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Abstract

The focus of this paper is on the design of robust con-
trollers based on the range of expected variation of un-
certain parameters from their nominal values. A min-
imax optimization problem is formulated with the ob-
jective of minimizing the maximum value of the cost
function over the range of the uncertain parameter. To
expedite the optimization process, equations are de-
rived for the gradient of the cost and constraint func-
tions with respect to the parameters of the controller.
The proposed technique is illustrated on two examples.
The first is a spring-mass-dashpot and the second is a
two-mass-spring benchmark problem.

1 Introduction

Control of vibratory structures by filtering the refer-
ence input to the system has been addressed by nu-
merous researchers [11], [5], [1], [6] etc. Smith [11] pro-
posed a wave cancellation technique to drive a second
order system to its final position in finite time. How-
ever, this technique was sensitive to modeling errors.
Singer and Seering [5] proposed an approach referred
to as input shaping which resulted in the same solution
as Smith’s. They then proposed a simple technique to
desensitize the input shaper to modeling errors. This
involved design of a sequence of impulses which forced
the magnitude of the residual energy and its deriva-
tive with respect to damping or natural frequency, to
zero. Singh and Vadali [6] arrived at the same results
of Singer and Seering [5] by the design of a time-delay
filter which cancelled the poles of the system. They
also showed that by cascading the time-delay filter de-
signed to cancel the poles of the system, the result-
ing filter was insensitive to errors in modeled damping
and frequency. The idea of locating multiple zeros of a
time-delay filter at the estimated location of the poles
of the system has been exploited to design robust time-
optimal control [7], [3], robust fuel-time optimal control
[8], fuel constrained time-optimal control [9] etc. Liu

and Singh [2] extended this idea to nonlinear systems
undergoing rest-to-rest maneuver, by requiring the sen-
sitivity of the system states with respect to uncertain
parameters be zero at the final time.

Techniques to increase the range of uncertain parame-
ters where the residual vibration is below a prespec-
ified amount has been addressed by Singhose et al.
[10]. This was referred to as the extra insensitive input
shaper. Pao et al. [4] proposed including the probabil-
ity distribution of the uncertain parameters into the de-
sign process to arrive at input shapers which weighted
the nominal value of the uncertain parameter the most.

The focus of this paper is on the development of a tech-
nique to design time-delay filters which minimize the
maximum magnitude of the residual vibration over the
range in which the uncertain parameter resides. The
resulting controller will be referred to as the minimax
time-delay controller. Sections 2 and 3 will review the
development of the time-delay control and saturating
controllers. This will be followed by the development
of the minimax time-delay controller in Section 4. The
Van Loan identity is used to arrive at equations which
represent the gradients of the cost and constraint equa-
tions with respect to the parameters of the controller
in Section 5. The proposed technique is illustrated on
numerical examples in Section 6 and Section 7 summa-
rizes results generated in this paper.

2 Time-Delay Filter

The time-delay control can be considered as a filter-
ing technique which modifies the reference input to
a system whose dynamics are characterized by under-
damped response (Figure 1). Singh and Vadali [6] pro-
pose a single time-delay filter with a transfer function

u(s)
r(s)

=
A0

A0 + 1
+

e−sT

A0 + 1
(1)



r(s)−→ A0

A0+1
+ e−sT

A0+1
−→u(s)−→ ω2

s2+2ξωs+ω2 −→y(s)

Figure 1: Single Time-Delay Controlled System

to minimize the residual vibration of a single-mode
underdamped system and show that to cancel a pair
of complex conjugate poles located at s = −ζω ±
jω

√
1 − ζ2, we require

A0 + eζωT cos(ω
√

1 − ζ2T ) = 0 (2)

eζωT sin(ω
√

1 − ζ2T ) = 0 (3)

which results in the solution

A0 = exp(
ζπ√
1 − ζ2

) and T =
π

ω
√

1 − ζ2
. (4)

To address the issue of sensitivity of the pole cancella-
tion time-delay filter, a two time-delay filter is proposed
with the constraint that the derivative of the pole can-
cellation constraint with respect to ζ or ω be forced
to zero. The resulting time-delay filter was shown to
consist of two single time-delay filters (Equation 1), in
cascade. This process of cascading a series of single
time-delay filter will progressively increase the insen-
sitivity of the filter to modeling errors. However, the
penalty of increased settling time of the response of the
system can be significant.

Design of time-delay filters to cancel two or more pairs
of stable complex conjugate poles follows the same pro-
cedure outlined above. However, the possibility of de-
termining a closed form solution for the parameters of
the time-delay filter with a transfer function

u(s)
r(s)

= A0 + A1e
−sT1 + A2e

−sT2 + ... (5)

is remote. To design a multi-mode time-delay filter,
we need to solve a set of nonlinear coupled equations
derived by substituting

s = −ζiωi + jωi

√
1 − ζ2

i where i = 1, 2, ... (6)

into Equation 5 and equating it to zero. The issue of
robustness to modeling errors is addressed by cascading
time-delay filters designed to cancel the poles of the
system, in series.

3 Saturating Controllers

Cost functions such as time, fuel, and weighted fuel-
time result in optimal control profiles which are bang-
bang or bang-off-bang. These control profiles are very
sensitive to uncertainties in modeling and there is thus,

a need to design controllers which are insensitive to
modeling errors. This has been addressed by Liu and
Wei [2], Seering et al. [9], Singh and Vadali [7] etc.,
where an optimization problem has been formulated
which involves the design of a time-delay filter which
is required to locate multiple zeros of the time-delay
filter at the estimated location of the poles of the sys-
tem. The constraints for the optimization problem are
derived by requiring that the boundary conditions for
rest-to-rest or spin-up maneuvers be satisfied for the
nominal values of the model parameters. Additional
constraints which require the sensitivity of the final
states to the uncertain parameters be zero, are included
in the optimization problem. For instance, the trans-
fer function of a time-delay filter for the benchmark
floating oscillator (Figure 2), is

1 − 2e−sT1 + 2e−sT2 − 2e−sT3 + e−sT4 . (7)

The time-optimal control profile is generated by driving
the time-delay filter with a step input. The constraints
for a rest-to-rest maneuver with zero initial conditions
can be shown to be

−2T1 + 2T2 − 2T3 + T4 = 0 (8)

1+2
3∑

i=1

(−1)ie−ζωTicos(ω
√

1 − ζ2Ti)+e−ζωT4cos(ω
√

1 − ζ2T4) = 0

(9)

2

3∑
i=1

(−1)ie−ζωTisin(ω
√

1 − ζ2Ti)+e−ζωT4sin(ω
√

1 − ζ2T4) = 0

(10)

and

T 2
4 /2−(T4−T1)2 +(T4−T2)2−(T4−T3)2 = kθf (11)

where θf indicates the total displacement of the rest-
to-rest maneuver [7]. The parameters of the time-delay
filter are derived by finding a solution which satisfies all
the constraints and minimizes T4. To desensitize the
controller to modeling errors, additional time-delays
are added to the filter and constraints are derived by
forcing the derivatives of Equations 9 and 10 with re-
spect to ω or ζ to be zero.

4 Minimax Time-Delay Control

The time-delay controller and the saturating controllers
described above are designed using the nominal values
of the model parameters. Robustness is arrived at by
studying the sensitivity states evaluated at the nomi-
nal value of the system parameters. However, with the
knowledge that the uncertain parameters lie within a
specified range, it is desirable to design a controller
with the worst model in mind. The goal of the opti-
mization problem is to minimize the maximum magni-
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Figure 2: Two-Mass-Spring System

tude of the residual energy over the entire range of the
uncertain parameters.

For an asymptotically stable mechanical system under-
going rest-to-rest maneuvers, the model can be repre-
sented as

Mÿ + C(p)ẏ + K(p)y = Dr (12)

where M , is a positive definite matrix and K and C are
positive semi-definite. K is positive semi-definite when
the model of the system includes rigid body modes and
is positive definite otherwise. p is a vector of uncertain
parameters whose elements satisfy the constraints:

plb
i ≤ pi ≤ pub

i (13)

where plb
i and pub

i represent the lower and upper bounds
on the parameters respectively. The objective here is to
design a time-delay filter which pre-filters the reference
input r to the system with the objective of minimizing
the maximum value of the residual energy

min
x

max
p

F

F =
1
2
ẏT Mẏ +

1
2
(y − yf )T K(y − yf ) (14)

where x is a vector of parameters which define the ro-
bust time-delay filter and yf corresponds to the final
displacement states of the system. The above equation
will be referred to as the pseudo-energy function since
it is associated with a hypothetical spring whose po-
tential energy is zero when y = yf . The pseudo-energy
function is evaluated at the final time, i.e., the end of
the maneuver. If K is positive semi-definite, the objec-
tive function is

min
x

max
p

F

F =
1
2
ẏT Mẏ+

1
2
(y−yf )T K(y−yf )+

1
2
(yr−yrf )2 (15)

where yr corresponds to the rigid body displacement
and yrf refers to the corresponding desired final dis-
placement. The last term is added to guarantee that
the cost function is positive definite. The above for-
mulation weights every point in the uncertain region
uniformly. If the designer is provided with informa-
tion regarding the probability distribution of the un-
certain parameters, this information can be included in
the optimization problem. For instance, if a Gaussian
distribution is assumed for the uncertain parameter,
the objective function defined by Equation 14 can be
rewritten as

min
x

max
p

F

F = exp(−(p−pnom)T Γ−1(p−pnom)) (
1

2
ẏT Mẏ+

1

2
(y−yf )T K(y−yf ))

(16)

where Γ is the covariance Matrix and pnom is a vec-
tor of nominal values of the parameters [4]. Without
loss of generality, we can assume that the initial dis-
placement states are zero for the study of rest-to-rest
maneuvers. We will derive the necessary equations for
the optimization problem based on this assumption.

5 Analytical Gradients

Given a state space model for a system

ż = Az + Bu where z =
[

y
ẏ

]
∈ Rn, u ∈ R1 (17)

where u is parametrized as

u = A0 +
n∑

i=1

AiH(t − Ti) (18)

where H(t − Ti) is the Heaviside function, or u is

u = 1 +
n∑

i=1

2(−1)iH(t − Ti) + H(t − Tn+1) (19)

for a time-optimal controller, given that abs(u) is less
than 1. Assuming a rest-to-rest maneuver, where the
initial conditions of the system are zero, the states of
the system represented by Equation 17, can be solved
for easily, by the technique proposed by Van Loan [12].
To determine the response of a linear system (Equation
17), to a unit step input, construct a matrix

P =
[

A B
0 0

]
(20)

which is a Rn+1×n+1 matrix. Using the Van Loan iden-
tity [12], one can show that

M = ePT =
[

eAT
∫ T

0
eA(T−τ)B dτ

0 I

]
. (21)



It can be seen that the upper right hand term of the ma-
trix M is the convolution integral of the system given
by Equation 17 subject to a unit step input. Thus,
the value of the states at time T for a unit step input
are given by the first n rows of the last column of M .
This permits us to calculate the final states for a step
input accurately, without numerical simulations. This
is very attractive for numerical optimizations, where a
significant cost of optimizing dynamical systems is con-
tributed by the numerical simulation of the response of
the system. For instance, the response of the system
represented by Equation 17 to the input represented
by Equation 18 is given by the first n rows of the last
column of the matrix

Φ = A0e
PTn +

n∑
i=1

Aie
P (Tn−Ti) (22)

and by the first n rows of the last column of the matrix

Φ = ePTn+1 +
n∑

i=1

2(−1)ieP (Tn+1−Ti). (23)

for the time-optimal control (Equation 19).

The optimization algorithms which are used to solve
minimax problems are generally gradient based. Thus,
the accuracy and the speed of the optimization can be
increased by providing analytical gradients to the op-
timization algorithm. Fortunately, for the time-delay
control and the bang-bang and bang-off-bang control
profile, closed form equations representing the gradi-
ents of the cost and constraints can be easily derived
as shown below.

For the optimization algorithm, we require the value of
the gradient of the cost F and the constraints, with
respect to the controller parameters. For the time-
delay controller given by Equation 18, the gradients
of F (Equation 14) with respect to Ai and Ti are given
by

dF

dAi
= (ẏT M

dẏ

dAi
+ (y − yf )T K

dy

dAi
) (24)

and
dF

dTi
= (ẏT M

dẏ

dTi
+ (y − yf )T K

dy

dTi
) (25)

To determine dy
dAi

, dẏ
dAi

and dy
dTi

, dẏ
dTi

, we require the
derivative of the state Equation 17. The solution of
the equation

dż

dAi
= A

dz

dAi
+ BH(t − Ti) i = 0, 1, 2, 3, ... (26)

can be derived using the Van Loan Identity as described
earlier. Similarly the solution of equation

dż

dTi
= A

dz

dTi
− B(Aiδ(t − Ti)) i = 1, 2, 3, ... (27)

where δ(.) is the dirac delta function, can be shown to
be

dz

dTi
(Tf ) = −Aiexp(A(Tf − Ti))B. (28)

With the analytical gradients, we can expedite the con-
vergence of the optimization algorithm.

6 Numerical Examples

6.1 Spring-Mass-Dashpot
The proposed technique will be illustrated on a rest-to-
rest maneuver of a single mode system whose dynamics
are defined by the equation

mÿ + cẏ + ky = kr (29)

with the boundary conditions

y(0) = ẏ(0) = 0, y(tf ) = 1, ẏ(tf ) = 0 (30)

where tf is the maneuver time.

First, a minimax time-delay controller will be designed
assuming that only k is uncertain and satisfies the con-
straint 0.7 ≤ k ≤ 1.3, where the nominal value of k =
1, m = 1, and c = 0.2. The form of the transfer func-
tion for the minimax time-delay controller is chosen to
be

A0 + A1e
−sT1 + A2e

−sT2 (31)

which is identical to the robust time-delay controller
[6]. The optimization problem can be stated as the
determination of A0, A1, A2, T1 and T2 of the time-
delay filter so as to

min
Ti,Ai

max
k

(
1
2
mẏ2 +

1
2
k(y − 1)2) (32)

evaluated at T2. The initial guess for the minimax op-
timization problem is the robust time-delay filter. To
determine the parameters of the robust time-delay fil-
ter, we need to solve for the non-robust time-delay filter
first, which is

0.5783 + 0.4217e−3.1574s. (33)

With the knowledge that two non-robust filters in cas-
cade will force the derivative of the square root of the
pseudo-energy to be zero at the nominal value of the
system parameters resulting in smaller magnitude of
residual vibration in the vicinity of the nominal pa-
rameters as illustrated in Figure 3 (dash-dot line), the
transfer function of the robust time-delay controller can
be shown to be

0.3344 + 0.4877e−3.1574s + 0.1788e−6.3148s. (34)

The parameters of the time-delay filter (Equation 34),
will be used as initial guesses for the minimax algo-
rithm. The optimization toolbox of MATLAB is used
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Figure 3: Residual Vibration Distribution

to solve the minimax optimization problem which re-
sults in the transfer function

0.3452 + 0.4730e−3.1703s + 0.1818e−6.2060s. (35)

Figure 3 (solid line) illustrates the variation of the
residual energy of the system as a function of the un-
certain parameter k. It can be seen that the maximum
magnitude of the residual energy in the range of the
uncertain parameters occurs at the bounding limits (k
= 0.7, k = 1.3) and near the nominal value of k. It is
also clear that the maximum magnitude of the residual
energy is significantly smaller than that resulting from
the robust time-delay filter defined by Equation 34 over
the entire range of k. However, at the nominal value of
k, the minimax solution has the largest magnitude of
residual vibration.

Notwithstanding that the maximum magnitude of the
residual vibration over the range of possible value of k
has been minimized, the fact that the residual vibration
at the nominal value of k is the maximum, is a draw-
back of this controller. To address the aforementioned
disadvantage, an additional constraint is included into
the minimax optimization problem which requires the
magnitude of the residual vibration to be zero at the
nominal value of the uncertain parameter. The added
constraint necessitates addition of a time-delay to the
time-delay filter defined by Equation 35. The transfer
function of the minimax time-delay controller with the
constraint to force the residual vibration to be zero at
the nominal value of k can be shown to be

0.205+0.414e−3.17s+0.302e−6.33s+0.079e−9.49s. (36)

Figure 3 illustrate the distribution of the residual en-
ergy of the time-delay filter designed by cascading three
non-robust time-delay filters (thick dash line) and the
minimax time-delay filter (thick solid line).

The second example considered for the illustration of
the proposed technique is the benchmark two mass-

spring system. Unlike the first example, this system is
characterized by rigid body modes and the sum of the
kinetic and potential energy is not a positive definite
function and therefore the energy of the system is aug-
mented with a term which reflects the energy stored in
a virtual spring whose potential energy is zero when the
masses are at the final desired positions. The equations
of motion of the floating oscillator are
[

m1 0
0 m2

] [
ÿ1

ÿ2

]
u+

[
k −k
−k k

] [
y1

y2

]
u =

[
1
0

]
u

(37)
where u is bounded by the constraint

−1 ≤ u ≤ 1. (38)

The objective of the optimization problem is to design
a control profile for a rest-to-rest maneuver which sat-
isfies the boundary conditions

y1 = y2 = ẏ1 = ẏ2 = 0|t=0, and y1 = y2 = 1, ẏ1 = ẏ2 = 0|t=tf
.

(39)

The optimal control profile is parameterized as Equa-
tion 19. A minimax problem is formulated to solve for
the maneuver and switch times Ti, assuming that k is
uncertain and satisfies the constraint 0.7 ≤ k ≤ 1.3
where the cost function is

min
Ti

max
k

(
1
2

[
ẏ1

ẏ2

]T [
m1 0
0 m2

] [
ẏ1

ẏ2

]
+

[
y1

y2

]T [
k −k
−k k

] [
y1

y2

]
+

1
2
(y1 − 1)2) (40)

Assuming n = 3, in Equation 19 and solving the min-
imax problem with the constraint that the magnitude
of the pseudo-energy function (Equation 40) be zero at
k = 1, the nominal value of the uncertain parameter,
we arrive at the time-optimal control profile

u = 1 − 2H(t − 1.0027) + 2H(t − 2.1089)

−2H(t − 3.2151) + H(t − 4.2178). (41)

Solving the minimax control problem without enforcing
the requirement that the residual energy should be zero
at the nominal value of the uncertain parameter results
in the control profile

u = 1 − 2H(t − 0.9430) + 2H(t − 2.0571)

−2H(t − 3.1713) + H(t − 4.1143). (42)

Figure 4 illustrates the variation of the residual energy
of the floating oscillator as a function of k for the 3
and 5 switch control profiles. It is clear that the max-
imum magnitude of the residual energy of the control
profile given by Equation 42 (dash line) is smaller than
that given by Equation 41 (solid line) in the range of
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Figure 4: Residual Energy Distribution

uncertain k. It is to be noted that the maximum mag-
nitude of the residual vibration occurs at the end of
the interval of uncertainty, i.e., k = 0.7 and k = 1.3.
However, the residual energy is not zero at k = 1. A
5-switch control profile is selected next to reduce the
maximum magnitude of residual energy. The minimax
optimization problem is solved again with and without
the constraint that the residual energy for k = 1 should
be zero. The resulting control profile is

u = 1−2H(t−0.7181)+2H(t−1.6715)−2H(t−2.9526)+

2H(t−4.2370)−2H(t−5.1851)+H(t−5.8944). (43)

The thick solid line of Figure 4 illustrates the distri-
bution of the residual energy with constraint that the
residual energy be zero at k = 1. A point to note is
that the optimization algorithm resulted in a control
profile which forces the slope of the energy distribu-
tion curve to be zero at k = 1, without the explicit
requirement of that constraint as in the work of Singh
and Vadali [7]. The thick dash line of Figure 4 illus-
trates that the elimination of the constraint that the
residual energy be zero at k = 1, results in a signifi-
cant reduction of the maximum magnitude of residual
energy in the uncertain range which again occur at the
ends of the uncertain region. One can note again that
the residual energy is not zero over the entire interval
of the uncertain parameter k and the control profile is
given by the equation

u = 1−2H(t−0.7256)+2H(t−1.6909)−2H(t−2.9595)+

2H(t−4.2281)−2H(t−5.1934)+H(t−5.9190). (44)

7 Conclusions

This paper presents a technique for the design of ro-
bust controllers which minimize the maximum magni-
tude of the cost function over the uncertain interval.

Closed form equations for the gradients of the cost and
constraint functions with respect to the parameters to
be optimized for, are derived, which aid in the numeri-
cal optimization. The proposed technique is illustrated
on two examples. The first is a spring-mass-dashpot
system and involves the design of a time-delay filter to
minimize the maximum magnitude of residual vibra-
tion for a unit step input. The second example, is the
design of a robust bang-bang controller for rest-to-rest
maneuvers of the two-mass spring benchmark problem.
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