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Abstract— The focus of this paper is on the design of jerk
limited input shapers (time-delay filters). Closed form solutions
for the jerk limited time-delay filter for undamped systems is
derived followed by the formulation of the problem for damped
systems. Since the jerk limited filter involves concatenating
an integrator to a time-delay filter, a general filter design
technique is proposed where smoothing of the shaped input
can be achieved by concatenating transfer functions of first
order, harmonic systems, etc.

I. INTRODUCTION

Prefiltering of command inputs to systems with under-
damped modes has been addressed by various researchers
[1], [2], [3], [9]. Smith’s Posicast Controller [1] was moti-
vated by a simple wave cancellation concept for the elim-
ination of the oscillatory motion of underdamped systems.
This technique required exact knowledge of the damping
and natural frequency of the plant to be able to eliminate
residual vibrations. Singer and Seering [2] addressed this
problem by proposing a technique to design a series of
impulses whose amplitudes and application time were deter-
mined so as to force the residual energy and the sensitivity
of the residual energy with respect to natural frequency or
damping to zero. The filtered input was then generated by
the convolution of the command input with the impulse
sequence. Singh and Vadali [8] proposed a technique to
design time-delay filters whose performance was identical
to the Input Shaping technique proposed by Singer and
Seering [2]. Over the past decade numerous papers have
been published which deal with the design of discrete
time and continuous time prefilters for the robust vibrations
control of maneuvering structures. These include the digital
shaping filter by Murphy and Watanabe [11], multi-hump
input shapers by Singhose et al., minimax filters by Singh
[12], user specified time-delay filters by Singh and Vadali
[8] besides others. The technique to desensitize the input
profile to modeling errors have been used to address a slew
of classic optimal control problems such as time-optimal
[6], [7], [4], fuel-time optimal [5], and minimum power/jerk
controllers [10].

The input shaping/time-delay filtering technique include
information of specific modes in the design process. If it is
necessary to roll off the energy over the high frequency
spectrum, additional constraints need to be included in
the design process. Jerk limits in the design process can
result in control profiles which can be tracked by actuators
and which can be used to minimize the excitation of the
unmodeled high frequency modes of structures. Muenchhof

and Singh [14] present a detailed development of the
design technique for the minimum-time jerk limited control
profiles for maneuvering underdamped flexible structures.
Lim et al. [13], propose a technique for the design of
multi-input shapers which permits inclusion of constraints
on the jerk. This paper addresses the problem of jerk
limited input shapers for prefiltering command inputs to
vibratory systems without rigid body modes. The paper by
Muenchhof and Singh [14] addressed the problem of design
of control profiles for systems with rigid body modes. The
paper will start by addressing the design of a time-delay
filters where the delay time and the gains of the delayed
signals are all unknown. This will be followed by the
presentation of a general concept to design input shapers by
including additional dynamics to the time-delay filter such
as harmonic oscillators and first order dynamics to permit
smooth ramping up and ramping down of control profiles.
The paper will conclude with some remarks.

II. JERK LIMITED INPUT SHAPERS

A. Undamped Systems

This section deals with the design of Jerk Limited Time-
Delay filter (Input Shaper) which is schematically repre-
sented in Figure 1. The development which follows is for a
single mode system, but can be easily extended for multiple
mode systems.
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Fig. 1. Single Time-Delay Controlled System

The transfer function of the filter shown in Figure 1
without the integrator element is

G(s) = (1−exp(−sT1)+exp(−s(2T2−T1))−exp(−2sT2)),
(1)

The output of the transfer function G(s) subject to a unit
step input is shown in Figure 2 and its time integral is
represented as

y(t) = J(t − (t − T1)H(t − T1)+

(t−(2T2−T1))H(t−(2T2−T1))−(t−2T2))H(t−2T2))),
(2)

where J is the permissible jerk and H() is the Heaviside
Step function. y(t) should equal 1 at steady state for a DC
gain of unity which results in the constraint equation
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Fig. 2. Parameterized Control Profile

y(2T2) = J(2T2 − (2T2 − T1) + (2T2 − (2T2 − T1))) = 1,
(3)

or
T1 =

1

2J
. (4)

which implies that the first switch T1 is only a function
of the permitted jerk. To cancel the undamped poles of the
system, we require a pair of zeros of the time-delay filter to
cancel the poles of the system. This results in the constraint
equations

1 − cos(ωT1) + cos(ω(2T2 − T1)) − cos(2ωT2) = 0 (5)

and

−sin(ωT1) + sin(ω(2T2 − T1)) − sin(2ωT2) = 0 (6)

These two constraint equations are satisfied if

sin(ωT2) = sin(ω(T2 − T1)). (7)

Substituting Equation 4 into Equation 7, and simplyfing we
have

tan(ωT2) = −cot(
ω

4J
) (8)

which results in the closed form solutions

T2 =
(2n + 1)π

2ω
+

1

4J
. (9)

For specific values of ω and J , T1 can equal T2, which
corresponds to the first and the second switch collapsing.
From Equations 4 and 7, this corresponds to

sin(ωT2) = 0,⇒ cos(
ω

4J
) = 0 (10)

or
ω

4J
= (2m + 1)

π

2
, m=1,2,3... (11)

So, for a given J or ω, we can solve for ω or J respectively
for which T1 and T2 are equal, which corresponds to a
simple ramp input to the system.

Figures 3 and 4 illustrate the variation of the switch times
and the final time of the time-delay filter as a function of
varying frequency and Jerk respectively. It is clear from
Figure 4, that the first and second switch coincide which
corresponds to the solid line intersecting the dashed line.
Figure 4 is generated for J = 3, for which we have from
Equation 11, ω = 6π, 18π, 30π, for which the switches
collapse, which corroborates the results in Figure 4
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Fig. 3. Switch Time Variation vs Jerk for ω = 15

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6
First Switch 
Second Switch
Final Time   

PSfrag replacements

Sw
itc

h
Ti

m
es

Frequency

Fig. 4. Switch Time Variation vs Frequency

B. Damped Systems

The jerk limited time delay filter for damped systems
cannot be solved in closed form. The problem can be solved
numerically by an optimization problem.

The jerk limited time-delay filter is parameterized as

G(s) =
J

s
(1 − exp(−sT1) + exp(−sT2) − exp(−sT3)).

(12)
To satisfy the requirement that the final value of the jerk
limited time-delay filter be unity when it is driven by an
unit step input results in the constraint equation

y(T3) = J(T3 + T1 − T2) = 1. (13)

To cancel the damped poles of the system at s = σ±jω, we
require a pair of zeros of the time-delay filter to cancel the
damped poles of the system. This results in the constraint



equations

1−e−σT1cos(ωT1)+e−σT2cos(ωT2)−e−σT3cos(ωT3) = 0
(14)

and

−e−σT1sin(ωT1)+ e−σT2sin(ωT2)− e−σT3sin(ωT3) = 0.
(15)

The optimization problem can be stated as minimization
of T3 subject to the three equality constraints given by
Equations 13, 14 and 15.

III. ROBUST JERK LIMITED TIME-DELAY FILTER

Most systems have errors in estimated damping and natu-
ral frequencies which can result in significant residual errors
when a rest-to-rest maneuver is performed. It is therefore
imperative to design filters which can handle uncertainties in
estimated model parameters. There are multiple approaches
to achieve robustness. The simplest includes reducing the
sensitivity of the residual energy of the modes, at the
nominal values of estimated system parameters. If bounds
and distributions of the uncertain parameters are available to
the designer, the minimax approach proposed by Singh [4]
can be used to arrive at filters which minimize the maximum
magnitude of the residual energy in the domain of interest.
In this work, robustness is achieved by placing multiple
zeros of the time-delay filter at the location of the uncertain
poles of the plant.

The added requirement of robustness results in a filter
with increased number of parameters to be determined.
The approach for the design of robust jerk limited time-
delay filters is developed for damped systems with the
knowledge that the undamped systems are a sub-set of the
damped system. The robust jerk limited time-delay filter is
parameterized as

G(s) =
J

s
(1 − exp(−sT1) + exp(−sT2)−

exp(−sT3) + exp(−sT4) − exp(−sT5)).
(16)

To satisfy the requirement that the final value of the jerk
limited time-delay filter be unity when it is driven by an
unit step input results in the constraint equation

y(T5) = J(T5 − T4 + T3 − T2 + T1) = 1. (17)

To cancel the damped poles of the system at s = σ±jω, we
require a pair of zeros of the time-delay filter to cancel the
damped poles of the system. This results in the constraint
equations

1 − e−σT1cos(ωT1) + e−σT2cos(ωT2) − e−σT3cos(ωT3)+

e−σT4cos(ωT4) − e−σT5cos(ωT5) = 0 (18)

and

−e−σT1sin(ωT1) + e−σT2sin(ωT2) − e−σT3sin(ωT3)+

e−σT4sin(ωT4) − e−σT5sin(ωT5) = 0. (19)

The robustness is achieved by placing a second pair of
zeros of the time-delay filter at the estimated location of
the oscillatory poles of the system, which results in the
equations

−T1e
−σT1sin(ωT1)+T2e

−σT2sin(ωT2)−T3e
−σT3sin(ωT3)+

T4e
−σT4sin(ωT4) − T5e

−σT5sin(ωT5) = 0 (20)

and

−T1e
−σT1cos(ωT1)+T2e

−σT2cos(ωT2)−T3e
−σT3cos(ωT3)+

T4e
−σT4cos(ωT4) − T5e

−σT5cos(ωT5) = 0. (21)

The optimization problem can now be stated as the min-
imization of T5 subject to the constraint given by Equa-
tions 17-21.

To illustrate the reduced sensitivity of the residual energy
to variations in the frequency, the response of the system
was studied for various values of model frequencies with a
filter designed for a frequency of 15 rad/sec and a permitted
jerk of 4. Figure 5 illustrates the improved performance of
the robust jerk limited time-delay filter.
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Fig. 5. Sensitivity Curve

IV. JERK LIMITED TIME-DELAY FILTERS FOR
MULTI-MODE SYSTEMS

The proposed approach can be used for the control of
systems with multiple under-damped modes. A generic
formulation is developed below. The number of parameters
to be optimized for can be reduced for undamped systems
by exploiting the symmetric characteristics of the time-
delay filter. The transfer function of the time-delay filter
is

G(s) =
J

s

N∑

i=0

(−1)iexp(−sTi) (22)



where T0 = 0 and N is an odd number. The unknowns (Ti)
have to satisfy the constraint equation

N∑

i=1

(−1)i+1Ti =
1

J
(23)

which satisfies the requirement that the final value of the
output of the filter when it is subject to an unit step input
is unity. To cancel the undamped or under-damped poles at

sk = σk ± jωk for k = 1, 2, 3, ... (24)

the following constraints have to be satisfied

N∑

i=1

(−1)iexp(−σkTi)cos(ωkTi) = 0 for k = 1, 2, 3, ...

(25)
and

N∑

i=1

(−1)iexp(−σkTi)sin(ωkTi) = 0 for k = 1, 2, 3, ...

(26)
The optimal solution is one which satisfies all the con-
straints and minimizes TN .

To desensitize the filter to errors in estimated damping
or frequency, the following constraint equations are added
to the optimization problem

N∑

i=1

(−1)iTiexp(−σkTi)sin(ωkTi) = 0 for k = 1, 2, 3, ...

(27)
and

N∑

i=1

(−1)iTiexp(−σkTi)cos(ωkTi) = 0 for k = 1, 2, 3, ...

(28)
It can be seen that desensitizing the filter with respect
to damping simultaneously desensitizes the filter to the
frequency as well.

The design of jerk limited time-delay filters for user
specified time-delays follows the process proposed by Singh
and Vadali [8]. It is clear that additional number of delays
are required since the delay times are no longer variables
in the optimization process.

To illustrate the design of multi-mode jerk limited input
shapers, consider the system

y(s)

u(s)
=

225

s4 + 34s2 + 225
(29)

which is characterized by two modes with frequencies 3 and
5. For a jerk constraint of 3, the jerk limited input shaper
is designed. The dashed line and the solid line in Figure 6
illustrates the response of the system to a step input and
the shaped input respectively. It is clear that the residual

vibration of the two modes is eliminated after shaping the
input.
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Fig. 6. Shaped Input and Comparison of system response

V. FILTERED INPUT SHAPERS

The technique presented in this work where an integrator
is concatenated to a time-delay filter to satisfy the constraint
of jerk limited filter design can be extended by cascading
other transfer functions such as that of first order systems,
harmonic systems etc.

A. First Order Filtered Input Shaper

Instead of using an integrator in conjunction with a time-
delay filter to account for the limit on the permitted jerk,
one can concatenate a first order filter to a time-delay filter
to generate a smooth input which can then be used to drive a
time-delay filter designed to cancel the underdamped poles
of the system of interest. Figure 7 illustrates the proposed
filter structure where T is a user selected time-delay which
in the case of a discrete time implementation, can be an
integral multiple of the sampling interval.

r(s)
−→ −

eaT

1−eaT
+

1
1−eaT

e
−sT

−→
a

s+a
−→ A0 + A1e

−sT1
u(s)
−→

Fig. 7. First Order Filtered Time-Delay Filter

B. Sinusoid Filtered Input Shaper

Filtering with a transfer function of a scaled sinusoid
results in an input which emulates a step input but with zero
initial and final slopes. The scaling of the sinusoid transfer
function is to satisfy the requirement that the DC gain of the
transfer function is unity. The sinusoid filtered time-delay
filter is illustrated in Figure 8 which can be rewritten as
shown in Figure 9.

Here the first time-delay filter cancels the oscillatory
response of the scaled harmonic oscillator. This truncated



r(s)
−→ A0 + A1e

−sT1 + A2e
−sT2 + A3e

−sT3
−→

ω2

s2+ω2

u(s)
−→

Fig. 8. Sinusoid Filtered Time-Delay Filter

r(s)
−→ 0.5 + 0.5e

−sπ/ω
−→

ω2

s2+ω2 −→ A0 + A1e
−sT1

u(s)
−→

Fig. 9. Sinusoid Filtered Time-Delay Filter

harmonic response is then input to the second time-delay
filter which is designed to cancel the oscillatory mode of the
system. Figure 10 illustrates the control profile. The benefit
of this approach can be gauged from the frequency response
plots of the sinusoid filtered time-delay filter. Figure 11
illustrates the frequency response plots of the time-delay
filter, jerk limited time-delay filter and a sinusoid filtered
time-delay filter. The sinusoid filtered time delay filter has
been designed such that the maximum jerk of the control
profile is equal to the maximum permitted jerk. It can easily
be seen that the magnitude plots of the sinusoid filtered
time-delay filters rolls off much more rapidly compared to
the time-delay filter and the jerk limited time-delay filter.
Thus, this input will not significantly excite the unmodeled
dynamics.
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C. Jerk Limits

Consider a part of the sinusoid filtered time-delay filter
illustrated in Figure 12.

The output p of the time-delay filter subject to a unit step
input is

p(t) = sin2(ω/2t) + sin2(ω/2(t − π/ω))H(t −
π

ω
) (30)

and the rate of change of p which is the jerk is

ṗ(t) =
ω

2
sin(ωt) +

ω

2
sin(ω(t − π/ω))H(t −

π

ω
) (31)
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r(s)
−→ 0.5 + 0.5e−sπ/ω −→ ω2

s2+ω2 −→
p(s)

Fig. 12. Time-Delay Filter

which implies that the maximum magnitude of the jerk is
ω

2
and occurs at time t = π

2ω
. This is the upper bound for

the jerk. It can be seen that the jerk is zero at the start and
the end of the maneuver which results in a very practical
control profile. When the signal p is passed through the
second time-delay filter, based on the damping present in
the oscillatory pole to be cancelled, the jerk can lie in the
limit

ω

4
≤ Maximum Jerk ≤

ω

2
. (32)

If the pole to be cancelled is undamped the maximum jerk
is ω

4
since A0 and A1 are equal to 0.5. When the poles to

be cancelled contain damping, A0 is greater than 0.5 and
A1 is less than 0.5, resulting in the maximum jerk lying in
the range specified by Equation 32.

This constraint is valid when the time-delay filter is
designed to cancel the unwanted under-damped pole. How-
ever, if the under-damped pole has to be controlled using a
robust time-delay filter, the limits on the jerk changes, since
the robust time-delay filter uses smaller gains.

VI. CONCLUSIONS

A simple technique to design filtered Input Shapers is
proposed in this paper. The paper first addresses the problem
of design of jerk limited time-delay filters which results in
a ramping of the control input. This motivates the design of
filtered Input shapers by concatenating transfer functions of
a scaled harmonic oscillator in addition to others, to result
in smooth control profiles. The roll off of the frequency
response plots for the filtered Input Shapers is used to
illustrate their benefits.
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