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Abstract

The focus of this paper is on the development of a geometric algorithm as an alternative to the coor-
dinated turn procedures. The fact that the trajectories of maneuvering targets are always smooth, has
been exploited to derive an algorithms, which constrains the predicted position of the target to lie on a
circle formed by prior measurements. This filter is then used in conjunction with an α-β filter to arrive at
a series of filters which are tested on benchmark trajectories. The performances show promising results
for the proposed filters.
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1 Introduction

The estimation and prediction of the kinematics of a dynamic object requires the use of a dynamic model
and discrete time data. A majority of target trackers are based on a straight line maneuver, where model
uncertainties and man-made disturbances are accounted for as stochastic acceleration. On the contrary,
complex non-linear models have been developed to capture the real object dynamics. These models are
applied to special maneuvers such as the coordinated turn. The focus of this paper is on the development
of an algorithm constraining the predicted state to a circular turn.

Filters based on a constant velocity or constant acceleration trajectory are implemented as α-β
[1, 2, 3], α-β-γ [4, 5] and linear Kalman filters [6, 7, 8]. Singer [9] developed an acceleration model for
manned maneuvering targets with exponentially autocorrelated acceleration. He viewed this acceleration
as perturbations upon the constant velocity trajectory. Relaxing the straight line assumption, Berg [10]
augmented Singer‘s model by an “adaptive estimation of the mean target jerk”, which is the result of a
coordinated turn. The coordinated turn is a special maneuver, which is consistent with the bank-to-turn
flight characteristics of a fixed-wing aircraft [11]. This planar maneuver is defined by assuming:

• the aerodynamic lift (L) and the resulting thrust (T ) are constant

• the roll rate (p) is zero

This algorithm is based on aircraft related parameters like thrust, lift and target inertial angular velocity
components (p, q, r), which form a set of coupled non-linear differential equations. Bishop and Antoulas
[12, 13] treated the aircraft as a material point as a result of assuming the angle of attack (αx) and
sideslip (β) to be zero. In combination with the coordinated turn assumptions this algorithm reduces to a
kinematics problem. In contrast to Berg’s augmented adaptive jerk model, the prediction equation becomes
non-linear, but does not require the explicit calculation of L, T, p, q, r. This algorithm can be simplified
by assuming constant speed during the coordinated turn, which leads to a constant turn rate vector Ω
[14, 15]. Nabaa and Bishop [16] have shown that the constant speed coordinated turn is a particular subset
of the general coordinated turn of Bishop and Antoulas. In general the coordinated turn models are a set
of non-linear, coupled equations, which are difficult to solve.
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Another geometric approach of implementing a circular turn has been introduced by Kawase
et al. [17]. The circular prediction is constrained to lie on a circle which is defined from previous measure-
ments, by calculating the center and the radius of the circle. The center-point-approach (CPA) predicts
in a polar coordinate system (R and ψ) whose origin is the center of the circle. The CPA is not amenable
for further stability, performance and uncertainty analysis, because of the complex center coordinate cal-
culation and discontinuities in the polar angle ψ between successive scans. This discontinuity appears by
switching from the previous circle to the current circle as the radius and center change.

In this work, the fact that a target trajectory has to be smooth even if the acceleration is impulsive is
exploited to develop a new technique for target tracking. The proposed algorithm integrates the measured
data into the filter and constrains the prediction to lie on a smooth curve, modeled, for example, by the
arc of a circle. This filter algorithm becomes very flexible by readjusting the desired curve to account for
maneuvering targets.

This paper proposes a new circular prediction algorithm in relative coordinates without the require-
ment of calculating the center and the radius. The predicted states are entirely defined in relation to the
three points used to construct the circle. The proposed algorithm simplifies the prediction procedure and
is amenable for further analysis. Furthermore, this filter algorithm becomes very flexible by readjusting
the constraints for the predicted position to account for the behavior of the target trajectory, such that a
coupling with the α-β filter becomes unnecessary. In the presence of uncertainties, the proposed filter can
be aided by a dynamic scheduler for the states, to increase tracking performance.

2 The Circular Prediction Algorithm (static)

This section describes the filter algorithm where the target is assumed to travel on a circle with constant
speed. The circle can be described by previous measurements and estimates of the target’s position. In
this paper we only use prior measurements to construct the circle.

To develop the algorithm, consider four points lying on a circle as shown in Figure 1(a). The four
points are connected to create two triangles, 4123 and 4134 where the triangle sides are named by the
points which they connect, for example R12 is the distance between points 1 and 2. The fourth point can
be described relative to the points 1 to 3 by a variety of angle and distance combinations. A convenient
pair is the angle ϕ2 and the distance R34 as indicated in Figure 1(a). For targets with constant angular
velocity R34 and ϕ2 equal R23 and ϕ1 respectively.

The desired prediction equations define the relationships between the fourth point, which is pa-
rameterized by R34 and ϕ2 and the previous three points. To derive the prediction equation, consider the
position of points 2, 3 and 4 relative to point 1, which is equivalent to introducing a Cartesian coordinate
system labeled u-v with its origin at point 1 as shown in Figure 1(b). Equations 1a to 1d define the
distances in terms of ui and vi.

R2
13 = u2

3 + v2
3 (1a)

R2
14 = u2

4 + v2
4 (1b)

R2
24 = (u4 − u2)

2 + (v4 − v2)
2 (1c)

R2
34 = (u4 − u3)

2 + (v4 − v3)
2 . (1d)

Equations 1c and 1d can be rewritten as:

u2u4 + v2v4 = R12R14 cos(ϕ1 + ϕ2) (2a)

u3u4 + v3v4 = R13R14 cos(ϕ2) . (2b)

Solving Equations 2a and 2b for the relative position [u4 v4]
T , yields the desired relationship:

[

u4

v4

]

=

[

u2 v2
u3 v3

]−1 [

R12 cos(ϕ1 + ϕ2)
R13 cos(ϕ2)

]

R14 . (3)
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Figure 1: Properties of points lying on a circle

The unknown distance R14 in Equation 3 is determined from 4134 using the cosine rule, in terms of the
variables R34 and ϕ2 as shown in Equation 4.

R14 = R13



cos(ϕ2) ±

√

(

R34

R13

)2

− sin2(ϕ2)



 . (4)

In case of a prediction with constant angular velocity (ϕ2 = ϕ1 and R34 = R23) it can be shown that the
smaller value of Equation 4 yields the trivial solution of R14 = R12, and therefore the desired relationship
for the prediction is the larger value. This equation is also valid for the non-constant angular velocity case
since the smaller value of R14 would place the predicted position in the vicinity of point 2, which is not
desirable.

The prediction Equations 3 and 4 exhibit a very general statement of predicting the fourth point
in terms of the two state variables ϕ2 and R34. The assumption for the selection of these states defines the
characteristics of the algorithm. The simplest approach for the prediction on a circle with constant angular
velocity is achieved by choosing ϕ2 = ϕ1 and R34 = R23. It becomes evident that scheduling the states ϕ2

and R34 allow the filter to adjust to certain prediction properties, which is addressed in Section 3.

Some additional properties for points lying on a circle (Figure 1(a)), which will be necessary later
in the paper, are listed below:

ϕ2 = γ1 and ϕ1 = γ2 (5)

3 Dynamic Circular Filters

It is clear from Equations 3 and 5 that the estimation of the coordinates of the position of the target is only
a function of ϕ2 and R34. Thus, different assumptions for the selection of ϕ2 and R34 result in different
filters. For instance, as was shown in the previous section, selecting ϕ2 = ϕ1 and R34 = R23 results in an
estimator which assumes that the target is moving with constant angular velocity on the arc of a circle. In
the following section, other approaches to select ϕ2 and R34 are proposed and their performances studied.

To account for noisy measurements, prediction information from the previous time step is used in
the current time step. This makes the filter dynamic and permits the use of prior information to smooth
out the noisy measurement data.
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Figure 2: Estimation of the dynamic angle ϕ2

3.1 Fixed Innovation Gain Filter

The first filter studied is where the selection of the angle ϕ2 is a function of the predicted position and
the measured position. Consider Figure 2 where point 4 on the circle represented by a dashed line, is
the predicted position of the target. Now, a new measurement is received which is illustrated by a “2”.
To predict the next position of the target, unlike in the previous filter, the measured position is used in
conjunction with the predicted position (point 4). The equation to fuse the measured position and the
predicted position is

ϕ2 = ϕ−
2

+ k(ϕ1 − ϕ−
2
) , (6)

where ϕ−
2

is ϕ2 from the previous time step, ϕ1 is evaluated at the current time and k is a weighting factor,
which when equal to one results in the constant angular velocity filter (ϕ2 = ϕ1) described in Section 2.
This approach is motivated by the smoothing equation of the Kalman filter. Having selected ϕ2, R34 is
now determined so as to lie on a circle which passes through points 1, 2 and 3.

From the triangle 4234 in Figure 1(a), the variable R34 can be calculated using the law of sines.

R34 =
sin(γ1)

sin(γ2)
R23 =

sin(ϕ2)

sin(ϕ1)
R23 , (7)

where the relationship of equation 5 has been used.

With Equations 6 and 7, the dynamic circular prediction algorithm is complete. The predicted
point is obtained by applying Equations 3 and 4 subsequently.

3.2 Dynamic Innovation Gain Filter

The weight in Equation 6 can be a constant or a time varying parameter. In the case of a constant gain
filter, the difficulty in choosing a value, especially an optimal one arises. The task of optimal selection of
the gain is naturally handled by the Kalman filter.

Designing a Kalman filter requires a dynamic model for the parameter ϕ2. The dynamics are
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modeled as a stochastic acceleration process as shown in Equations 8.
[

ϕ2

ω2

]

k+1

=

[

1 T

0 1

] [

ϕ2

ω2

]

k

+

[

1

2
T 2

T

]

wk ⇒ η
k+1

= Φη
k

+ Γwk (8a)

zk =
[

1 0
]

[

ϕ2

ω2

]

k

+ vk ⇒ zk = Hη
k

+ vk, (8b)

where the rate of change of the angle ϕ2 is denoted by ω2 and form together the state vector η. Similar to
Equation 6 we obtain the best estimate of the states η by choosing the innovation weight K as the Kalman
gain. The Kalman filter loop is outlined as follows:

Kk = P−
k H

T
k [HkP

−
k H

T
k +Rk]

−1 (9a)

η̂
k

= η−
k

+Kk(ϕ1 −Hη−
k
) (9b)

Pk = (I −KkHk)P
−
k (9c)

P−
k+1

= ΦPkΦ
T +Qk (9d)

η̂−
k+1

= Φη̂
k
. (9e)

The matrices Φ, Γ and H are the transition, input and output matrices, respectively. Q and R are the
process and measurement noise variances of the uncertainties w and v in Equations 8. The error covariance
is denoted by P , where the superscript minus indicates the prior estimate.

One can find pathological trajectories when the circular filter would perform poorly. One such
example is when the target transitions from a circular trajectory to a straight line. Since the update
relationship (Equation 6 or 9b) uses a small ϕ1 and a large ϕ−

2
, it results in a large prediction error. Thus,

there is a motivation for integrating the circular filter with a filter, which works efficiently for straight line
trajectories such as an α-β, or α-β-γ filter.

4 Hybrid Filters

The prediction algorithms developed in Sections 2 and 3 are reasonable for circle like trajectories. However,
real trajectories can be approximated by piecewise curves which are circles and straight lines, and therefore
the performance of a stand alone circular filter would degrade. The proposed circular filters are therefore
integrated with traditional filters, such as fixed parameter α-β filters. These hybrid filters improve the
tracking performance for a variety of maneuvers.

The circular prediction algorithm defined in Section 2 is referred to as the static circular prediction
and the algorithm described in Section 3 is referred to as the dynamic circular prediction, where the
dynamic prediction is further classified by the innovation gain. These three circular prediction algorithms
are combined with direction decoupled α-β filters to form hybrid filters. The equations of the α-β filter
are

xp(k + 1) = xs(k) + Tvs(k) (10a)

xs(k) = xp(k) + α(xo(k) − xp(k)) (10b)

vs(k) = vs(k − 1) +
β

T
(xo(k) − xp(k)) , (10c)

where xo and xp are the measurement and the prediction respectively. The sampling time is denoted by T
and the innovation gains are α for the position and β for the velocity equation.

The prediction of the circular filter and the α-β filter are fused by a weighting scheme proposed by
Kawase et al. [17]. The weight is defined by the prediction error of each filter at time step k and is used
in the prediction for the next time step k + 1. The weight is calculated as:

wk =
eαβ

eαβ + ecircle

∣

∣

∣

∣

k

, (11)
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where the error is defined as the distance of the previous prediction and the measurement:

ek = |~xp − ~xo|k . (12)

The value of the weight lies in the interval [0 1], where a perfect match of the α-β prediction with the
measurement (eαβ = 0) yields a vanishing weight and in the case of ecircle = 0, the weight becomes one.
The combined prediction is therefore defined as:

~xp(k + 1) = (1 − wk)~xpαβ + wk~xcircle . (13)

Summarizing the aforementioned algorithms yields the following list of tracking filters.

Stand alone Filters Filter 1 Fixed gain α-β filter
Filter 2 Static circular prediction
Filter 3 Dynamic circular prediction with constant innovation gain k
Filter 4 Dynamic circular prediction with Kalman innovation gain K

Hybrid Filters Filter 5 α-β filter combined with Filter 2
Filter 6 α-β filter combined with Filter 3
Filter 7 α-β filter combined with Filter 4

These filter labels are used in the performance section for brevity.

5 Tracking Performance

Benchmark tests are carried out to compare the performance of the filters. The tests are performed on the
target trackers listed in the previous section. Motivated by the inherent tracking capability of each filter,
three trajectories have been chosen as benchmark trajectories. These are constant velocity and constant
acceleration circular trajectories and non-maneuvering targets moving on a straight line.

5.1 Targets with constant angular velocity on a Circular Trajectory

Figure 3(a) shows a target on a circular trajectory denoted by the dashed line. The measurements of
successive scans are displayed as squares “2”, which were generated using process noise in a Cartesian
system to simulate uncertainties in the model and measurement noise in a polar system to reflect range-
bearing sensors. The root-mean-square (rms) value of the prediction errors of the seven filters are listed in
Table 1.

Single Filters Combined Filters
Filter 1 2 3 4 5 6 7

Mean value [m] 303.84 249.27 289.07 252.93 229.29 239.75 230.52

Variance [m2] 203.91 1124.30 20866.12 1587.76 540.29 3377.18 619.47

Table 1: Mean and variance of the rms value of the prediction errors for a target with constant angular
velocity on a circular trajectory

The performed test shows that combining the circular prediction with the α-β filter decreases the
prediction error. This fact is attributed to the additional noise smoothing capability of the α-β filter. On
the contrary, the single α-β filter poorly predicts the target on the circle because it lacks the ability to
predict accelerating targets. Figure 3(a) shows an increasing off-set in the predicted trajectory of the α-β
filter, whereas the circular predictions track the circular path of the target.
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The static circular predictor (Filter 2) exhibits a reasonable performance since the target travels
with constant angular velocity. The uncertainties in the measurement and the process noise increase the
prediction error. The tracking performance of the dynamic filters is comparable to the static algorithm.
The performance depends on the choice of the parameters, the innovation gain of the Filter 3 and 6 and
on the measurement and process noise variances of the Kalman filter (Filters 4 and 7). In addition, the
decreased performance of the Kalman filter is a result of modeling the acceleration as process noise.

This example trajectory also illustrates situations in which the circular filters result in chatter in
the tracking performance. If the circle created by the measurements has a curvature which is opposite of
that of the true trajectory, due to measurement noise, the predictions begin to chatter around the true
target position. This is shown in Figure 3(a) in the bearing range of 135◦ to 225◦.

5.2 Targets with constant acceleration on a circular trajectory

Figure 3(b) shows a target traveling with constant angular acceleration along a circular path. The predic-
tion errors for this maneuver are listed in Table 2.

Single Filters Combined Filters
Filter 1 2 3 4 5 6 7

Mean value [m] 771.30 251.99 262.15 251.67 283.24 285.69 282.94

Variance [m2] 362.73 1416.16 2328.34 1454.14 1292.50 1164.36 1288.09

Table 2: Mean and variance of the rms value of the prediction errors for a target with constant angular
acceleration on a circular trajectory

The prediction error of the α-β filter increased significantly compared to the constant angular
velocity target listed in Table 1. Similarly, the α-β filter prediction exhibits an off-set from the targets
actual circle. In contrast, the circular filters follow the contour of the target’s trajectory. Observing the
prediction error results, reveal that combining the circular predictions with an α-β filter decrease the
prediction performance. The weighting scheme could be responsible for the decreased performance and
needs to be improved in further studies. Since the target is accelerating, the circular prediction involving
the Kalman filter exhibits the smallest prediction error. These filters (Filter 4 and 7) are the only filters
modeling the acceleration.
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5.3 Non-maneuvering Targets on a Straight Line

The final benchmark test is a straight line trajectory with a target traveling at constant speed of 3 knots.
This target motion is preferred by the α-β filter and Table 3 shows the lowest prediction error for the α-β
filter. The circular predictions (Filters 2 to 4) exhibit a relatively high prediction error, but the combination
with an α-β filter improves the prediction performance significantly.

Single Filters Combined Filters
Filter 1 2 3 4 5 6 7

Mean value [m] 106.00 208.33 220.90 209.52 136.77 135.96 137.01

Variance [m2] 492.36 2382.95 4159.74 2358.00 862.69 951.92 849.15

Table 3: Mean and variance of the rms value of the prediction errors for a non-maneuvering target on a
straight line

6 Summary

A simple circular prediction scheme has been developed and it has been shown that this algorithm combined
with an α-β filter significantly improves the prediction performance for both curved and straight line
maneuvers.

Since, the proposed approach of predicting the target position on an arc of a circle does not require
any if-then logic statements, it is simpler than that proposed in the literature. This also permits further
analysis related to stability and performance. The formulation of the circular filter in the setting of an
Extended Kalman filter will be carried out in the future. Knowledge of the process noise and measurement
noise can be used to arrive at an optimal circular filter.

Finally, the fusion of the two filters, an α-β filter and a circular prediction algorithm, reveal a
significant improvement in the tracking performance. Inclusion of an α-β-γ filter can improve the tracking
performance further, by being able to track targets accelerating on straight lines.
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