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Abstract: This paper is concerned with
the design of robust jerk limited controllers
for flexible structures. In order to eliminate
residual vibration at the end of the maneuver,
a time-delay filter, forming the command in-
put, is used. A minimax optimization scheme
is employed to make the controller more ro-
bust with respect to parametric uncertain-
ties. The degree of robustness can be cho-
sen arbitrarily. The minimax setting permits
for the easy inclusion of statistical informa-
tion concerning these parametric uncertain-
ties. The controller design accounts for both
limits in the magnitude as well as the time-
rate of change of the control input. Among
other benefits, this class of control sequences
shows a favorable frequency spectrum com-
pared with the jerk unconstrained sequences.
The method is illustrated on the undamped
as well as the damped Floating Oscillator
benchmark problem.

Résumé: Cet article traite la conception
de contrôleurs robustes et anti-secousse pour
des structures flexibles. Afin d’ éliminer
les vibrations résiduelles en fin de manœu-
vre, un filtre à retard de temps, for-
mant la commande, est utilisé. Un ar-
rangement d’optimisation min-max est em-
ployé pour rendre le contrôleur moins sen-
sibles aux incertitudes paramétriques. Le
degré de robustesse peut être choisi ar-
bitrairement. La formule en problême
d’optimisation min-max permet l’inclusion
facile d’informations statistiques sur ces in-
certitudes paramétriques. La conception
de ce contrôleur tient compte non seule-
ment des limites dans la taille mais aussi
du temps-cadence du changement de com-
mande. En plus d’autres advantages cette
classe de commandè montre un spectre
de fréquence plus favorable comparé aux
classes de commande non limités en secousse.



La méthode s’applique sur le problème de
référence, un système de deux-masses-ressort-
et-amortisseur, l’ oscillateur flottant.

1 Introduction

Extensive research has been undertaken in
the field of vibration control of slewing flex-
ible structures. The results obtained have
been applied to control problems as diverse
as large space structures [1], flexible arm
robots [2], computer disk drives [3] and
cranes [4]. Most of these control problems
demand minimum maneuver time under the
condition of quiescent final states. Various
constraints have been added to this control
problem, such as maximum deflection permit-
ted and limits on the fuel consumed.
In 1957, Smith [5] presented a new approach
to the control of flexible structures, which
he called “Posicast”. The idea behind this
control technique is to divide a step input
into a number of spaced excitations, which
are chosen such that oscillations induced by
the earlier steps are eliminated again by later
steps. Originally, this method was derived
for second order systems having only one in-
put and only one resonant mode. Singer and
Seering [6] suggested a practice to design con-
trollers addressing the sensitivity issues of the
original controller. In order to make the con-
troller more robust, they equated the deriva-
tive of the constraint equation with respect to
the natural frequency of the resonant mode
to zero. The “Posicast” controller was also
extended to cover multi-mode systems.
Singh and Vadali [7] were able to find an
equivalent, but frequency-based solution to
the problem of designing an appropriate in-
put prefilter which eliminates residual vibra-
tion. They developed a pole cancellation for-
mulation where zeros of the time-delay filter
are placed atop the oscillatory poles of the
system. It was also illustrated that the de-

gree of robustness can be increased by placing
multiple zeros of the time delay filter on top
of the system poles.
Recently, Singh [8] proposed a minimax for-
mulation to desensitize the input preshaping
controller with respect to parametric uncer-
tainties. In this paper, the method is ex-
tended to include constraints on the maxi-
mum time rate of change of the control input.
Most of the design techniques presented so
far arrive at bang-bang profiles, which means
that the actuator must be able to track infi-
nite jerk control profiles. Jerk is indicative of
the time-rate of change of the inertia forces
and is thus a measure of the impact levels
that can excite unmodeled dynamics. The re-
sulting control profiles are restricted in their
maximum time rate of change. This leads
to a roll-off of higher frequencies of the con-
trol profiles’ frequency spectrum. Since the
higher frequency dynamics are usually not
modeled, the control performance will bene-
fit from such a high frequency roll-off. Other
beneficial effects are the reduction of wear
on the mechanism, lower acoustical noise and
less excitation of the oscillatory modes.
Some authors have already considered reduc-
ing the time rate of change of the control
profile. Bhat and Miu [3] propose to use the
time integral of the square of the absolute
instantaneous jerk as a cost function for the
controller design. Hindle and Singh [9] re-
formulated this problem as the minimization
of a weighted combination of jerk and power
consumed. They also proposed to use the
state sensitivity equation to arrive at control
profiles which are insensitive to modelling er-
rors. Both of these approaches do not account
for finite limits on the time-rate of change of
the control profile.
In the presented paper, the switching times
are not limited to integer multiples of a fixed
sampling time, but can be allocated freely.
This provides a globally optimal solution and
can be used as a benchmark to compare ap-
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Figure 1: Structure of the Time Delay Filter

proximating techniques. Robustness can be
added as desired. The paper consists of three
major sections. In the first section, the prob-
lem is outlined and the optimization problem
is formulated. Then, the Van Loan identity
and the pseudo-residual energy approach are
briefly reviewed. They are reformulated and
applied to the design of jerk restricted con-
trollers. The pseudo-energy approach is elu-
cidated for both undamped as well as damped
systems. Numerical simulations conclude this
paper and are used to illustrate the potential
of the proposed technique. All examples are
presented for the Floating Oscillator, which
serves as a benchmark, allowing to compare
different controllers on the same problem [10].

2 Problem Statement

This paper is concerned with flexible struc-
tures, which can be described by the set of
second order differential equations

M ÿ(t) +C(p) ẏ(t) +K(p) y(t) = Du(t), (1)

where M is the mass matrix, C the (optional)
damping matrix, K the stiffness matrix and
D the input distribution matrix, which de-
fines how the input u(t) is acting on the dif-
ferent system states y(t). For single input
systems, D is the input distribution vector.
Parametric uncertainty is introduced into the
system by means of the uncertain vector p,
known to be bounded by

pL ≤ p ≤ pU . (2)

The mass matrix is assumed to be known pre-
cisely, because mass can usually be estimated

very accurately and is the least affected by
aging or wear-out.
Good control performance necessitates ex-
traction of residual vibration. The pseudo-
residual energy function is chosen as a mea-
sure for the amount of remanent vibration,
thus

F =
1

2
ẏTMẏ +

1

2
yTKy

+
1

2
(y − yfinal)TKhyp(y − yfinal)

(3)

evaluated at t = TEval. The last term must
be introduced to account for rigid body dy-
namics. This term can be interpreted as the
presence of a hypothetical spring. This ap-
proach was described in detail by Singh [8].
For this cost function, analytical gradients
can easily be obtained. This allows to ex-
pedite the convergence of the optimization
package which is used to obtain the controller
parameters.
As was stated in the introduction, constraints
will be imposed which limit both, the magni-
tude as well as the time-rate of change of the
control input,

u̇(t) ≤ J (4)

u(t) ≤ 1 (5)

The system will be controlled by a time-delay
filter structure as shown in Fig. 1. To maneu-
ver the structure in minimal time under the
constraints imposed, the input u(t) will con-
sist of a sum of delayed ramp signals,

u(t) = J

n∑
j=1

Aj 〈t− Tj〉 , (6)



where 〈x〉 = xH(x) and H(x) denotes the
Heavyside function. Also, Tn = Tfinal, and
Aj is restricted to be

Aj ∈ {−2, −1, 1, 2} ∀ j. (7)

For the first switch, i. e. j = 1, A1 = 1 and
T1 = 0. Similarly, for the last switch, i. e.
j = n, An ∈ {−1, 1}.
In order to accurately calculate the response
of the time-delay filter, the Van Loan iden-
tity [11] will be used. Upon rewriting the
system in first order state-space form,

ẋ(t) = Q x(t) +R u(t) (8)

y(t) = S x(t) + T u(t), (9)

the matrix exponential can be utilized to cal-
culate the unit step response of this linear
systems. The matrix

P =

[
Q R
0 0

]
(10)

has to be constructed. P is the concattena-
tion of Q and R and is padded with one row
of zeros. The Van Loan identity states that

M = ePT =

[
eQT

∫ T
0
eQ(T−τ)R dτ

0 1

]
. (11)

Thus, one can easily and accurately calculate
the convolution integral, which delivers the
step responses of the states of an LTI sys-
tem for any arbitrary time T . This approach
yields more precise results than solving the
system of ordinary differential equations by
means of a numerical integration technique.
Numerical precision becomes important as
the differences between consecutive switches
might get very small for certain regions of
jerk. Since every jerk limited time-optimal
control profile will consist of a sum of delayed
ramp inputs and not of a sum of delayed step
inputs, the system has to be augmented by
an integrator in the input path.

Minimax Robustification: As the maxi-
mum residual vibration over the prescribed
uncertain space has to be minimized, the
problem statement is formulated as

min
X

max
p

F (X, p), (12)

where X is the vector of design variables used
to describe the control profile, p is a point
in the uncertain space, and F is the cost
function. The cost function is evaluated for
t = Tfinal, since the residual vibration at and
after the final time should be minimal.
A constraint can be added to ensure that the
residual energy is zero at the nominal values
of all system parameters. This is stated as

g(X) = F (X, p)|p=pnom = 0. (13)

This constraint puts more emphasis on the
nominal point, enhancing control perfor-
mance in the vicinity of the nominal parame-
ter set. Usually, the system parameters are
more likely to lie close to pnom, thus this
parameter set should deserve special consid-
eration.

3 Numerical Examples

This section will show examples for the single-
and multi-parameter desensitization. The
first system under investigation is the un-
damped Floating Oscillator. Desensitization
with respect to the spring stiffness is car-
ried out. In addition, robustified control se-
quences for the damped Floating Oscillator
will be designed later in this section. The
damped Floating Oscillator has two uncer-
tain system parameters, the spring stiffness k
and the damping coefficient c, which leads to
a two-dimensional uncertain space.
Floating Oscillator without Damping:
The outlined robustification method was ap-
plied to the Floating Oscillator benchmark
problem, which is shown in Fig. 2.
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Figure 2: Floating Oscillator Benchmark Problem
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Figure 3: Cost for J = 1.6, Constrained
Case

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k

F

4 Interval
6 Interval
8 Interval

Figure 4: Cost for J = 1.6, Unconstrained
Case

This system is described by

[
m1 0
0 m2

] [
ÿ1(t)
ÿ2(t)

]
+

[
c −c
−c c

] [
ẏ1(t)
ẏ2(t)

]

+

[
k −k
−k k

] [
y1(t)
y2(t)

]
=

[
1
0

]
u(t)

(14)

The system parameters m1 and m2 are unit
masses. The spring stiffness k is assumed to
lie in the interval 0.7 ≤ k ≤ 1.3 with a nom-
inal value of knom = 1. For the undamped
Floating Oscillator considered first, c is set to
zero. For the examples with added damping,
the damping coefficient is assumed to be from
the interval 0 ≤ c ≤ 0.2. Here, the nominal
value will be cnom = 0.1.

Profiles for the Undamped Oscillator:
For the examples in this section, a maximum
allowable jerk of J = 1.6 has been selected.
Both the constrained and the unconstrained
case have been investigated. First, the re-
sults for the optimization with the imposed
equality constraint are presented. In order to
see the influence of the number of intervals on
the cost and the final time, control profiles for
four, six and eight intervals have been calcu-
lated. In Fig. 3, the value of the objective
function has been plotted over the uncertain
parameter k. The larger the value, the more
vibratory energy is stored in the system at
the end of the maneuver. In the adjacent fig-
ure, Fig. 4, cost curves obtained without the
requirement of zero cost at knom have been
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Figure 5: Control Profiles for J = 1.6,
Constrained Case
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Figure 6: Response for k = 0.7 (Non-
Nominal), Constrained Case

graphed. One can see how the maximum cost
over the entire interval could be reduced by
abolishing this constraints. This comparison
also illustrates that the control performance
near the nominal parameter set can degrade
drastically if this constraint on zero residual
energy is given up. The eight interval pro-
file is the only control sequence for which the
residual energy remains close to zero for the
nominal parameter set regardless of enforcing
constraint Eq. 13. The control profiles found
as a solution to the constrained optimization
problem have been plotted in Fig. 5. One can
clearly see the ramping, jerk limited structure
of the profile. The end of the maneuver is
marked with a vertical line. Time after the
end of the control sequence is shaded grey.
In order to illustrate the added robustness,
the system response for a spring stiffness of
k = 0.7 is graphed in Fig. 6. In this diagram,
it can be seen, how maneuver time is traded
for robustness. While the four interval pro-
file is the shortest and would thus maneuver
the nominal system in the shortest amount
of time and still warrant quiescent states, its
control performance is the worst for the per-

turbed system. Here, the more robust profiles
excite less vibration.
Another interesting diagram is the develop-
ment of the switching times as a function
of the maximum permissible jerk as shown
in Fig. 7. Here, one can see the trajecto-
ries of the switching times as a function of
the maximum permissible jerk in the inter-
val 0.1 ≤ J ≤ 1000. The thick vertical lines
mark points, where some of the switches col-
lapse. The term “collapse of switches” refers
to the fact that two switches of the same am-
plitude occur at the same instant in time and
can thus be replaced by one switch with twice
the amplitude of the individual switches. The
small boxes inserted into the diagram show
the shape of the control profile for certain
regions of jerk. Small vertical arrows illus-
trate the correlation between the trajectories
of the switching times and the control profile.
From this diagram, one can also read out the
maneuver time which is represented by the
topmost line in the diagram. The time rate
of change can be limited extensively without
significantly increasing the maneuver time.
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For example, upon reducing the jerk from
J = 1000 to J = 1, the maneuver time, Tfinal,
increases from TFinal = 7.6397 to TFinal =
8.9163. Finally, one can see a comparison of
the power spectrum of a a jerk unlimited con-
trol profile and a jerk limited control profile
in Fig. 8. This diagram illustrates, how the
higher frequency content has been reduced by
limiting the time-rate of change of the control
profile.
Floating Oscillator with Damping: In
the following, the robustification method is
applied to the damped Floating Oscillator,
depicted in Fig. 2. For this class of systems,
the control profile can no longer be forced to
be symmetric about the mid-maneuver time.
For all examples, the jerk is limited to be
J = 2. The number of intervals is varied
from four to eight. For the examples pre-
sented in this paper, the constraint shown in
Eq. 13 is enforced. This results in zero cost
for the point k = knom and c = cnom on the
cost surface. The different cost surfaces for
the constrained case are shown in Fig. 9.

For the unconstrained case, similar results
have been obtained. Due to this similarity,
a separate figure has not been included.

4 Conclusions

The proposed robustification technique has
been implemented for two benchmark prob-
lems, thus demonstrating the feasibility of the
minimax approach for both one- and two-
dimensional uncertain spaces. The extension
to higher dimensional spaces is straightfor-
ward, therefore no such examples have been
included in this paper. For a system where
all parameters are known or at least expected
to be close to their nominal values, it is rea-
sonable to force the cost function to zero at
the nominal set of parameter values. How-
ever, it has been shown that the maximum
cost over the prescribed uncertain space can
be reduced by taking this constraint out of
the optimization statement. It has been ev-
idenced that the number of intervals in the
control profile influences the sensitivity. By
increasing the number of switches, the control
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Figure 9: Cost Surfaces for Uncertainties in both c and k, Constrained Case

insensitivty to the uncertain parameters has
been augmented. The final time increased
with the number of switches. This proves
that robustness and response time are com-
peting design goals. The extension to multi-
input systems is straightforward and has been
presented in detail in [12].
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