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Abstract— A linear programming approach designed to
eliminate the residual vibration of the two-mass harmonic
system subject to friction and undergoing a point-to-point
maneuver is implemented. Techniques for non-robust and
robust open loop controller design are explored. It is shown
that consistent results can be obtained from experiments
and the robustness against frequency uncertainty results in
reduction in residual vibration as well as steady-state error.

I. I NTRODUCTION

Linear programming (LP) is a powerful numerical op-
timization technique that is able to handle hundreds of
constraints efficiently. It requires all constraints and costs
to be linear in the unknown variable. This restriction on
the use of LP may seem to eliminate practical use on real
engineering problem. It is possible, however, to linearize
some complex nonlinear systems to fit the required form of
LP [1]. It is also possible to manipulate the original problem
definition to fit the LP format as is done in [2], where a
nonlinear constraint due to fuel usage is re-written as two
linear constraints.

In system dynamics, LP can be used on linear discrete
systems for time optimal and fuel limited time optimal
control [3], [4], [2], where constraints linear in the discrete
input sequenceu(k), are imposed to result in an input
profile.

The significance of friction to the control community is
in its effects on positioning systems and velocity tracking
operation. Positioning applications include telescopes,an-
tennas, machine tools, disk drives and robot arm position-
ing. Velocity control is also relevant in machine tool, disk
drive and robot arm industrial applications which require
the accurate tracking of a pre-determined trajectory. The
effect of friction becomes accentuated in the low velocities
region near the reference position.

The majority of work done on control of frictional
systems is on rigid body systems. Yang and Tomizuka [5]
exploited a simple relationship between a pulse input and
the displacement of the rigid body. This utilizes the fact that
the rigid body subject to a pulse input never changes the
sign of the velocity and thus the Coulomb friction acts like
a bias input. This scheme, known as Pulse Width Control
(PWC), is presented in an adaptive control setting where an
estimate of the friction is determined in real-time. Wijdeven

and Singh [6], modified the PWC approach to increase
accuracy in actual discrete implementation of the input.
Their technique modulates the pulse height to compensate
for a rounded up pulse width and is called Pulse Amplitude
Pulse Width Control (PAPWC).

Additional schemes developed for rigid body systems
include internal-model following error control [7], PID
and state feedback linearization control [8] and variable
structure control in order to try to handle qualitatively
different friction regimes [9], [10]. Nonlinear PID control
has also been developed to overcome the stick-slip behavior
of friction [11].

Overcoming friction in flexible systems has been spar-
ingly studied. This is despite the fact that the practical uses
of controllers in this area include high precision overhead
robot arms subject to friction at the joints, high-density
hard-disk drives requiring the modelling of the system as
well as the motion arm friction, and high-precision satellite
pointing, where the friction effect is noticeable near the
reference point.

Rathbun et al. [12] use the PWC control developed for
the rigid body directly on the flexible system while ensuring
stability by bounding the control gain. The system will how-
ever, result in undesired vibration near the reference point.
Hamamoto et al. [13] use iterative feedback tuning to try to
control the two mass harmonic system under the influence
of friction. Two controllers (feedback and feedforward) are
designed in order to account for the friction and reduce
steady-state vibration.

A more recent approach poses the problem in a mixed
integer linear programming setting, in order to accommo-
date for the friction sign change for the two-mass harmonic
dynamics [14]. This is computationally expensive which
precludes fine discretization of the maneuver time. Singhose
et al. [15] use PD control on a second order system and
input-shapers to try to compensate for Coulomb friction and
eliminate vibration with positive velocity assumption.

This paper implements the technique developed by Kim
and Singh [21], to eliminate the residual vibration of flexible
structures subject to friction, undergoing point-to-point ma-
neuvers. The proposed technique was illustrated on systems
where the control input and frictional forces are collocated
on an inertia. This approach uses linear programming to



solve for optimal control profile which satisfy constraints
that represent the dynamics of the system as well as positive
velocity constraints.

II. M ATHEMATICAL FORMULATION

The flexible structure that is used in this research is
the two-mass harmonic oscillator subject to friction. The
equations of motion are:
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The friction model f(θ̇) is the classical static-Coulomb
friction model:

f(θ̇) =







fcsign(θ̇) if θ̇ 6= 0

fssign(usum) if θ̇ = 0 andusum > fs

usum if θ̇ = 0 andusum ≤ fs.
(2)

In the rest of the paper, the damping in the system is ig-
nored in the controller design because the Coulomb friction
dominates the nonconservative forces.

Since LP is an optimization technique, all equations of
motion must be posed as constraints. Here, the cost function
does not play a role in the solution since the LP is only used
to satisfy a large number of constraints efficiently, to arrive
at feasible control profiles.

In order to properly pose the LP problem, the states
are re-written in discrete-time domain in terms of the state
matrices and previous inputs (ARMA Model). Equation (3)
represents the states of the system atk = N + 1.

x(N + 1) = ANx(1) +

N
∑

k=1

AN−kBu(k) (3)

The unknowns in equation (3) are the input sequencesu(k).

A. System Subject to Friction

Equation (3) can be reformulated to be written in block
matrix form as

xf − ANx(1) =
[

AN−1B AN−2B . . . B
]











u(1)
u(2)

...
u(N)











,

(4)
wherexf are the desired final states atk = N +1. Equation
(4) is an equality constraint used in the LP that satisfies the
dynamics of the system.

The number of constraints depend on the number of
desired data points,N and the sampling timeT . The final
maneuver time is given astf = NT . Assuming the number
of samples stays the same, a reduction in the final time will
result in a reduction in the sampling time of the system.

For a system under the influence of friction, positive
velocity is assumed for the mass subject to friction and

thus the sign(θ̇) term in equation (2) becomes positive. The
equations of motion are written similar to equation (3):

x(N + 1) = ANx(1) +

N
∑

k=1

AN−kBu(k) −

N
∑

k=1

AN−kBfc.

(5)
The equality constraints can be written as

xf − ANx(1) +
∑N

k=1
AN−kBfc =

[

AN−1B AN−2B . . . B
]
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. (6)

In order to satisfy the positive velocity assumption,
inequality constraints that represent positive velocity have to
be included in the LP problem. These constraints, however,
must be true at every time index,k. Therefore, a relationship
between the output at any timek and all previous input
needs to be determined. A similar ARMA model can be
written for the velocity of the system as in equations (3)
and (5). Equation (7) represents the velocity constraints at
each time indexk.
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(7)

The first entry in the inequality constraints states that the
first input must be larger than stiction. Theǫ found in the
velocity constraint equation is a numerically defined ”zero”
to accommodate for computer limited precision.

For a rigid body system subject to friction, the velocity
of the mass will never change sign for positive pulse inputs.
Therefore, it is reasonable to assume that multi-sign pulses
may tend to force the velocity of the first mass to change
sign more frequently than only positive pulses. Based on
this assumption, the LP bounds on the inputs are given as

0 ≤ u(k) ≤ Umax for k = 1, 2, . . . , N (8)

Equations (6), (7), and (8) constitute the LP problem, which
is not used to minimize a specific cost per say, as much
as it is used to find an input sequence that satisfies the
constraints.

It is desired to obtain pulses as the LP solution of the
input profile, to try to ensure that the input will always be
greater than the stiction value,fs. To force the LP solution
to obtain a pulse input profile, the final time is reduced.
The reduction of the final time will force the maneuver



to end faster and this is done with input values that take
their maximum possible value,Umax. In order to obtain
the minimum time possible for the LP to result in a feasible
solution for u(k), a bisection algorithm is used to reduce
the final time efficiently.

B. LP Desensitized Control

The underlying presumption of controller design tech-
niques that do not account of parameter variability, is
exact knowledge of the true parameters of the system. In
implementing a controller, the uncertainty in the system
parameters will result in undesirable performance, which
in the case of the two-mass harmonic oscillator, results in
residual vibration at the end of the maneuver.

It is desirable to obtain a control profile that is insensitive
to error in system parameter estimates. Liu and Singh [16]
presented a technique that used the concept of sensitivity
states which are defined as the derivative of the states with
respect to the uncertain parameters. By forcing the sensitiv-
ity states to zero at the end of the maneuver, robustness to
modelling errors is achieved. For the system under study,
the uncertain parameter is taken to be the system stiffness,
k.

The sensitivity states are defined as

x1s =
∂x1

∂k
x2s =

∂x2

∂k
. (9)

The statesx1 andx2 are functions of the parameterk and
their sensitivities are required to be zero at the final time,
tf . Differentiating the equations of motion, equation 1, with
respect tok results in

J1ẍ1s + x1 + kx1s − x2 − kx2s = 0 (10)

J2ẍ2s − x1 − kx1s + x2 + kx2s = 0.

Placing equation (10) into matrix form
[

ẍ1s

ẍ2s

]

=

−
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1/J1 −1/J1 k/J1 −k/J1

−1/J2 1/J2 −k/J2 k/J2
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x2s









(11)

reveals the relationship between the two equations. Using
the elementary row operationR1/J2 +R2/J1, equation 11
can be rewritten as

[

ẍ1s

ẍ1s/J2 + ẍ2s/J1

]

=

−

[

1/J1 −1/J1 k/J1 −k/J1

0 0 0 0
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(12)

which shows that the two sensitivity equations of motion are
not independent and only one is necessary to capture the

dynamics of the two. From equation (12), the relationship
between the sensitivity states are found to be

ẍ1s = −
J2

J1

ẍ2s. (13)

The boundary conditions of the sensitivity states at the final
time are

x1stf = x2stf = ẋ1stf = ẋ2stf = 0.

Integrating equation (13) twice and using the boundary
conditions of the sensitivity states, the relationship between
x1s andx2s is

x1s = −
J2

J1

x2s. (14)

Combining equation (14) and the first equation in (10)
results in the sensitivity state equation of motion that is
augmented to the system state equation and results in the
equation

ẍ2s =
1

J2

(x1 − x2) −

(

k

J1

+
k

J2

)

x2s (15)

The new equations of motion in continuous domain are
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The variables shown in the current development are replaced
with ones that are consistent with ones in the previous
sections. The discrete-time state space equations can be
derived from equation (16) and used in the same LP
formulation as in Section II-A.

III. E XPERIMENTAL SETUP AND RESULTS

A. Hardware, Software, System Identification

An experimental testbed of a two-mass harmonic oscilla-
tor subject to friction is built and the proposed controllers
are implemented. A figure of the experiment is shown in
Figure 1.

The motor that is used is theMircoMo 4490 024Bmodel,
with a recommended no load torque operation of0.192 [N-
m]. The nominal torque that is used throughout this thesis
is approximately3.5 × 10−3 [N-m]. This was calculated
for an inertial load of2.75 × 10−4 [kg - m2] and a max
velocity of approximately2 [rev/s] reached in 1 [sec] (ie.
α = 2 rad/sec2. This torque value is used as a reference
point for nominal torque values and is not a restrictive
bound. This brush-less type motor is chosen over its iron-
core counterpart due to friction considerations. The iron-
core motors typically use a gear box to achieve similar
torque values and thus the friction is increased.

The corresponding amplifier that is as used is aMircoMo
MVP2001 A01 Driver Electronics(MVP). The motor is



Fig. 1. Two Mass-Spring Harmonic Oscillator Subject to friction

commanded via serial commands to theMVP. The dy-
namics of the electronics of motor (MVP, magnetic fields,
etc.) are assumed to be negligible. An identification of
the Amplifier and Motor shows that a model of a rigid
body system subject to damping can be fit reasonably
well. Therefore, the inertia and damping of the motor and
amplifier can be lumped with that of the rotating mass.
Two USDigital E6Sseries encoders with2048 cycles per
revolution quadrature (4 pulses per cycle) output are used
to query the position of both masses. AFormula Evoluzione
9.5 Disk Brake Setwas used to mount the inertias and apply
the desired friction.

LabVIEW1 is used as the real time data processing soft-
ware for all the experiments ([17], [18]). MatLAB2 is used
for all pre and post-processing (i.e. trajectory constructions,
optimizations, etc.) of data and processing the results [19].

Through extensive system identification of the apparatus,
the system parameters are estimated and are shown in Table
I.

B. Experimental Results

The LP solutions for the non-robust and robust approach
are shown in Figures 2(a) and 2(b). The sampling time used
in the LP was.001 [s] in order to obtain an accurate input
profile. With a smaller sampling time a profile closer to

1LabVIEW is a registered trademark of National Instruments, Inc.
2MatLAB is a registered trademark of The MathWorks, Inc., Natick,

Mass.

System Variable Estimated Value

Ĵ1 [N-m-s2] 1.35× 10
−5

Ĵ2 [N-m-s2] 7.13× 10
−5

k̂
h

N-m
rad

i

1.00× 10
−2

f̂c [N-m] 4.32× 10
−4

f̂s [N-m] 1.58× 10
−3

TABLE I

EXPERIMENTAL PARAMETERS OF TWO-MASS HARMONIC OSCILLATOR
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(a) Input profile from LP Non-Robust solution
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(b) Input profile from LP Robust solution

Fig. 2. LP Solution for Non-Robust and Robust Approaches

the “optimal” profile is obtained. Smaller sampling times
will allow for finer choice of final times, in turn resulting
in more precise choice of switching times and pulse height
values. Since the sampling time in LabVIEW, however, is
only .005 [s], every5 points is extracted from the LP results.
The desired position isxf = 1 [rad] and the maximum



input value,Umax, is taken to be3.8 × 10−3 [N] which
corresponds to0.60 [V].

The linearly decreasing region in Figures 2(a) and 2(b),
are where the simulation shows the first mass as being stuck.
In order to satisfy the positive velocity constraints, the LP
solution provides a spring compensation force to ensure that
the first mass does not change direction.
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(b) Second Mass Responses

Fig. 3. The max and min steady-state errors of the LP Two Mass
experimental results.

Twenty-five experiments are performed with the resulting
input profiles. Figure 3 shows the extreme experimental
results obtained using the non-robust input profile shown
in Figure 2(a) for the first and second mass respectively.
The steady-state values range from0.9 ≤ xd ≤ 1.2
[rad], approximately−10 to 20%. The middle trajectory
corresponds to the ”best” obtained trajectory. The extreme
results shown for the first and second mass are for the
same experiments (i.e. the max steady-state error for the
first and second mass come from the same experiment). It

should be noted that for larger steady-state errors of the
first mass, which get stuck before the second mass comes
to rest, corresponds to larger vibration of the second mass.
This indicates a strong coupling between the estimate of
friction and the residual vibration of the system.

The extreme cases also result in large residual vibration
which are due to slight deviations in friction. The way
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(b) Second Mass Responses

Fig. 4. The max and min steady-state errors of the Robust LP Two Mass
experimental results.

the friction is set up in the experiment, slight warpage
in the disk will result in different normal forces on the
inertia. In general this type of nonlinearity is inherent to
experimentation. This must be ignored, however, to simplify
analysis and controller design. Despite the simplifications
made, an understanding of the ”true” system is necessary
to explain experimental results.

Throughout the25 experiments, the first mass trajectory
occasionally has a slight change in sign in velocity. This is
mainly attributed to friction uncertainties and nonlinearities.



In the LP development, the friction is assumed to be
constant and known as is seen in equation (5). However,
the velocity sign change is minor enough that the LP
solution is still effective. It is important to point out, that
the effectiveness in the controller, despite the assumptions
made, is reasonable for the open loop. The position of the
second mass also shows that the vibration is cancelled by
the end of the maneuver.

Figure 4 shows the worst and best experimental results for
the robust case. Again, the assessment is based on steady-
state error which is directly correlated to residual vibration
of the second mass. Just as in the non-robust case, the plots
for the maximum and minimum steady-state errors for both
the first and second mass come from the same experiment.

Comparing Figure 4 to Figure 3, it is seen that the
worst case scenarios have improved for the robust case to
resulting in less oscillation for the duration of the maneuver.
There is also less variation across the experiments. This is
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(b) Second Mass Responses

Fig. 5. Box plot distribution of point-by-point LP Two Mass experimental
results.

most clearly seen in the first0.2 [s] of the experimental
results. The non-robust results have more overlap between
the worst case results, as opposed to the robust case where
the trajectories are relatively close to each other. Also, it
is seen that the amplitude of oscillation for the worst cases
are less than the non-robust counterparts.

Another significant improvement in the robust result is
that overall, the steady-state error has decreased. It has
decreased to about±10% from the previous±10 − 20%.
The robust controller was designed to be insensitive to
variation in the spring constant,k which is related to the
natural frequency of the system. Therefore it is expected
that vibration near the reference point will be less than that
of the non-robust formulation, as is the case. This decreased
band of oscillation decreases the range for the first mass to
get stuck in, at the end of the maneuver, thus decreasing
the steady-state error.
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Fig. 6. Box plot distribution of point-by-point Robust LP Two Mass
experimental results.



In order to display the repeatability of the experiment,
the distribution of the25 experiments are displayed with
a ”Box-and-Whisker” distribution plot, mainly used in
descriptive statistical analysis [20]. The box-and-whisker
plot is represented by5 numbers in the sorted data set:
the minimum, first quartile, median, third quartile, and
maximum value. It is a convenient way of showing the
deviation of the entire data set from these points. The
outlying data points are not considered when determining
a minimum and maximum, but they are used to determine
the quartiles and are shown as single dots in the plot that
are placed beyond the whiskers.

Figure 5 illustrates the box plot distribution for the first
and second mass across all experiments of the non-robust
case. The middle trajectory represents the mean value of all
experiments for each timekT . The bounding curves are the
max and min of all experiments for each timekT . None
of these curves represent an actual experimental trajectory.
Each box plot represents the distribution of all experiments
for that particular time. For the initial motion of the masses,
a finer distribution is shown in an inset, to highlight the
performance in that region.
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Fig. 7. Max and Mean Torsional Spring force due to relative displace-
ments for25 experiments (Non-Robust Controller Design)

The general trend in the range of the distribution is
that it increases as position and velocity increase. It is
expected that the point distribution will be larger as the mass
increases position because of the friction variation around
the inertia on which the friction force is applied. It is also
expected that increased variation will occur at points where
the motor applies its torque due to slight timing differences
and controller saturation that may be present during pulse
commands.

The improvement in the robust solution is further empha-
sized in the box-and-whisker evolution plot seen in Figure 6.
The evolution of the positions generally have less variation
across experiments. The same trends of increased variation
is illustrated as in Figure 5 for the non-robust formulation.

A further comparison between the robust and non-robust
solution is seen in Figures 7 and 8. The max and mean mag-
nitude of the torsional spring force across all25 experiments
are plotted for both the non-robust and robust controllers
respectively. It is seen that the maximum torsional spring
force for the robust design is approximately20% lower than
the non-robust case. Furthermore, the spring force has been
reduced throughout the entire maneuver.

This result is achieved by an increase in the number of
pulses in the robust solution shown in Figure 2(b). The
movement of the first mass towards the desired position is
directed by the input pulses (i.e. four ramp up periods due
to four pulses) as opposed to the non-robust case where
the final ramp up is due the spring torsional force (i.e.
three ramp up periods only two pulses). This is seen by
comparing the pulse times in Figures 2(a) and 2(b) with
the evaluation of the positions of the inertias in Figures 3
and 4.

The times shown in Figures 7 and 8 are the times where
the systems were designed to have completed the maneuver.
Comparing the mean torsional spring magnitude for the
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Fig. 8. Max and Mean Torsional Spring force due to relative displace-
ments for25 experiments (Robust Controller Design)

non-robust and robust controller design shows that there is
residual energy in the system after the designed final time
t = .572 [s] in the non-robust approach. The oscillations
indicate a transfer of energy of the masses from potential
to kinetic. The oscillations of the robust approach are
reduced as compared to the non-robust approach showing a
reduction in residual vibration in the system at the end of
the maneuver.

IV. CONCLUSIONS

A Linear Programming (LP) technique based on Kim
and Singh’s work [21], was implemented on a two-mass
harmonic oscillator subject to friction for the robust and
non-robust case. This technique only requires the user to



select the sampling time. The LP approach automatically
selects input sequence values at every sample in the interval.
Reducing the final time forces the LP result to be pulses.
The robust solution shows reduction in the steady-state
error and residual vibration compared to the non-robust LP
approach.
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