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Abstract

The focus of this paper is on adaptive control
of maneuvering rigid bodies in the presence of
friction. The paper describes a simple technique
which include Pulse Amplitude and Pulse Width
modulation to progressively move the system to
the desired final position. To account for uncer-
tainty in estimated friction coefficients and ap-
proximated system model, an adaptation algo-
rithm is necessary to accurately track the desired
position. The proposed technique is suited for dis-
crete time implementation and is illustrated on
a rest-to-rest maneuver. The proposed technique
is shown to considerably reduce the steady state
error which exists in previously proposed Pulse
Width controllers.

1 Introduction

Friction is a phenomenon which is ubiquitous. It
is desirable in applications such as tires, clutches,
brakes etc. and is a challenging problem when
precise position control is desired. In control sys-
tems, the presence of friction can result in unde-
sirable behavior such as limit cycling and steady
state errors. It is therefore necessary that the phe-
nomenon of friction has to be well understood, and
compensated for. There exist numerous models
for friction spanning the range from the simple
Coulomb model [1] to the comprehensive Lund-
Grenoble model [2] which accounts for effects such
as stiction, Stribeck effect and hysteresis. The
model which is selected for the design of controllers
is application dependent.
Friedland and Park [3] proposed to adaptively es-
timate the coefficient of Coulomb friction and used

the estimate in a feedforward control to cancel
the effects of friction. Recently, Liao and Chien
[4] modified the adaptive estimation algorithm for
tracking control systems to ensure that the track-
ing error and the parameter errors converge to zero
exponentially, in the presence of persistent excita-
tion.
One of the more novel approaches for precise po-
sitioning using an adaptive Pulse Width Control
(PWC) has been proposed by Yang and Tomizuka
[5]. They consider a laboratory positioning table
and study the effect of applying a pulse input on
the displacement of the system subject to friction.
They arrive at a closed form solution for the total
displacement in the presence of Coulomb friction
and show it to be a quadratic function of the pulse
width. Next, they derive a closed form expres-
sion for the displacement as a function of the pulse
width, including viscous friction and approximate
it to make it compatible with their adaptation al-
gorithm. When their algorithm is implemented
in a discrete time environment, the discrepancy
between the required pulse width and the pulse
width permitted by sampled data system results
in limit cycling of the closed loop response.
In this paper the technique proposed by Yang and
Tomizuka [5] is modified to require the pulse width
to be coincident with an integer multiple of the
sampling interval. Simultaneously, the pulse am-
plitude is calculated to achieve the desired final
displacement. An adaptation algorithm is an inte-
gral part of the proposed work. Unlike the ap-
proach proposed by Yang and Tomizuka where
one parameter, which is a function of the friction
coefficient, system mass and permitted pulse am-
plitude is estimated, the new algorithm also esti-
mates the coefficient of Coulomb friction.



Section 2 reviews the adaptive PWC technique
proposed by Yang and Tomizuka [5]. Section 3.1
describes the variation of the parameter estimated
in the work by Yang and Tomizuka as a function of
varying displacement. This is the motivation for
the use of an adaptation algorithm for precisely
positioning the system at the desired value. This
is followed by the description of the adaptive Pulse
Amplitude Pulse Width Control (PAPWC) in Sec-
tion 3.2. Section 4 illustrates the proposed tech-
nique on a simple rest-to-rest maneuver and com-
pares its performance with adaptive PWC. The
paper concludes with remarks and conclusions in
Section 5.

2 Adaptive Pulse Width Control

2.1 System Model
The basic idea and motivation for the use of pulse
width control (PWC) was introduced by Yang and
Tomizuka [5]. With the assumption that the first
resonance peak is sufficiently high with respect
to the bandwidth and sampling frequency, their
model of a X-Y table can be represented by a
single mass subject to friction. The friction that
is acting on the mass m is assumed to consist of
Coulomb friction fc, stiction fs and viscous damp-
ing c. The equations of motion for this model are:

ẍ =











1

m(u − fc − cẋ) if ẋ 6= 0

0 if ẋ = 0 and |u| ≤ fs

1

m(u − sgn(u)fs) if ẋ = 0 and |u| > fs.

(1)
If the system described in Eq.(1), is driven by a
single pulse with pulse height fp and pulse width
tp, the closed form expressions for the displace-
ment for the model with and without viscous
damping are:

dno visc. =
fp(fp − fc)

2mfc
t2p for fp > 0 (2)

dwith visc. =
fptp
c

−

mfc

c2
ln

[

fp

fc

(

ectp/m − 1
)

+ 1

]

.(3)

Assuming that the displacement is small, it was
shown [5] that viscous damping can be neglected
compared to the Coulomb friction. Thus, Eq.(2)
is a reasonable approximation for small displace-
ments which is linearly proportional to the square

of the pulse width. The coefficient of the term t2p is
represented by one parameter b, with b ≥ 0. The
final expression for the displacement is given as:

d(tp) = bt2p sgn(fp), with b =
fp(fp − fc)

2mfc
. (4)

Since the direction of the displacement must be
equal to the sign of fp, Eq.(4) includes sign(fp).

2.2 Adaptation Algorithm
The control scheme that is presented for the sys-
tem has two components. The first one is a sim-
ple feedback controller used in conjunction with a
feedforward controller to compensate for Coulomb
friction force. An estimate for the Coulomb fric-
tion parameter is obtained through experiments.
This controller is used to move the system from
its initial position to the vicinity of the desired
position. Once the system sticks within an error
tolerance area around the reference position, the
controller switches from feedback control to the
second component, the PWC. The feedback con-
troller must be designed in such a way that the
maximum steady state error is smaller than a pre-
defined error tolerance.
The input of the PWC is the error e between the
desired position and the current position xref − x
and is used to calculate the pulse width. In [5]
two equations for up are derived to accomplish the
above. The first set of equations are:

x(k + 1) = x(k) + d(k + 1) (5)

d(k + 1) = bup(k) (6)

with up(k) = t2p(k) sgn (fp(k)) . (7)

The second expression for up is found by defining
the feedback control law to be:

e(k) = xref − x(k) (8)

up(k) =
Kc

b
e(k). (9)

Using Eq.(7) and Eq.(9), the expression for tp(k)
is given by:

tp(k) =

√

Kc

b sgn (fp(k))
e(k). (10)

In Eq.(9), Kc is a control parameter with 0 <
Kc < 2 for stability reasons. k stands for the kth

pulse and should not be mistaken with the sam-
pling time.



Since b is not known exactly, the pulse width can-
not be derived from Eq.(10). Instead tp is calcu-

lated with an estimate b̂ of b. With the use of
an adaptation algorithm b̂ is updated after each
pulse. Although [5] presents multiple ways to es-
timate b̂ and 1/b̂, this paper only presents the self
tuning regulator approach for estimating b̂. The
adaptation algorithm is given by the equations:

ε00(k) = d(k) − b̂(k − 1)up(k − 1) (11)

F−1(k) = λ1F
−1(k − 1) + λ2u

2

p(k − 1) (12)

b̂(k) = b̂(k − 1) + F (k)up(k − 1)ε0

0(k) (13)

F (0) > 0, 0 < λ1 ≤ 1, 0 ≤ λ2 < 2.

ε0
0

represents the error between the real displace-
ment d and the estimated displacement b̂up. F is
referred to as the time-varying gain matrix and λ1

and λ2 are parameters related to forgetting previ-
ous data. For λ1 and λ2 equal to one, all data is
equally weighted.
The adaptation algorithm results in pulse widths
that can take any positive value. However, in a
discrete time system, the pulse width will auto-
matically be rounded to the smallest integer num-
ber of the sampling time larger than the calculated
pulse width. This is caused by the D/A converter
that is assumed to be Zero Order Hold (ZOH). In
this way, the calculated pulse is not the real input
pulse on the system.
In [5] it is assumed that the pulse widths are
relatively small, so that the pulse width calcu-
lated using Eq.(4) results in the desired displace-
ment. However, when the required displacement
increases, the approximation for the displacement
described in Eq.(4) for systems with viscous damp-
ing, is not accurate anymore. The impact of the
value of b on the final displacement of the PWC,
when the required motion is large, needs to be
studied.

3 Adaptive PAPWC

In this section, the influence of relatively large dis-
placements on the estimation of b̂ is studied. Next,
the original PWC algorithm is modified, such that
only an integer number of the sampling time is
used to describe the pulse width. The conse-
quences of this on the algorithm will be analyzed.

3.1 Motivation for Adaptation
Figure 1 illustrates the displacement as a func-
tion of the pulse width tp. The solid line corre-
sponds to the displacement, described by Eq.(3),
the dotted line corresponds to Eq.(4) which is the
approximate of Eq.(3) for small displacements. In
this plot it is assumed that all the parameters are
known. Their values are presented in Table 1.
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Figure 1: Displacement d vs. pulse width tp

Table 1: Parameter values
m 150 kg fc 100 N

c 700 kg/s fs 130 N

fp 300 N T 0.01 s

For a displacement of 0.01 m, Eq.(3) results in
a pulse width of 0.092 s, while the approximate
Eq.(4), results in a tp of 0.070 s. In order to find
the appropriate tp of 0.092 s, the adaptation al-

gorithm modifies b̂ such that the dash-dotted line
in figure 1, which corresponds to Eq.(4), coincides
with the exact curve (solid line), for the specific
desired displacement. For example, for a spe-
cific displacement of 0.01 m, the b̂ which forces
the dashed-dotted curve to coincide with Eq.(3)
at 0.01 m has a value of 0.6b.
To prevent the large fluctuations in the estimate
of b̂, due to large difference in displacements, tp
is constrained to a maximum. If a maximum for
tp=tp,max of 0.03 s is chosen, the estimate b̂ lies
between 81% and 100% of that of the theoretical
b. The lower percentage is a function of the pa-
rameters of the system.
A point to be noted is that, if the feedback con-
troller results in the same error, every time this
controller is used, there is no need for a tp,max.



The estimated b̂ will not converge to the theoret-
ical b, rather, the adaptation algorithm will esti-
mate the b̂ in such a way, that only one pulse is
needed to move the system from its initial position
to the desired position.
If for some reason the system is not at the ref-
erence position after this first pulse, more pulses
have to be used. The pulse widths of these sub-
sequent pulses result in the overshoot of the sys-
tem response. If for example, the residual error is
2.0 mm, the dash-dotted line will correspond to a
pulse width of 41 ms, while the real pulse width
should be 36 ms. With the tp calculated from the
dash-dotted line, the true displacement is 2.5 mm
instead of the desired 2.0 mm and thus overshoot
occurs.
As the residual error decreases with subsequent
pulses, the difference between the estimated and
real displacement (ε0

0
) is small resulting in minimal

adaptation of b̂.
For a finite tp,max, the difference between b̂ and b is
smaller than without limits on the pulse width, re-
sulting in a better estimation of the displacement.
Thus, the adaptation algorithm estimates b̂ more
precisely, and overshoot is less likely to occur. A
drawback of introducing a maximum pulse width
is that the system takes longer to reach the final
position.

3.2 Adaptive PAPWC
The idea behind adaptive PAPWC is that the
pulse width resulting from Eq.(4) should be trans-
formed to be equal to an integer time the sampling
time (nT ), so that it can be implemented in a dis-
crete time system. Since the desired displacement
remains the same with PAPWC as with PWC, al-
tering the pulse width results in an adjustment of
the pulse amplitude as well; pulse amplitude and
pulse width are the only free design parameters for
the pulse shape. This is the starting point for the
modification, proposed in this section.
The pulse width needs to be rounded to the higher
integer multiple of T , i.e. Tx = nT ≥ tp , so
that the corresponding pulse amplitude is smaller
than or equal to the maximum permitted pulse
amplitude fp.
The displacement in Eq.(4) is dependent on the
sign of fp. Note that sign(fp) can be replaced by
sign(e) without changing the outcome of Eq.(4).
The desired displacement must be the same for

both tp and Tx, which results in:

d (tp) = d (Tx) (14)

b t2psgn(e) = b∗ T 2

xsgn(e)

fp(fp − fc)

2mfc
t2psgn(e) =

f∗

p (f∗

p − fc)

2mfc
T 2

xsgn(e).

The constant b must change to b∗, in order to sat-
isfy Eq.(14). This can only be done by varying
the pulse amplitude f∗

p , since this is the only free
parameter in b∗. Solving Eq.(14) for f∗

p results in:

f∗

p = 0.5fc ± 0.5

√

f2
c + 4fp(fp − fc)

t2p
T 2

x

. (15)

Instead of using tp and fp, the control pulse is spec-
ified by Tx and f∗

p , where ± should be replaced by
+ for a positive pulse height. The above algo-
rithm works, if the Coulomb friction coefficient fc

is known. But unfortunately that isn’t the case.
In order to solve this problem, b is divided into
two parameters:

b = A1f
2

p − A2fp (16)

with A1 =
1

2mfc
and A2 =

1

2m

a =
[

A1 A2

]T

From the estimates Â1 and Â2, an estimate of
fc can be derived by dividing Â2 by Â1. The
pulse width is calculated from Eq.(4), using the
b̂ obtained from Eq.(16). Using f̂c, tp and Tx in
Eq.(15), the pulse amplitude is calculated.
In [6] an adaptation algorithm is proposed, that
does not need to invert F . Now that there are
two parameters to be estimated, this algorithm
can save computation time. The algorithm is given
by the equations:

π(k) = P (k − 1)u(k) (17)

P (k) = λ−1P (k − 1) −

λ−1K(k)uH(k)P (k − 1) (18)

K(k) =
π(k)

λ + uH(k)π(k)
(19)

ξ = d(k) − âH(k − 1)u(k) (20)

â(k) = â(k − 1) + K(k)ξH(k) (21)

u(k) =
[

f2
p t2p fpt

2
p

]T
(22)

u, d and ξ in Eq.(17)-(21) have the same interpre-
tation as up, d and ε0

0
respectively, in Eq.(11)-(13).



In [6] K is described as the time-varying gain vec-
tor and P as the inverse correlation matrix. The
λ in the algorithm represents the forgetting fac-
tor. Generally the forgetting factor is selected to
be smaller than and close to 1 if old data is to be
’forgotten’ and is set to 1 if all data is to be equally
weighted.
For the initiation of the adaptation algorithm, ini-
tial conditions for P (0), Â1(0) and Â2(0) are re-
quired. Â1(0) and Â2(0) should be chosen as accu-
rately as possible and the inverse covariance ma-
trix P (0) is set to P (0) = δ−1I. δ should be large if
the sensors are noisy and can be small otherwise.

4 Numerical Simulations

For the system shown in Figure 2, with parame-
ters listed in Table 1, the proposed algorithm is
simulated and compared to the adaptive PWC. In
Figure 2 the Coulomb friction and stiction are rep-
resented by f .

c
m

f

x

u

Figure 2: Model of the system

The forgetting factor is set to 1, and the initial
value for F−1(0) and δ−1 are both 1e−5, since
there’s no noise present in the system. In order
to compare the two algorithms, the initial estima-

tions for b̂(0) and b̂(0) = f
(

Â1(0), Â2(0)
)

are the

same. This is done by calculating both b̂(0)’s as-
suming that m is exactly known and fc, est is some
percentage of the the real fc. This provides a fair
means of comparing b̂(0), Â1(0) and Â2(0). The
initial value for fc, est is set to 0.8fc, so that b̂(0)
is 1.375 b.
Figure 3 and 4 illustrate the evolution of the posi-
tion errors for the algorithm proposed by [5] and
from the adaptive PAPWC algorithm respectively.
Both the figures present the error profiles for the
first iteration and the 10th iteration respectively.
The value of b̂ of the last simulation is set to be
the initial estimate in the subsequent simulation.
From Figure 3 which corresponds to adaptive
PWC, it can be seen that for the case when tp,max

is not bounded, overshoot occurs, as predicted.
However, for the case when tp,max is bounded,
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Figure 3: Evolution of Error (original PWC)
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Figure 4: Evolution of Error (adaptive PAPWC)

overshoot continues to exist. This is caused by a
minimum possible displacement due to a minimum
pulse width of one sample time. The theoretical
minimum displacement can be found using

dmin(T ) =
fpT

c
−

mfc

c2
ln

[

fp

fc

(

ecT/m − 1
)

+ 1

]

. (23)

dmin is equal to the maximum final error. If the
PWC isn’t stopped after the error becomes smaller
than dmin, a limit cycle around the reference po-
sition is the result.
In the second plot of Figure 3, the overshoot for
tp,max = ∞ is larger than the displacement given
by Eq.(23). This is caused by the fact that the
pulse width now is 2T , which is a result of the
poor estimate for b̂.
The minimum displacement with adaptive PA-
PWC is given by:

dmin(T ) =
fsT

c
−

mfc

c2
ln

[

fs

fc

(

ecT/m − 1
)

+ 1

]

, (24)

and is caused by stiction. When the calculated
pulse amplitude becomes smaller than the stiction,
the mass simply doesn’t move.



To compare the two presented minimum displace-
ments, their values have been calculated using Ta-
ble 1. PWC results in a dmin of 1.9e−4m, while
PAPWC has a dmin of 1.3e−5m.
In the second plot of Figure 4 for tp,max = ∞, one
can note that theoretically only one pulse is needed
to get the system very close to zero error. The final
error from the first pulse will practically never be
zero, since a second pulse which needs to move the
system by a small amount will marginally modify
b̂ such that in the next iteration, the first pulse
cannot satisfy the desired motion. The pulse se-
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Figure 5: Evolution of fp (original PWC)
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Figure 6: Evolution of fp (adaptive PAPWC)

quences for the adaptive PWC and PAPWC are
presented in Figures 5 and 6 respectively. Figure
5 illustrates that the input fp contains only maxi-
mum positive and negative pulses. The switching
between the positive and negative pulses is caused
by the limit cycle.
Figure 6 reveals that the pulses die out after a
short period. If a tp,max is used, only positive
pulses drive the system. Without a bound on
tp,max, overshoot occurs, which results in subse-
quent negative pulses. After ten iterations, the un-

bounded pulse width control sequence, needs two
pulses to reach the reference position, while the
input with the bounded pulse has not changed.
From the estimated values for b̂ and f̂c, it can
be concluded that adaptive PAPWC converges
faster than adaptive PWC. The estimate for b̂ with
bounded tp,max is closer to the theoretical value b
than without a tp,max, as predicted earlier. Sim-

ulations show that when b̂ increases, f̂c decreases
and vice versa as implies by Eq.(16).

5 Conclusions

This paper proposed a modification to the Pulse
Width Control technique by forcing the input
pulse width to be coincident with an integral mul-
tiple of the sampling period. This, in conjunction
with adaptation of the pulse amplitude results in
the PAPWC. To account for uncertainties in the
estimated system parameters, an adaptation algo-
rithm is used to estimate the coefficient of fric-
tion which is subsequently used by the PAPWC.
Numerical simulations illustrate the significant re-
duction in the final position error.
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