters cannot be de- 
termined exactly. With this in mind, it is the goal 
of the researchers to obtain a solution which is robust 
to errors in system parameters (e.g. - damping ratio, 
natural frequency). To do this, sensitivity equations 
are derived and added to the state space equations be- 
fore transforming them into Jordan canonical form. It 
will be shown that with the addition of these equations, 
which force the sensitivity state variables to zero at the 
end of the maneuver, there is a reduction in residual 
vibration due to errors in system parameters. 

The paper begins with the problem formulation in Sec- 
tion 2. Section 3 gives a numerical example with results 
presented. The topic of sensitivity equation formula- 
tion is considered in Section 4. Section 5 gives the same 
numerical example considered in Section 3, this time 
with the addition of sensitivity equations. A compari- 
son between the robust and nonrobust solutions is also 
drawn in this section. Finally, the paper is concluded 
with a summary of the obtained results in Section 6. 

2 P r o b l e m  Formu la t i on  

The weighted minimum power/jerk cost function 

~2u2 + dr  (1) 

is considered, subject to the constraint 

Mii  + ~ + K x  = Pu (2) 

where M is the mass matrix, ~ the damping matrix, 
and K is the stiffness matrix. P is the control in- 
fluence vector, and u and x are the scalar control 
input and state vector, respectively. In Equation 1, 



( = ln(o~) (( c [0, oo]) and T = specified final time, 
where ~ is the scalar weighting parameter which is a 
function of o~. The scalar o~ is the parameter to be var- 
ied, thus having the effect of varying ~. The reason 
that ( = ln(o~) is used has to do with simplification of 
the general form of the solution, which would otherwise 
contairi hyperbolic sinusoidal functions. The equations 
of motion for this system can be represented in Jordan 
canonical form as 

= J z  + bu (3) 

y = C*z + Du (4) 

The solution of Equation 3 is given as 

f t  t2 e-J¢~z(t2) - e - J ' , z ( t l )  = e-JTbu(r)dr .  
1 

(5) 

It will be shown that  with a parameterized control u, 
a closed-form solution for the control profile can be 
obtained using Equation 5. The control u will contain 
the parameters hi where i = 1, 2,3 .... n. Here n is the 
number of parameters in the control profile, which in a 
general case will depend on the size of the system and 
the cost function which is minimized. For the system 
considered here with one rigid body mode, using the 
proposed minimum power/jerk cost function yields n = 
4 + 2p, where the scalar p is the number of flexible 
modes of the system. 

In order for the chosen cost function (Equation 1) to 
be minimized, the following performance criteria must 
be minimized 

I =  ~ ¢2u2+ ~ -  dr 

(6) 

Equation 6 is derived by assuming the maneuver time 
to be T, the initial time and initial conditions to be 
zero, and by augmenting the cost function with Equa- 
tion 5. By taking the first variation of this equation and 
setting it equal to zero, the u which minimizes Equa- 
tion 1 can be obtained. The first v~triation is expressed 
as 

6 I =  fo T d~u hWe-Jrb  6udr 
(2u dr2 o 

(7) 

In order for this equation to be equal to zero for all 
5u, the quantities inside the brackets must be equal to 
zero. This requirement results in a differential equation 
in u which is 

d2u 
dt 2 ~ 2u = --hT e -J tb .  (8) 
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By taking the Laplace transform of this equation, the 
solution for the control profile u can be obtained. An 
additional requirement which must be satisfied, from 
Equation 7, is that  the time derivative of the control 
must be equal to zero at initial and final time. There is 
no requirement that  the control u be forced to zero at 
initial and final time, as is done in the minimum jerk 
solution obtained in [7]. In that  paper, the control is 
forced to zero at initial and final t ime in order to make 
the control practical to input on a real physical system, 
though the cost function is not minimized. Thus, the 
minimum jerk solution obtained in [7] is suboptimal. 
Here the optimal solution will be considered, and it 
will be shown that  as ~ goes to zero, the solution con- 
verges to the minimum jerk solution, and conversely, 
the minimum power solution is obtained as ( goes to 
infinity. 

A general closed-form solution for the weighted mini- 
mum power/jerk control can be found by solving Equa- 
tion 8 with the necessary condition for optimality that  
the derivative of the control at initial and final time 
is set equal to zero. The general closed-form solution 
for a system with one rigid body mode and p flexible 
modes is given as 

u(t) = ,Xl + h2t + ,~ao~ t + ,~4o~ - t  
P 

+ ~ (h(a+2i)e -~'t  sin(bit) + h(4+2i)e -~'` c o s ( b i t ) )  
i=1 

(9) 
where ai is the real part  of the i th complex conjugate 
pole, and bi is the imaginary part  of the i th complex 
conjugate pole of the system. The parameters (hi) in 
Equation 9 are found by simultaneously solving Equa- 
tion 5 and the boundary conditions from Equation 7. 
This procedure will be demonstrated via a numerical 
example in the next section. 

3 Numerica l  Example  1 

The benchmark two-mass/spr ing/damper  problem will 
now be considered. Figure 1 shows the system to be 
considered, with the two masses m0 and ml ,  the spring 
constant k, and a viscous damper  e. In the figure, x0 
and xl are the displacement of the first and second 
mass, respectively. The input force is denoted as u, 
and the output  as y. 

The system equations are given in state space form as 

= A x  + B u  (10) 
y = Ca: + Du (11) 

where 

XO 

X l  

io  
. i l  

, A =  

0 0 1 0 
0 0 0 1 

- k  k - c  e 
~o ~ ~o mo 

C - - C  

(12) 
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F i g u r e  1: Two-mass / sp r ing /damper  system. 

B = 

0 

o , c : [ o  1 0 0 ] , D = 0 .  (13) 

When the state space equations are converted into Jor- 
dan canonical form, Equation 10 can be rewritten as 

& 

0 
0 

= 0 
0 

1 0 
0 0 
0 p~ 
0 0 

J 

0 Zl 

0 z~ + 
0 z3 

P2 Z4 

Vx 

bit 
b21 
bal u 
b41 

V B = b  

(14) 

where J is the Jordan canonical form of the A matrix,  
V is the t ransformation matr ix ,  and Pl and p2 are the 
complex conjugate poles of the flexible mode. 

The rest-to-rest maneuver  of the two-mass/spr ing 
/ d a m p e r  benchmark problem is considered here. For 
simplicity, the following parameter  values of m0 = 
ml  = 1, k = 1/2, c = 0.25, t l  = 0 (initial time), 
tu = 4~r (final time), and a = 10 (( = ln(10)) will be 
used. The input is on m0 and the output  is the posi- 
tion of ml .  The initial positions of to0 and ml  are both  
zero and the final positions are chosen (arbitrarily) to 
be one. Using the parameterized closed-form solution 
of u (Equation 9), the solution is found by rewriting 
Equation 5 as 

e-J(4~r)z(4rr) 

0 = SSA (15) 

0 

where S is given as 

S : jacobian . . . . .  a ; ' , i '  q . . . . .  w . r . t . A .  (16) 
~ 2j 
.~(t~) 

From Equation 15, the unknown A vector is determined 
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using 

A : S  -1  

e-J(4")z(4~r) 

0 
0 

(17) 

Solving for A using the numerical values for this ex- 
ample, and subst i tut ing these values into Equation 9 
gives the control for the rest-to-rest maneuver  for this 
example as 

u(t) = 0 . 0 9 6 4 -  0.0168t - (0.0093)10- '  

-O.O043e(t/4) sin ( - ~ - t )  -- O.O017e(t/4) cos 

(18) 

where for this case a = - 1 / 4  and b = x , /~/4 .  Figure 
2 is a plot of the control profile (Equation 18) and the 
position of both masses (m0 and m l )  for the system 
using the values given. The rest-to-rest maneuver is 
completed without  any residual vibration. 
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F i g u r e  2: Minimum power/jerk rest-to-rest maneuver. 

This section has demonstra ted  the validity of the 
weighted min inmm power/ jerk control determination 
as applied to a rest-to-rest maneuver  of a flexible struc- 
ture. It  can be shown that  the weighted min imum 
power/ jerk solution derived here converges to the min- 
imum power and min imum jerk solutions in the limits 
of the weighting paramete r  zeta. The next section ex- 
tends this idea to develop a robust solution when there 
are errors present in system parameters .  

4 R o b u s t  S o l u t i o n  - S e n s i t i v i t y  E q u a t i o n s  

The goal of this paper  is to formulate  a control which 
minimizes a weighted min imum power/ jerk cost func- 
tion while being robust  to errors in system parameters .  
This is done to minimize the residual vibration of the 
rest-to-rest maneuver  when there are errors present in 



system parameters. To do this, sensitivity equations 
are derived which represent the sensitivity of the sys- 
tem to model parameters. This procedure can be ap- 
plied to desensitize the system with respect to the stiff- 
ness k, the damping c, or the natural frequency (tak- 
ing into consideration both errors in mass and stiff- 
ness). Here, the sensitivity with respect to the stiffness 
is of interest (thereby the natural frequency). It will 
be shown that the control profile obtained with the 
addition of these sensitivity equations reduces resid- 
ual vibration when errors in the value of k (stiffness) 
are present. The equations of motion for the bench- 
mark two-mass/spring/damper problem considered in 
Section 3 are 

- k  k - c  . c u 
2~ = - - x 0  + - - z l  + x0 + ~/1 + (19) 

mo mo rn0 m0 mo 

k - k  c - c  . 
z'l = - - x 0  + - - z l  + - - x o  + ~ X l .  (20) 

m l  m l  ~ 1  7Ytl 

By taking the derivative of these two equations with 
respect to k, the following equations are obtained 

/ + - -  
mo\  dk dk J + m o  \ /  

+ - -  + - -  - 0 (21) 
m0 \ d k ]  rn0 rn0 

and 

mi dk ) + -  mz \ dk ] 

c ( d i l )  z0 xl 
+ - -  - - -  + = O. (22) 

ml \ dk ) rnl ml 

To simplify formulation while still demonstrating the 
benefit of this method, the values of the two masses 
are assumed to be equal as in the previous example 
(m0 = ml). This does not have to be the case, but 
it makes for simple understanding of the procedure. If 
this assumption is not made, instead of having the sin- 
gle sensitivity equation given in 25, Equations 21 and 
22 would represent the sensitivity equations with which 
the original state space model would be augmented. 
Using the equal mass assumption, the following equa- 
tion is obtained using Equations 21 and 22. 

dxo dxl 
- (23) 

dk dk " 

Substituting into Equation 21 gives 

dx'o c [ daio'~ k [ dxo'~ X0 Xl 
+ - - - ~ = 0 .  

rn  m 

(241 

Defining a new state variable by - ~  = x~ gives the 
sensitivity equation, from Equation 24,to be 

e . £ XO Xl 
x ' 2 + 2 - - x ~ + 2  x ~ +  --0.  (25) 

~ rye 7g/ 
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Once the sensitivity equations are added and the sys- 
tem equations are placed in state space form, the same 
procedure used to determine the control (from Section 
2) can be used. It should be noted that  for this partic- 
ular case, the same equations are obtained if the sen- 
sitivity is taken with respect to the damping c. By 
forcing the sensitivity states to zero at final time, the 
residual vibration is reduced. The example considered 
previously in Section 3 will be considered in the next 
section, this time with the addition of the derived sen- 
sitivity equations. A general closed-form solution for 
the robust weighted minimum power/jerk control can 
be found by solving Equation 8 with the necessary con- 
dition for optimality that  the derivative of the control 
at initial and final time is set equal to zero. Also, the 
J matrix given in Equation 8 must be augmented with 
the sensitivity equations to analytically obtain the ro- 
bust minimum power/jerk closed-form solution given 
in Equation 26 below. The general closed form solu- 
tion for the benchmark problem having one rigid body 
mode and p flexible modes with the addition of the 
derived sensitivity equations is given as 

U(t) = A I + A2t "4- A31:i t "4" A40~-t-I - 

P 
sin@a) + cos(bit) 

i=1 

+A(a+4i)te -a' '  sin(bit) + A(4+4i)te -a ' t  cos(b/t)) (26) 

where ai is the real part of the i th complex conjugate 
pole, and bi is the imaginary part of the i th complex 
conjugate pole of the system. It should be noted that 
this general closed-form solution is only valid when 
the sensitivity is taken with respect to the stiffness (or 
damping) for the system considered. The next section 
uses this closed-form solution to obtain the weighted 
minimmn power/jerk control for the example discussed 
in Section 3, with the inclusion of the sensitivity equa- 
tions derived here. 

5 N ume r ic a l  E x a m p l e  2 

Using the general closed-form solution given in Equa- 
tion 26, the robust weighted minimum power/jerk con- 
trol will be determined for the benchmark problem con- 
sidered previously with the addition of the sensitivity 
equation derived in the previous section. Following the 
same procedure used in Section 3, the control is given 
a s  

u(t) = 0.103461 - 0.019923t - (0.002352)10 -t 

+O.O15502e(tD) sin ( - -~ - t )  - O.O00929e(t/4) cos ( - ~ - t )  

-O.OO1961e(t/')tsin ( - ~ - t )  - O.O00271e(t/')tcos ( - ~ - t )  . 

(27) 

Figure 3 is a plot of the control input for the non-robust 
and robust solutions when there is a 20 cA high error 



in k (k = 1.2 * (1/2)). The figure shows a reduction 
in the residual vibration due to the error in the system 
parameter k with the robust solution. Figure 4 is a 
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Figure  3: Non-robust and robust control with 20% error 
in k) 

plot of the absolute value of the error in the output 
(position of ml) at the specified final time (t2 = 4~') 
vs. the actual system k value using a design k value 
of 1/2 for both the non-robust and robust solutions. 
From this figure, the robust solution reduces residual 
vibration for all actual system k values shown in Figure 
4, with the exception that both the non-robust and 
robust solutions will have zero residual vibration at the 
design value of k = 1/2. 

This section has demonstrated the benefit of the 
derived sensitivity equations when there are errors 
present in system parameters. The system shown here 
displays reduced residual vibration with the addition of 
sensitivity equations. Though this technique may not 
reduce residual vibration for all actual system k values, 
it does prove to be a useful method to locally reduce 
the residual vibration. 

6 Conclusions  

A systematic procedure to obtain the closed-form solu- 
tion for the rest-to-rest maneuver of the benchmark 
problem has been introduced, which minimizes the 
weighted power/jerk cost function. The concept of 
sensitivity equations has been introduced which, when 
added to the system state equations, gives a control 
which is robust to errors in system parameters. It has 
been shown that this robust control reduces residual 
vibration when the actual system parameter is in the 
vicinity of the design parameter used to derive the con- 
trol, thus giving a locally robust control. Extensions of 
this work will include a study of the effect of varying 
damping as well as the application of this technique to 
more complicated systems. 3068 
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Figure  4: Abs(error) at final time vs. k value for non- 
robust and robust control 
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