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Abstract - The aim of this paper is to derive an

adaptive approach for track fusion in a multisen-

sor environment. The measurements of two sen-

sors tracking the same target are processed by linear

Kalman Filters. The outputs of the local trackers

are sent to the central node. In this node, a deci-

sion logic, which is based on the comparison between

distance metrics and thresholds, selects the method

to obtain the global estimate. Numerical simula-

tions assess the influence of the thresholds and of

the sensor noise ratio on the adaptive algorithm per-

formance. The values of the thresholds govern the

trade-off between accuracy and computational bur-

den. The main advantage of the adaptive fusion is

its ability to react to changes in the system charac-

teristics.

Keywords: Track-to-Track Fusion, Multisensor, Adap-

tive Fusion

Introduction

In this paper an approach to adaptive fusion is devel-
oped in the case of two trackers (local and external)
which are unable to send their raw measurements to
the central node. Consider the system whose architec-
ture is illustrated by Fig. (1).
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Figure 1: General Architecture of the Tracking System

The two sensors are coupled with linear Kalman Fil-
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ters tracking the same target. The aim of the central
node is to compute the fused estimate given the out-
puts of the local and external trackers. The problems
of alignment and track association are not considered
in this work. It is therefore assumed that the local
nodes generate tracks that relate to the same target
and are derived in the same system of coordinates. It
is also assumed that the system is observable.

The central node has to obtain the “best” global
estimate given system constraints such as global accu-
racy, computation load, and bandwidth capacity. Most
of the techniques available to obtain the global esti-
mates rely on data fusion and none of them is perfect.
A high accuracy in the global estimate leads to large
computation load and simplified fusion methods yield
poor track quality. In order to accommodate the possi-
bly varying accuracy requirement, system parameters,
and resource availability, an adaptive approach to track
fusion is desirable.

In Section (1) some methods to obtain the global es-
timates are reviewed. In Section (2) an adaptive fusion
algorithm is derived, which chooses the method for cal-
culating the global estimate according to a logic-based
decision tree. In Section (3) the distance metrics, on
which the decisions are based, are described. In Sec-
tion (4) the performances of the four resulting adaptive
algorithms are compared with other methods in terms
of accuracy and computation load. Finally, conclusions
are drawn that outline the improvements to be done
on the proposed approach.

1 Fusion methods in a multisen-

sor environment

Given the outputs of the local and external trackers
various approaches are available to obtain the global
estimates. In this section are presented the fusion
methods considered for adaptive fusion.



1.1 Measurement Fusion

Given the architecture of Fig. (1), the optimal method
is Measurement Fusion [11] where the local and ex-
ternal sensors send their measurements to the central
node which processes them through an optimal linear
Kalman Filter. The global estimates therefore yield
the smallest of the estimation errors among the class of
linear estimators. The main drawback of this method
is the need for the measurements and the lack of ro-
bustness of the centralized approach. Moreover, the
nature of the measurement can be widely varying (in-
frared, radar, etc.) and treating all of them at the
same time can be very challenging. If the central node
is unable to deal with the measurements, the global es-
timate has to be based on the tracker outputs through
the Track-to-Track Fusion techniques.

1.2 Simple Fusion: SF

Among the Track-to-Track Fusion methods, the first
one derived by Singer [10] is labeled Simple Fusion.
The local nodes process their respective measurements
through optimal linear Kalman Filters. The local and
external trackers send their estimates, xl and xe, and
their estimation error covariance matrices, Pl and Pe.
The global estimate at time t for Simple Fusion is a
simple convex combination as shown below,

x̂SF (t/t) =Pe(t/t)[Pl(t/t) + Pe(t/t)]
−1x̂l(t/t)

+ Pl(t/t)[Pl(t/t) + Pe(t/t)]
−1x̂e(t/t),

(1)

with the covariance matrix of the fused estimate, PSF ,
given by,

PSF (t/t) = Pl(t/t)[Pl(t/t) + Pe(t/t)]
−1Pe(t/t). (2)

The algorithm is based on the hypothesis that the local
and external tracks are uncorrelated and can therefore
be used as measurements by a global Kalman Filter.
Even though this method leads to good tracking accu-
racy, it is suboptimal because the tracks are actually
correlated through their common process noise.

1.3 Weighted Covariance Fusion: WCF

In order to account for the correlation between the lo-
cal tracks, Bar-Shalom [1, 2] derived the Weighted Co-
variance Fusion method. The Cross Covariance matrix
is a measure of the correlation due to common process
noise. It is defined by PC = E{x̃lx̃

T
e } with x̃i stand-

ing for the estimation error in tracker i. Consider the
linear system,

x(t + 1) = Φx(t) + Gw(t),

zi(t) = Hix(t) + vi(t), (3)

with Q = E{wwT } and Ri = E{viv
T
i }. It satisfies the

following difference equation,

PC(t/t) = (I − KlHl)[ ΦPC(t − 1/t − 1)ΦT

+ GQGT ](I − KeHe)
T ,

(4)

where Ki stands for the local Kalman gains. The fused
estimate for the Weighted Covariance Fusion is given
by,

x̂WCF (t/t) = x̂l(t/t) + W [x̂e(t/t) − x̂l(t/t)],(5)

with W = [Pl(t/t) − PC(t/t)]P−1
E (t/t), (6)

and PE(t/t) = Pl(t/t) + Pe(t/t) − PC(t/t) (7)

− PT
C (t/t).

Finally, its covariance is given by,

PWCF (t/t) = Pl(t/t) − [Pl(t/t) − PC(t/t)]P−1
E (t/t)

[Pl(t/t) − PC(t/t)]T .

(8)

The inclusion of the Cross Covariance matrix is ben-
eficial if and only if this matrix is positive definite
[8]. In the non positive definite case, the WCF perfor-
mance degrades and the algorithm can even perform
worse than Simple Fusion. WCF is only optimal in
the Maximum Likelihood sense and therefore subopti-
mal in the Minimum Mean Square Error sense because
of the lack of prior information [3, 4]. The degrada-
tion in the global track quality is small (only a few
percents according to [7]) and even nullifies when the
sensor measurement noise standard deviations become
increasingly dissimilar [6].

Finally WCF reduces to SF when the Cross Covari-
ance matrix is omitted.

2 Adaptive track fusion

The motivation behind adaptive track fusion comes
from two observations. First, doing fusion is not al-
ways worth the required computation and bandwidth
capacity. Second, the inclusion of the Cross Covariance
matrix is sometimes useless and Simple Fusion may
perform as well as the complete Weighted Covariance
Fusion. To overcome the changes in the system charac-
teristics and in the requirements, an adaptive approach
to fusion is developed here. Its architecture is pre-
sented in Fig. (2). The sensors and the local trackers
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Figure 2: Architecture of the Adaptive Track Fusion
Method

form the local nodes. The central node is divided into
the decision logic, which chooses the method for evalu-
ating the global estimates, and the fusion node, which
evaluates the global estimates. The decision logic is
based on the computation of two distance metrics and



a simple decision tree. A first metric allows the system
to choose between using the local track as the global
track and performing track fusion. In the latter case,
another distance is computed to decide whether to use
Simple Fusion or Weighted Covariance Fusion. The ar-
chitecture of the decision tree is presented in Fig. (3).
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Figure 3: Decision Tree for Adaptive Fusion

The local and external tracker outputs are used to
compute the first distance (D1). If this distance is
smaller than a given threshold (T1), the global esti-
mate is equal to the Local Track (LT). Otherwise, a
second distance (D2) is computed and compared to
the second threshold T2. Depending on this last cri-
terion, either Simple Fusion (SF) or Weighted Covari-
ance Fusion (WCF) is chosen to calculate the global
estimate. The distances are functions of the tracking
system and target characteristics whereas the thresh-
olds are human inputs reflecting the trade-off between
desired accuracy and computational load.

2.1 First distance

The first distance, between the local track and the
fused estimate, is defined by,

D1 =‖ x̂l − x̂SF ‖(Pl+PSF )−1 ,

D1 = (x̂l − x̂SF )T (Pl + PSF )−1(x̂l − x̂SF ).
(9)

If the distance is smaller than the threshold T1 related
to the desired global accuracy, the output of the adap-
tive filter is the local track. If the distance is greater
than the threshold, fusion is performed. In this case
the external track has valuable information to improve
the quality of the global estimate.

The computation of the first distance is done using
Simple Fusion which is the simplest fusion approach.
The difference between the estimate based on Simple
Fusion and the one based on Weighted Covariance Fu-
sion is generally negligible with respect to the differ-
ence between the fused estimate and the local track.

Considering Eqs. (9), one can notice that the fused
estimate and its covariance matrix appear in the cal-
culation of the distance. This distance is computed to

decide whether to use fusion or not to obtain the global
estimates. The fused outputs should not appear in the
distance calculations in order to allow saving in com-
putation. Algebraic manipulations allow to express the
distances only in terms of the local and external out-
puts. To get rid of the fused outputs, Eqs. (1) and (2)
are used to obtain,

Pl + PSF = Pl + Pl(Pl + Pe)
−1Pe,

= Pl[I + (Pl + Pe)
−1Pe],

= Pl(Pl + Pe)
−1(Pl + 2Pe).

(10)

and,

x̂l − x̂SF = x̂l − Pe(Pl + Pe)
−1x̂l − Pl(Pl + Pe)

−1x̂e,

= [Pl + Pe − Pe](Pl + Pe)
−1x̂l

− Pl(Pl + Pe)
−1x̂e,

= Pl(Pl + Pe)
−1(x̂l − x̂e).

(11)

Combining the two previous results, the first distance
is finally expressed by,

D1 = (x̂l − x̂e)
T (Pl + Pe)

−1Pl(Pl + 2Pe)
−1(x̂l − x̂e),

(12)
using the symmetry of the covariance matrices, Pi.

2.2 Second distance

If the first distance is greater than the given thresh-
old T1, track fusion is chosen to be performed. A
second distance is then computed to choose between
Simple Fusion and Weighted Covariance Fusion that is
to know if the Cross Covariance matrix has to be in-
cluded in the calculation of the fused estimates. Define
the second distance as,

D2 = ‖ x̂l − x̂WCF ‖(Pl+PW CF )−1 , (13)

D2 = (x̂l − x̂WCF )T (Pl + PWCF )−1(x̂l − x̂WCF ).

Using Eqs. (5)-(8), we obtain:

x̂l − x̂WCF = (Pl − PC)P−1
E (x̂l − x̂e),

Pl + PWCF = (Pl − PC)P−1
E PA,

(14)

where the matrix PE is given by Eq. (8) and the matrix
PA is defined by,

PA = Pl + PT
C + 2(Pe − PT

C )(Pl − PC)−1Pl. (15)

The second distance is expressed as a function of the
local agent outputs by,

D2 = (x̂l − x̂e)
T P−1

E (Pl − PC)T P−1
A (x̂l − x̂e). (16)

If the second distance is smaller than the threshold T2,
fusion is performed according to the Simple Fusion al-
gorithm described by Eqs. (1) and (2). If the distance
is larger than T2, the Weighted Covariance Fusion ap-
proach is used according to Eqs. (5)-(8).



3 Simplification of the distance

calculations

The advantage of the adaptive fusion algorithm is to
perform fusion only when it is really worth it and there-
fore to save on computation overhead. However, what
can be saved by avoiding involved calculations can be
spent in the distance calculations. Different methods
are presented to reduce the cost of computing the dis-
tance metrics.

3.1 Use of the steady state Cross Co-

variance matrix

First, to compute the distance D2, the value of the
Cross Covariance matrix has to be known. The exact
value satisfies the time difference Equation (4) initial-
ized with the zero matrix since the first local and ex-
ternal tracks are not correlated yet through common
process noise. The propagation in time of this ma-
trix requires that the local and external trackers send
their Kalman gains, Kl and Ke, to the fusion node.
When these gains are not available or when one wants
to avoid the computationally expensive propagation in
time, the steady state Cross Covariance can be em-
ployed. It satisfies the following asymmetric Lyapunov
equation,

PC = FlPCFT
e + Q∗, (17)

where

Fl = (I − KlHl)Φ,

Fe = (I − KeHe)Φ,

Q∗ = (I − KlHl)GQGT (I − KeHe).

By applying a bilinear transformation [9] to the previ-
ous equation, the steady state Cross Covariance matrix
satisfies,

APC + PCBT = Q̄, (18)

where

A = (Fl − I)−1(Fl + I),

B = (Fe − I)−1(Fe + I),

Q̄ = −2(Fl − I)−1Q∗(FT
e − I)−1.

The steady state Cross Covariance matrix is cal-
culated once for the given target and sensor charac-
teristics. It is a good approximation of the true Cross
Covariance as long as the system characteristics do not
significantly change during the tracking interval.

3.2 Use of partial tracks and covariance

matrices

Second, to avoid large amount of computation, the cal-
culation of the distances can be based only on position.
More precisely, instead of using the complete tracks
and covariance matrices, only the (1,1) elements of
the local and external tracks and covariance matrices

are used to calculate the distances. The first distance
based on partial local outputs becomes,

D
′

1 = [x̂l(1, 1) − x̂e(1, 1)]
T [Pl(1, 1) + Pe(1, 1)]

−1Pl(1, 1)

[Pl(1, 1) + 2Pe(1, 1)]
−1[x̂l(1, 1) − x̂e(1, 1)].

(19)

And the second distance becomes,

D
′

2 =[x̂l(1, 1) − x̂e(1, 1)]
T P−1

E (1, 1)[Pl(1, 1) − PC(1, 1)]T

P−1
A (1, 1)[x̂l(1, 1) − x̂e(1, 1)].

(20)

Use of the partial local outputs is done to decrease
the computation load of the distance calculations. The
distance metrics obtained D

′

1 and D
′

2 are only a par-
tial representation of the real distance between the lo-
cal and the fused tracks. Using these distances corre-
sponds to underestimating the real distances, since the
effect of velocity is discarded.

3.3 Resulting adaptive algorithms

Combining the two previously described simplifications
offers further saving in computation and leads to four
adaptive methods based on the same decision tree of
Fig. (3) but on different metrics.

1. With Complete Metrics: Adapt1 The distances
are calculated using the local agent full tracks and
covariance matrices. The Cross Covariance matrix
is propagated at each instant in time and used
when necessary.

2. With Complete Metrics and Steady State Covari-
ance Matrix: Adapt2 The distances are similarly
to Adapt1 computed using all the information
coming from the local trackers. The only differ-
ence lies in the fact that the Cross Covariance ma-
trix is assumed to be constant. It is equal to its
steady state value which is found by numerically
solving for the asymmetric Lyapunov equation as
detailed in Section (3.1).

3. With Partial Metrics: Adapt3 The distances are
calculated by only using the (1,1) elements of the
local agent tracks, covariance and cross covariance
matrices. The lack of accuracy in the distance cal-
culations is compensated by the small amount of
computation required since using scalar compo-
nents avoids expensive matrix inversions.

4. With Partial Metrics and Steady State Covariance
Matrix: Adapt4 The (1,1) element of the steady
state Cross Covariance matrix is used in the calcu-
lation of the second partial distance, D

′

2. It leads
to a reduction of the computation load in the cen-
tral node since the Cross Covariance matrix no
longer has to be propagated in time.



4 Performance Assessment

4.1 Example system

The considered system is made of two sensors and a
central node as in Fig. (2). The target is a second order
system driven by process noise w(t) whose covariance
matrix, Q equals 104. The sampling time, T is equal
to 0.2 second. Hence, we have for System (3), Φ =
[

1 T
0 1

]

, G =

[

T 2/2
T

]

, and Hi =
[

1 0
]

.

4.2 Means of Comparison

The performances of the adaptive algorithms are com-
pared with the performances of the Local Track, the
Simple Fusion and finally the Weighted Covariance Fu-
sion methods. Two criterion are considered to assess
the performance of a method: the loss in accuracy and
the computation load.

The loss in accuracy is defined as the difference be-
tween the accumulative root mean square fusion error
of the considered method and the accumulative root
mean square fusion error of the optimal Measurement
Fusion method. The errors are summed over the time
interval of the simulation (tf = 100s) and averaged over
200 Monte Carlo simulations to obtain smooth results.
The loss in accuracy for the method M is therefore
defined by,

LM = Mean
over MC Simulations

{

t=tf
∑

t=t0

rmsM (t) − rmsMF (t)},

(21)
where rms stands for the root mean square fusion er-
rors.

The evaluation of the computation load is less
straightforward. Only the computation that takes
place into the central node at each iteration is con-
sidered. The amount of calculation done in the local
and external trackers is not involved. Calculations that
are done once, like the evaluation of the steady state
Cross Covariance, are not added either. The compu-
tation load is evaluated through the mean number of
flops per iteration. This number is calculated by av-
eraging the number of flops given by Matlab over the
time of simulation and the number of Monte Carlo sim-
ulations. The numbers of flops are not accurate and
only their relative values are important. Indeed, code
written is Matlab is not optimal in terms of computa-
tion efficiency. The calculations of the flops is further-
more specific to the language as it is specified in the
Matlab online help:

FLOPS returns the cumulative number of floating

point operations. It is not feasible to count absolutely

all floating point operations, but most of the impor-

tant ones are counted. Additions and subtractions

are one flop if real and two if complex. Multiplica-

tions and divisions count one flop each if the result

is real and six flops if it is not. Elementary functions

count one if real and more if complex.

4.3 Influence of the threshold for the

first distance

The value of the first distance is compared to the
threshold T1 to decide whether fusion is performed or
the local track is preferred. In this section, the in-
fluence of this threshold on the performances of the
adaptive algorithms is assessed for 200 Monte Carlo
simulations while the value for the second threshold is
set to 0.5. The sensors have the dissimilar measure-
ment noise standard deviations, σl = 10, σe = 5. In
Fig. (4) are simultaneously plotted the loss in accu-
racy (top) and the mean number of flops per iteration
(bottom) as a function of the first threshold value.
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Figure 4: Influence of the First Distance Threshold:
σl = 10, σe = 5. top: On the Mean Loss in Accuracy -
bottom: On the Mean Number of Flops per Iteration.

The numbers of flops and the loss in accuracy for the
conventional methods are constant, they do not depend
on the value of the threshold. The little variations ob-
served in the Fig. (4) are due to an insufficient number
of Monte Carlo simulations. The loss in accuracy is
the largest for the Local Track (LT). In this case, the
external tracker outputs are not considered and their
information lost. When applying this method, no com-
putation at all is required in the central node but the
performance is poor since the information contained
in the external track is discarded. The loss in accu-
racy for Simple Fusion (SF) is larger than the loss for
Weighted Covariance Fusion (WCF). Considering the
computation load, SF is less resource consuming and
the number of flops for this method is smaller than the
number of flops for WCF.

Considering the threshold and its influence on the
performances of the adaptive approaches, we observe
that increasing T1 leads to an increase in the loss in
accuracy and simultaneously a decrease in the compu-
tation load. Indeed, the smaller the threshold is, the
more fusion is carried out. Performing fusion induces
an increase in the computation load but also improves
the quality of the global track because the external
track has valuable information.

Considering the adaptive algorithms, the use of the
steady state Cross Covariance does not affect the loss



in accuracy but only the computation requirement.
The difference in the numbers of flops is due to the
necessity of propagating the Cross Covariance matrix
in time in the central node if its steady state value is
not used.

Using the partial distances leads to a large decrease
in the computation load but also induces a larger loss
of accuracy. The partial distances underestimate the
real distance between the local track and the fused
track. The Local Track is chosen more often than
it should. As a result, the computation burden de-
creases faster and the greater use of the inaccurate
Local Track leads to larger estimation errors. In or-
der to obtain the same behavior with the complete or
the partial metrics, given the same set of data, the
value of the first threshold used for comparison with
the partial distances should be reduced to account for
the underestimation of the true distance.

The available computation capacity influences the
choice of method for the distance estimations. The
choice is also depending on the system architecture.
For instance, the propagation in time of the Cross Co-
variance matrix, Eq. (4), requires the local and exter-
nal Kalman gains, which may not be available. In such
cases, only Adapt2 and Adapt4 are conceivable.

Depending on the global accuracy desired, the
threshold is chosen. If the global estimate has to be
accurate, the threshold is set to a small value. On the
contrary, if the accuracy is not vital, a larger value of
the threshold will lead to savings in the computation
load.

Fig. (4) clearly shows the trade-off between the
global accuracy requirement and the computation ca-
pacity through the influence of the first threshold value
on the performances of adaptive approaches. The most
interesting feature of the adaptive algorithms is their
ability to react to changes in desired global accuracy
and in the amount of available computation capacity,
only the value of the threshold has to be modified. The
benefit of their flexibility is to avoid fusion when it is
useless in terms of accuracy or even penalizing in terms
of computation load.

4.4 Influence of the threshold for the

second distance

The choice of a threshold for the first distance is guided
by the trade-off between global accuracy and computa-
tion load. The second threshold T2 is useful to choose
between Simple Fusion (SF) and Weighted Covariance
Fusion (WCF). If the second distance is greater than
this threshold, WCF is used to calculate the output of
the adaptive filter, else Simple Fusion is performed. To
study the influence of the second threshold on the filter
performances, the first threshold is set to zero, there-
fore fusion is always considered. The other parameters
of the system are identical to those of the previous
Section (4.1). The influence of the second threshold is
illustrated by Fig. (5) where the top subfigure repre-
sents the loss in accuracy with respect to the optimal
Measurement Fusion method and the bottom subfigure

shows the average number of flops per iteration.
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Figure 5: Influence of the Second Distance Threshold.
top: On the Mean Loss in Accuracy - bottom: On the
Mean Number of Flops per Iteration.

The largest loss in accuracy takes place for Simple
Fusion and the smallest for Weighted Covariance Fu-
sion. The loss for the adaptive approaches varies be-
tween these two values as a function of the threshold
value, T2. For small values of T2, it is almost equal to
the loss for WCF. When the threshold increases, the
loss increases and tends to the loss for SF.

The computation loads for the adaptive methods are
larger than the load for the classical fusion methods,
with the exception of Adapt4. The global estimate
is calculated using either SF or WCF because setting
T1 to zero suppresses the Local Track option. The
computation load for the adaptive methods includes
the calculations of the first and the second distances,
plus the calculation of the fused estimate. The num-
ber of flops for the adaptive methods is therefore larger
than the number for SF. The difference is a function
of the method used to calculate the distances. If the
distance evaluation is not resource consuming as for
Adapt4, the computation load can be less than the
load for WCF. The number of flops per iteration for the
adaptive methods slightly decreases when the thresh-
old value increases. In this case, the global estimate
is calculated using more and more the SF approach,
which is less computationally expensive than WCF.

Both the loss in accuracy and the computation load
for the adaptive methods are ranging between the SF
value and the WCF value. The value of T2 governs
the choice of a fusion method. For small values of the
threshold, WCF is preferred and leads to a good ac-
curacy of the global estimate but a high computation
load. WCF usually performs better than SF because
of the inclusion of the Cross Covariance matrix to ac-
count for common process noise. For large values of
T2, the accuracy requirement on the global estimate
diminishes and Simple Fusion is preferred. Therefore,
saving on the computation load is obtained but the
quality of the global estimate degrades. The choice
of a threshold for the second distance is therefore a



trade-off between the global accuracy requirement and
the computing capacity.

The distances based on the partial outputs (Adapt3
and Adapt4) underestimate the real distance since the
information based on velocity is not considered. For
the same threshold value, these adaptive algorithms
switch more often than they should to the SF, leading
to a larger loss in accuracy than Adapt1 and Adapt2.
Therefore the threshold value to prefer Simple Fusion
over Weighted Covariance Fusion depends on the type
of distance calculation and should be chosen accord-
ingly.

In this example, the use of the steady state Cross
Covariance does not affect the accuracy of the global
estimates but allows a decrease in the computation
load by avoiding the propagation in time of the Cross
Covariance matrix in the central node.

Notice has to be taken that the difference in accu-
racy between the Simple Fusion and the Weighted Co-
variance Fusion methods is small in comparison with
the difference between the fusion methods and the lo-
cal track. If the loss in accuracy was plotted in Fig.
(5), it would be around 3000 which is more than 10
times the loss for the less accurate fusion method. The
choice of the fusion method is therefore a second level
decision. The importance of the second threshold value
increases when the value of the first threshold tends to
zero. The influence of the fusion method is however
small in terms of performance compared to the influ-
ence of the first decision to use the Local Track or to
perform fusion.

The threshold T2 influences the performance of the
adaptive methods. It represents the trade-off between
accuracy and computation load. Its value determines
the fusion method according to the required global ac-
curacy and the computing capacity. Its influence is
however small and is only important for small values
of the first threshold.

4.5 Influence of the sensor noise ratio

Up to now, the standard deviations of the local and
external tracker have been fixed and the influences of
changing the thresholds have been assessed. Now, the
thresholds are fixed and equal 0.3 for the first distance
and 0.5 for the second. Define the sensor noise ratio
as the ratio of the standard deviation of the measure-
ment noise for the external sensor to the standard de-
viation of the measurement noise for the local sensor.
This ratio is varying from 10−5 to 105 with the stan-
dard deviation of the local sensor noise equals to 10.
The performance of the adaptive fusion algorithm is as-
sessed by 200 Monte Carlo simulations. In Fig. (6) is
plotted the loss in accuracy with respect to the optimal
Measurement Fusion (top) and the average number of
flops per iteration (bottom).

For large values of the sensor noise ratio, the quali-
ties of the adaptive methods are better than the quality
of Simple Fusion. The losses in accuracy are small and
almost equal to the WCF loss. The computation load
for WCF is moreover larger than the load for the adap-
tive methods. When the sensor noise ratio is large, the
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Figure 6: Influence of the Sensor Noise Ratio. top: On
the Mean Loss in Accuracy - bottom: On the Mean
Number of Flops per Iteration.

accuracy of the local tracker is much better than the
accuracy of the external tracker. In that case, the im-
provement of the fused track accuracy over the local
track accuracy is small and not worth the computation
load. The adaptive algorithms prevent useless compu-
tations by choosing the local track.

For small values of the ratio, the quality of the local
track is really poor in comparison with the quality of
the external track. Since the threshold for the first dis-
tance is set to quite a large value (0.3), the local tracker
output is not necessarily always discarded. Using the
poorly accurate local track leads to a loss in accuracy
larger than the losses for SF and WCF. The reduc-
tion in the computation load is only clear for Adapt3
and Adapt4, which matches the result of Fig. (4) for
T1 = 0.3.

For the same small value of the sensor noise ratio,
the losses in accuracy for the partial distance methods
(Adapt3 and Adapt4) are larger than the losses for the
complete distance approaches (Adapt1 and Adapt2)
and vice versa for the computation load. Using the
partial distances leads to underestimating the real dis-
tance. The adaptive methods based on partial dis-
tances therefore switch to the Local Track option more
often than the other adaptive methods. As stated in
the previous example, the choice of a value for the
thresholds depends on what is the trade-off between
accuracy and computing capacity and also on which
method is preferred to evaluate the distances. In this
example, the threshold values for comparison with the
partial distances should be decreased to obtain the
same behavior as with the complete metric.

For a ratio close to unity, the loss in accuracy for
the Simple Fusion equals the loss for the more so-
phisticated WCF and its data processing requires less
computation power. Considering the adaptive ap-
proaches, the ones based on complete metrics per-
form well. Their losses in accuracy are almost equal
to the classical method losses. Their computation re-
quirement are however more important. The adaptive



approaches based on partial metrics allow saving in
computation but their accuracies degrade. If the ra-
tio is close to one but greater, i.e. the local track is
slightly more accurate, the partial distances are ben-
eficial. Their computation loads are smaller than the
loads for the classical fusion methods and their degra-
dation in accuracy has the order of magnitude of the
degradation for SF.

Varying the sensor noise ratio outlines the ability
of the adaptive algorithms to react to changes in the
system characteristics. When the local track carries a
lot more information than the external track, fusion is
not considered. The global estimate is almost as accu-
rate as the WCF estimate but the computation load
is much smaller. On the contrary case when the ex-
ternal sensor is much more accurate, the performances
of the adaptive algorithms degrade. To improve the
adaptation for small values of the sensor noise ratio, a
good alternative would be to allow the decision node
to choose the external track. The decision could be
made on the respective level of local and external sen-
sor measurement noise. Improvement would be ob-
tained by constructing statistical tests to choose the
“best” track when the sensors have largely dissimilar
accuracy. This way more useless computation would be
avoided while maintaining a good tracking accuracy.

5 Conclusions

In this paper, a simple approach for adaptive fusion has
been derived. It is based on the computation of two
distances and their comparison to thresholds. Four
adaptive fusion methods have been introduced. The
differences lie in the calculation of the distances (with
the propagation in time of the Cross Covariance or
with its steady state value) and also in the use of the
complete or the partial local outputs.

The performance of the adaptive algorithms is ex-
pressed in terms of computation load and loss in accu-
racy with respect to the optimal Measurement Fusion.
Their performances are studied as a function of the
threshold values and the sensor noise ratio. The main
advantage of adaptive fusion is its ability to react to
the changes in the sensor environment and to avoid
useless or even penalizing fusion. Only the values of
the thresholds have to be changed to reflect the changes
in accuracy requirement or computing capacity.

To empower adaptive fusion, some improvements
should be done on the distances and on the decision
tree. Refinement of the distances includes normaliza-
tion and simplification of the calculations. Better per-
formance requires the extension of the decision tree
through the inclusion of more fusion options like Best
Track or Information Fusion [5] and through the pos-
sibility to choose among the various distance calcula-
tions. For instance, a higher level of decision should
decide either to use or avoid the steady state Cross
Covariance according to the availability of the local
gains or the quality of the approximation. A last step
would be the generalization to more practical cases:
multiple asynchronous sensors, communication and/or

processing delays, etc.
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