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Abstract—A linear programming approach designed to and Singh [6], modified the PWC approach to increase
eliminate the residual vibration of the two-mass harmonic accuracy in actual discrete implementation of the input.
system subject to friction and undergoing a point-to-point - Thejr technique modulates the pulse height to compensate

maneuver is implemented. Techniques for non-robust and : . .
robust open loop controller design are explored. It is shown for a rounded up pulse width and is called Pulse Amplitude

that consistent results can be obtained from experiments Pulse Width Control (PAPWC).
and the robustness against frequency uncertainty results in ~ Additional schemes developed for rigid body systems

reduction in residual vibration as well as steady-state error.  jnclude internal-model following error control [7], PID
and state feedback linearization control [8] and variable
structure control in order to try to handle qualitatively

Linear programming (LP) is a powerful numerical op-different friction regimes [9], [10]. Nonlinear PID contro
timization technique that is able to handle hundreds dias also been developed to overcome the stick-slip behavior
constraints efficiently. It requires all constraints andteo of friction [11].
to be linear in the unknown variable. This restriction on Overcoming friction in flexible systems has been spar-
the use of LP may seem to eliminate practical use on relgly studied. This is despite the fact that the practicasus
engineering problem. It is possible, however, to linearizef controllers in this area include high precision overhead
some complex nonlinear systems to fit the required form abbot arms subject to friction at the joints, high-density
LP [1]. Itis also possible to manipulate the original prable hard-disk drives requiring the modelling of the system as
definition to fit the LP format as is done in [2], where awell as the motion arm friction, and high-precision satelli
nonlinear constraint due to fuel usage is re-written as twpointing, where the friction effect is noticeable near the
linear constraints. reference point.

In system dynamics, LP can be used on linear discrete Rathbun et al. [12] use the PWC control developed for
systems for time optimal and fuel limited time optimalthe rigid body directly on the flexible system while ensuring
control [3], [4], [2], where constraints linear in the diete  stability by bounding the control gain. The system will how-
input sequenceu(k), are imposed to result in an input ever, result in undesired vibration near the referencetpoin
profile. Hamamoto et al. [13] use iterative feedback tuning to try to

The significance of friction to the control community iscontrol the two mass harmonic system under the influence
in its effects on positioning systems and velocity trackingf friction. Two controllers (feedback and feedforwardg ar
operation. Positioning applications include telescopes, designed in order to account for the friction and reduce
tennas, machine tools, disk drives and robot arm positiosteady-state vibration.
ing. Velocity control is also relevant in machine tool, disk A more recent approach poses the problem in a mixed
drive and robot arm industrial applications which requirénteger linear programming setting, in order to accommo-
the accurate tracking of a pre-determined trajectory. Theate for the friction sign change for the two-mass harmonic
effect of friction becomes accentuated in the low velositiedynamics [14]. This is computationally expensive which
region near the reference position. precludes fine discretization of the maneuver time. Singhos

The majority of work done on control of frictional et al. [15] use PD control on a second order system and
systems is on rigid body systems. Yang and Tomizuka [Shput-shapers to try to compensate for Coulomb friction and
exploited a simple relationship between a pulse input aneliminate vibration with positive velocity assumption.
the displacement of the rigid body. This utilizes the faettth  This paper implements the technique developed by Kim
the rigid body subject to a pulse input never changes trend Singh [21], to eliminate the residual vibration of fld&ib
sign of the velocity and thus the Coulomb friction acts likestructures subject to friction, undergoing point-to-paima-

a bias input. This scheme, known as Pulse Width Controleuvers. The proposed technique was illustrated on systems
(PWC), is presented in an adaptive control setting where avhere the control input and frictional forces are collodate
estimate of the friction is determined in real-time. Wijdav on an inertia. This approach uses linear programming to

I. INTRODUCTION



solve for optimal control profile which satisfy constraintsthus the sig(ﬁ) term in equation (2) becomes positive. The
that represent the dynamics of the system as well as positigquations of motion are written similar to equation (3):
velocity constraints. N N
- _ AN N—k _ N—k
[I. MATHEMATICAL FORMULATION e(N+1) = A%x(1) +ZA Bu(k) ZA Bfe.
k=1

. . . . . k=1 =
The flexible structure that is used in this research is (5)

the two-mass harmonic oscillator subject to friction. ThéThe equality constraints can be written as

equations of motion are:
a vp— ANz(1) + YN ANk By, =
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T_he. friction model f(0) is the classical static-Coulomb |, order to satisfy the positive velocity assumption,
friction model: inequality constraints that represent positive velociyeto
f.sign(9) if 640 be included in the LP problem. These constraints, however,
f0) =< fosigNusum) if 0 =0 andugum, > fs must be true at every time indek, Therefore, a relationship
Usum if @ =0 andusym < fs. between the output at any tinfe and all previous input

(2) needs to be determined. A similar ARMA model can be
In the rest of the paper, the damping in the system is iguritten for the velocity of the system as in equations (3)
nored in the controller design because the Coulomb frictiodnd (5). Equation (7) represents the velocity constraitts a

dominates the nonconservative forces. each time index.

Since LP is an optimization technique, all equations of 1 0 .0 0] [u()
motion must be posed as constraints. Here, the cost function CB 0 .0 0] [u®@)
does not play a role in the solution since the LPisonlyused | ¢AB CB 0 0] [u® | <
to satisfy a large number of constraints efficiently, tovarri . . -
at feasible control profiles. J\}_Q 1\;_2 - :

In order to properly pose the LP problem, the states cA B CcA B ... CB 0] [u(N)
are re-written in discrete-time domain in terms of the state —fs—€
matrices and previous inputs (ARMA Model). Equation (3) CAx(1) —CBf.—¢
represents the states of the systenk at N + 1. CA%x(1) — CABf. — CBf. — ¢ @)

N .
x(N + 1) = ANZ‘(I) + ZANﬁkBu(k‘) 3) CAN_la?(l) _ Zf\;—ll CAN—l—iBfC — ¢
k=1

The first entry in the inequality constraints states that the
first input must be larger than stiction. Thefound in the
A. System Subject to Friction velocity constraint equation is a numerically defined "Zero
g0 accommodate for computer limited precision.

For a rigid body system subject to friction, the velocity
of the mass will never change sign for positive pulse inputs.

The unknowns in equation (3) are the input sequencgs.

Equation (3) can be reformulated to be written in bloc
matrix form as

“(;) Therefore, it is reasonable to assume that multi-sign pulse
- A = [atp 4 ) |0 maytendlo force e welacty of e frst mass o change
u(N) this assumption, the LP bounds on the inputs are given as

(4) 0<u(k) < Upew fork=1,2...N (8

wherez; are the desired final statesfat= NV 4 1. Equation

(4) is an equality constraint used in the LP that satisfies tHeguations (6), (7), and (8) constitute the LP problem, which

dynamics of the system. is not used to minimize a specific cost per say, as much
The number of constraints depend on the number @fs it is used to find an input sequence that satisfies the

desired data pointdy and the sampling tim&'. The final constraints.

maneuver time is given ag = NT. Assuming the number It is desired to obtain pulses as the LP solution of the

of samples stays the same, a reduction in the final time withput profile, to try to ensure that the input will always be

result in a reduction in the sampling time of the system. greater than the stiction valug,. To force the LP solution
For a system under the influence of friction, positivdo obtain a pulse input profile, the final time is reduced.

velocity is assumed for the mass subject to friction an@he reduction of the final time will force the maneuver



to end faster and this is done with input values that takdynamics of the two. From equation (12), the relationship
their maximum possible valud/,,... In order to obtain between the sensitivity states are found to be

the minimum time possible for the LP to result in a feasible J
solution for u(k), a bisection algorithm is used to reduce T1s = —75523~ (13)
the final time efficiently. !
The boundary conditions of the sensitivity states at thd fina
B. LP Desensitized Control time are
The underlying presumption of controller design tech- Tisty = Tasty = T15tp = Easty = 0.

nigues that do not account of parameter variability, is ) ) ) )
exact knowledge of the true parameters of the system. |[Atégrating equation (13) twice and using the boundary

implementing a controller, the uncertainty in the Systenu.;ondnmns o_f the sensitivity states, the relationshipagen

parameters will result in undesirable performance, whicfis @nd@zs is

in the case of the two-mass harmonic oscillator, results in Tls = —— Tog. (14)

residual vibration at the end of the maneuver.
Itis desirable to obtain a control profile that is insensitiv Combining equation (14) and the first equation in (10)

to error in system parameter estimates. Liu and Singh [16¢sults in the sensitivity state equation of motion that is

presented a technique that used the concept of sensitiviygmented to the system state equation and results in the

states which are defined as the derivative of the states wigguation

respect to the uncertain parameters. By forcing the sensiti 1 k

ity states to zero at the end of the maneuver, robustness to Tos = 72(531 —z3) — <J1 + J2> T2s (15)

modelling errors is achieved. For the system under study,

the uncertain parameter is taken to be the system stiffness,The new equations of motion in continuous domain are

k. o _ 20 0] [6
The sensitivity states are defined as 0 Jo 0| |6y ]|+
pre= L gy, =922 9) 00 Lo
Ok S0k k —k 0 01 1
The statess; andz, are functions of the parametérand + _]f kl . 0 2 =0 (u— fc)(16)
their sensitivities are required to be zero at the final time, -5 7 5t s 0

ty. Differentiating the equations of motion, equation 1, withrhe yariables shown in the current development are replaced
respect tok results in with ones that are consistent with ones in the previous
sections. The discrete-time state space equations can be

Sidrs Fan F ke — vy — ko =00 (10) 4o ned from equation (16) and used in the same LP

Jadas — 21 — k15 + 22 + kgs = 0. formulation as in Section II-A.
Placing equation (10) into matrix form IIl. EXPERIMENTAL SETUP AND RESULTS

Fls] _ A. Hardware, Software, System Identification

Fos| An experimental testbed of a two-mass harmonic oscilla-
1 tor subject to friction is built and the proposed contraler

I IRV T VO C V0 SR Y S I 2 (11) are implemented. A figure of the experiment is shown in
—1/Jy 1/Je  —=k/Jo k/J2 | |x1s Figure 1.

Tog The motor that is used is thdircoMo 4490 024Bnodel,

) . ) _with a recommended no load torque operatior).ab2 [N-
reveals the relationship between the two equations. Using) The nominal torque that is used throughout this thesis

the elementary row operatidR, /J +R2/J1, equation 11 s annroximately3.5 x 103 [N-m]. This was calculated
can be rewritten as for an inertial load 0f2.75 x 10~ [kg - m?] and a max
F1s velocity of approximately2 [rev/s] reached in 1 [sec] (ie.
[5@15/”4@25/(]1] - o = 2 rad/se€. This torque value is used as a reference
point for nominal torque values and is not a restrictive
Uy —1/0 kJ . —kJ ] | 2o bound. This brush-less type motor is .chosgn over its 'iron-
- { 0 0 0 0 } (12) core counterpart due to friction considerations. The iron-
core motors typically use a gear box to achieve similar
torque values and thus the friction is increased.
which shows that the two sensitivity equations of motion are The corresponding amplifier that is as used MiecoMo
not independent and only one is necessary to capture thv&/P2001 AO01 Driver Electronic§MVP). The motor is
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System Variable| Estimated Value
J1 [N-m-s?] 1.35 x 10~°
J2 [N-m-s?] 7.13 x 10~°

7. [ N-m —2

k [m] 1.00 x 10

fe [N-m] 4.32 x 104

fs [N-m] 1.58 x 1073
TABLE |

EXPERIMENTAL PARAMETERS OF TWOMASS HARMONIC OSCILLATOR
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Fig. 1. Two Mass-Spring Harmonic Oscillator Subject to fdnt
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commanded via serial commands to th&/P. The dy-
namics of the electronics of motoM{/P, magnetic fields,

etc.) are assumed to be negligible. An identification of
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(a) Input profile from LP Non-Robust solution

the Amplifier and Motor shows that a model of a rigid
body system subject to damping can be fit reasonably
well. Therefore, the inertia and damping of the motor and
amplifier can be lumped with that of the rotating mass.
Two USDigital E6Sseries encoders witB048 cycles per
revolution quadrature (4 pulses per cycle) output are uset
to query the position of both massesFH&rmula Evoluzione
9.5 Disk Brake Sewas used to mount the inertias and apply * o
the desired friction.

LabVIEW! is used as the real time data processing soft-
ware for all the experiments ([17], [18]). MatLA&Hs used
for all pre and post-processing (i.e. trajectory constons,
optimizations, etc.) of data and processing the resultk [19

0.6 = —
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Through extensive system identification of the apparatus o, o1
the system parameters are estimated and are shown in Tak
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l. (b) Input profile from LP Robust solution
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B. Experimental Results g- 2.

The LP solutions for the non-robust and robust approach
are shown in Figures 2(a) and 2(b). The sampling time usgf
in the LP was.001 [s] in order to obtain an accurate input
profile. With a smaller sampling time a profile closer to;

1LabVIEW is a registered trademark of National Instruments, In
2MatLAB is a registered trademark of The MathWorks, Inc., hlgti
Mass.

LP Solution for Non-Robust and Robust Approaches

“optimal” profile is obtained. Smaller sampling times
will allow for finer choice of final times, in turn resulting

n more precise choice of switching times and pulse height
values. Since the sampling time in LabVIEW, however, is
only .005 [s], every5 points is extracted from the LP results.
The desired position igy = 1 [rad] and the maximum



input value, Uz, iS taken to be3.8 x 1073 [N] which  should be noted that for larger steady-state errors of the

corresponds t0.60 [V]. first mass, which get stuck before the second mass comes
The linearly decreasing region in Figures 2(a) and 2(b}p rest, corresponds to larger vibration of the second mass.

are where the simulation shows the first mass as being studkis indicates a strong coupling between the estimate of

In order to satisfy the positive velocity constraints, the L friction and the residual vibration of the system.

solution provides a spring compensation force to ensute tha The extreme cases also result in large residual vibration

the first mass does not change direction. which are due to slight deviations in friction. The way
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Fig. 3. The max and min steady-state errors of the LP Two Maskig. 4. The max and min steady-state errors of the Robust LP TassM
experimental results. experimental results.

Twenty-five experiments are performed with the resultinghe friction is set up in the experiment, slight warpage
input profiles. Figure 3 shows the extreme experimentdh the disk will result in different normal forces on the
results obtained using the non-robust input profile showimertia. In general this type of nonlinearity is inherent to
in Figure 2(a) for the first and second mass respectivelgxperimentation. This must be ignored, however, to simplif
The steady-state values range framd < z;, < 1.2 analysis and controller design. Despite the simplification
[rad], approximately—10 to 20%. The middle trajectory made, an understanding of the "true” system is necessary
corresponds to the "best” obtained trajectory. The extrente explain experimental results.
results shown for the first and second mass are for the Throughout the25 experiments, the first mass trajectory
same experiments (i.e. the max steady-state error for tleecasionally has a slight change in sign in velocity. This is
first and second mass come from the same experiment).nfiainly attributed to friction uncertainties and nonliriéas.



In the LP development, the friction is assumed to benost clearly seen in the firgt.2 [s] of the experimental
constant and known as is seen in equation (5). Howevagesults. The non-robust results have more overlap between
the velocity sign change is minor enough that the LPhe worst case results, as opposed to the robust case where
solution is still effective. It is important to point out,ah the trajectories are relatively close to each other. Also, i
the effectiveness in the controller, despite the assumptiois seen that the amplitude of oscillation for the worst cases
made, is reasonable for the open loop. The position of there less than the non-robust counterparts.

second mass also shows that the vibration is cancelled byAnother significant improvement in the robust result is

the end of the maneuver. _ that overall, the steady-state error has decreased. It has
Figure 4 shows the worst and best experimental results fgecreased to about10% from the previous£10 — 20%.

the robust case. Again, the assessment is based on steaflys robust controller was designed to be insensitive to

state error which is directly correlated to residual vilmat \ariation in the spring constank, which is related to the

of the second mass. Just as in the non-robust case, the plefsural frequency of the system. Therefore it is expected

for the maximum and minimum steady-state errors for bothat vibration near the reference point will be less that tha

the first an secpnd mass come from t.he. same experimegfthe non-robust formulation, as is the case. This dectease
Comparing Figure 4 to Figure 3, it is seen that theyand of oscillation decreases the range for the first mass to

worst case scenarios have improved for the robust casedet stuck in, at the end of the maneuver, thus decreasing
resulting in less oscillation for the duration of the mar®uv the steady-state error.

There is also less variation across the experiments. This is
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Fig. 5. Box plot distribution of point-by-point LP Two Massmerimental ~ Fig. 6. Box plot distribution of point-by-point Robust LP ®wMass
results. experimental results.



In order to display the repeatability of the experiment, A further comparison between the robust and non-robust
the distribution of the25 experiments are displayed with solution is seen in Figures 7 and 8. The max and mean mag-
a "Box-and-Whisker” distribution plot, mainly used in nitude of the torsional spring force across2illexperiments
descriptive statistical analysis [20]. The box-and-whisk are plotted for both the non-robust and robust controllers
plot is represented by numbers in the sorted data set:respectively. It is seen that the maximum torsional spring
the minimum, first quartile, median, third quartile, andforce for the robust design is approximately’% lower than
maximum value. It is a convenient way of showing thehe non-robust case. Furthermore, the spring force has been
deviation of the entire data set from these points. Theeduced throughout the entire maneuver.
outlying data points are not considered when determining This result is achieved by an increase in the number of
a minimum and maximum, but they are used to determingulses in the robust solution shown in Figure 2(b). The
the quartiles and are shown as single dots in the plot thatovement of the first mass towards the desired position is
are placed beyond the whiskers. directed by the input pulses (i.e. four ramp up periods due

Figure 5 illustrates the box plot distribution for the firstto four pulses) as opposed to the non-robust case where
and second mass across all experiments of the non-robtis¢ final ramp up is due the spring torsional force (i.e.
case. The middle trajectory represents the mean value of #ikee ramp up periods only two pulses). This is seen by
experiments for each tim&l". The bounding curves are the comparing the pulse times in Figures 2(a) and 2(b) with
max and min of all experiments for each tim&. None the evaluation of the positions of the inertias in Figures 3
of these curves represent an actual experimental trajectoand 4.

Each box plot represents the distribution of all experiraent The times shown in Figures 7 and 8 are the times where
for that particular time. For the initial motion of the masse the systems were designed to have completed the maneuver.
a finer distribution is shown in an inset, to highlight theComparing the mean torsional spring magnitude for the
performance in that region.
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Fig. 8. Max and Mean Torsional Spring force due to relativepldice-

Fig. 7. M M Torsional ing f lati ice- ) -
g ax and Mean Torsional Spring force due to relativeptéice ments for25 experiments (Robust Controller Design)

ments for25 experiments (Non-Robust Controller Design)

The general trend in the range of the distribution i$10n-robust and robust controller design shows that there is

that it increases as position and velocity increase. It i#gsidual energy in the system after the designed final time
expected that the point distribution will be larger as thesssna t = .572 [s] in the non-robust approach. The oscillations
increases position because of the friction variation adourindicate a transfer of energy of the masses from potential
the inertia on which the friction force is applied. It is alsoto kinetic. The oscillations of the robust approach are
expected that increased variation will occur at points whereduced as compared to the non-robust approach showing a
the motor applies its torque due to slight timing differencereduction in residual vibration in the system at the end of
and controller saturation that may be present during pulég€ maneuver.
commands.

The improvement in the robust solution is further empha-
sized in the box-and-whisker evolution plot seen in Figure 6 A Linear Programming (LP) technique based on Kim
The evolution of the positions generally have less vanmatioand Singh’s work [21], was implemented on a two-mass
across experiments. The same trends of increased variatiwarmonic oscillator subject to friction for the robust and
is illustrated as in Figure 5 for the non-robust formulationnon-robust case. This technique only requires the user to

IV. CONCLUSIONS



select the sampling time. The LP approach automaticallge] Shin-Whar Liu and Tarunraj Singh. Robust Time-Optimal @oh
selects input sequence values at every sample in the ihterva
Reducing the final time forces the LP result to be pulses.
The robust solution shows reduction in the steady-state7]
error and residual vibration compared to the non-robust LP

approach.
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