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Abstract

Target tracking is the prediction of the future location of a dynamic system (the tar-
get) based on developing an optimal estimator which employs both imperfect sensor
observations of the target motion, and its past states. The accuracy of the prediction,
therefore, depends in part on how accurately a target’s past and present positions were
measured. Unfortunately, due to environmental and man-made clutter and other lim-
itations of the sensors and the signal processing algorithms, the positions of a target
cannot be measured with perfect accuracy. A wide variety of estimator forms have
been developed to deal with the target tracking problem. One of the early forms,
a so-called fixed-coefficient estimator (or “filter”) called the “α-β” filter, has been
(and continues to be) employed on many operational systems. Thus, in spite of its
simplicity and limitations, it continues to be of interest. This paper explores many
aspects of developing a fuzzy logic gain modified α-β filter. The fixed coefficient α-
β-γ filter is analyzed in detail to characterize the performance of the α-β filter which
is a subset of the α-β-γ filter1. The α-β-γ filter is analyzed with the intention of
eventually developing a fuzzy α-β-γ filter.

This is a phase 2 of a continuing project sponsored by the Office of Naval
Research/Spawar System Center (ONR/SSC) on the synthesis and analysis of fuzzy-
logic scheduled α-β filter. The focus of this phase of the study was the control-
theoretic based analysis of the fuzzy α-β filter and a development of a testbed for the
realistic simulation of the target tracking process.

The α-β-γ filter is a sampled data target tracker which can asymptotically
track a constant accelerating target. The α-β-γ parameters are studied to characterize
the stability of the filter, its performance viz its transient behavior and the influence
of measurement noise. A closed form equation for the mean square response of the
system to white noise is derived. In addition metrics to gauge the transient response
and the steady state tracking error are derived. These equations are shown to reduce
to some results presented in the literature for the α-β filter by equating γ to zero. The
equations for the noise ratio and the transient and steady state error are exploited
to optimally select the α-β-γ parameters, so as to minimize the noise transmission
capability of the filter.

The proposed fuzzy logic based α-β filter changes the smoothing parameter,
α and β, as a function of the maneuver error and error rate with the tracking perfor-
mance which is comparable to a Kalman filter, but without modeling a target system
and a sensor noise model. Furthermore, the computational cost is less than those
of the traditionally Kalman filter. The fuzzy logic theory overcomes the difficulty of

1The coefficients α, β and γ signify position, velocity and acceleration smoothing gains
respectively



iii

defining an explicit relationship between the current system states and the actions
required to achieve a certain system performance by using linguistic rules. The pro-
posed fuzzy filter exploits an analogy of control of a second order system a rest-to-rest
maneuver, to define appropriate rules.

Since the evaluation of candidate tracking algorithms and the identification
of an optimal one, is not feasible from a strictly analytically point of view, such
problems are frequently evaluated using Monte Carlo simulations. Accordingly, we
have designed a Testbed within which such problems can be efficiently studied. The
Testbed provides a graphical user interface controlling the simulation environment to
conduct comparisons.
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Chapter 1

Introduction

The Center of Excellence in Multisource Information Fusion (CMIF) at the State

University of New York at Buffalo (”UB”), has been involved in the development

of a tracking Testbed under the sponsorship of ONR/SSC. This project was in part

stimulated by the earlier work carried out at Orincon1, sponsored by NRaD. This

Testbed was developed as a tool within which to study alternative methods for track-

ing submarines which are detected by systems of sensor arrays deployed in littoral en-

vironments. There are various characteristics of this Anti-submarine Warfare (ASW)

problem that create difficulties in developing technically optimal yet cost-effective

solutions to the target tracking problem, e.g.:

• crossing targets

• sparse data

• varying target localization capabilities (environmentally dependent)

• false alarms

among other factors. Additionally, the trend toward low-cost, compact sensor nodes

provides a requirement that the tracking algorithm be computationally efficient. A

1Orincon Corporation

1



CHAPTER 1. INTRODUCTION 2

solution to such problems, i.e., the identification and evaluation of candidate tracking

algorithms for such problems, is not feasible from a strictly analytically point of

view. Thus, such problems are frequently examined empirically and parametrically.

Accordingly, we have designed a Testbed within which such problems can be efficiently

studied. The Testbed provides a graphical user interface to control the simulation

environment and to conduct comparisons.

This project also focuses on the viability of using Fuzzy Logic (FL) and Math-

ematics in such ASW tracking applications. The motivation were based on the poten-

tial simplification and compatibility that FL offers for implementing adaptive yet sim-

ple tracking methods, especially when compared to traditional Kalman Filter-based

methods. In particular, this work proposes an assessment of a Fuzzy Logic–controlled

α-β filter, which are nominally simple but fixed–coefficient filters. As the result, the

proposed target tracker balances computational simplicity with adaptation. The re-

search objectives of this project can be summarized by the following items:

• methods for higher-fidelity simulation of sensor-measurement processes, includ-

ing modeling of environmental effects on target localization capability

• developing formal methods of control for α-β filters especially as related to

stability management and measurement noise

• extending these methods to α-β-γ filter

• researching FL-based methods for adaptive α-β filter

The performance of the target tracker is first developed for the α-β-γ filter and later

reduced to the α-β filter. The α-β-γ parameters are studied in detail to characterize

the stability of the filter, its performance viz its transient behavior and the influence

of measurement noise. The equations for the noise ratio and the transient and steady

state error are exploited to optimally select the α-β-γ parameters so as to minimize the

noise transmission capability of the filter. Chapter 3 explains the basic fuzzy logic
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algorithm before introducing the fuzzy logic based α-β filter. The proposed fuzzy

filter exploits an analogy from the system control theory, the rest-to-rest maneuver,

to define the fuzzy relational matrix, which is discussed later in this report.

Furthermore, this project addresses a variety of enhancements to the Testbed

capacity developed during the first phase. These enhancements are briefly listed

below:

Task 1 Realistic Simulation of the Sensor Field

This task focuses on studying the effect of sparseness of data, and repre-

sent the correct effects of sensor system localization capabilities which is

related to the environmental effects on the sensor resolution.

Task 2 Generating realistic target trajectories

The objective of this task is to provide realistic submarine maneuvers such

as (i) straight line maneuvers, (ii) single gradual turn maneuvers, (iii)

straight line speedup maneuvers and (iv) turn with speedup maneuvers .

Task 3 Integration of Standard Trackers into the Testbed

The objective of this task is to integrate standard tracking filters such as

the Kalman filter, α-β-γ filter into the Testbed.

Task 4 Development and Integration of Adaptive Tracking Filters

This task integrates the proposed fuzzy logic filter and Chan’s adaptive

tracking filter [5] into the Testbed.

Task 5 Evaluation of Various Metrics for Comparison of the Different Filters

This task involves conceiving of different metrics to evaluate the per-

formance of different filters using the constant coefficient α-β filter as a

baseline. One of the metric, which is studied is the evolution of the mean

error and error-rate from Monte Carlo simulations for different tracking

filters when the target is performing a straight line maneuver. Following
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this, more complicated maneuvers are studied. Another measure of in-

terest, is the sum of the square of the tracking errors over a finite time

horizon simulation. This is evaluated for each of the Monte Carlo runs

and plotted to estimate a error distribution profile. Another metric used

is the computational cost of each target tracker.

Task 6 Development of a Graphical User Interface (GUI)

This task focuses on the development of a mouse-and-menu-driven inter-

face which permits the user to select from various options such as: (i)

filter for tracking, (ii) target maneuvers, (iii) simulation parameter, etc.

The GUI is developed on MATLAB 2.

The focus of this report is on theoretical aspects of target tracking filter such

as α-β-γ filter, developing a control theoretic based adaptive α-β filter and conducting

a performance comparison within a graphical simulation environment.

2MATLAB is a registered trademark of The MathWorks, Inc., Natick, Mass.



Chapter 2

Filter Analysis

2.1 Introduction

Numerous applications such as air-traffic handling, missile interception, anti-submarine

warfare require the use of discrete-time data to predict the kinematics of a dynamic

object. The use of passive sonobuoys which have limited power capacity constrain

us to implement target-trackers which are computationally inexpensive. With these

considerations in mind, we analyze an α-β-γ filter to study its ability to predict the

object kinematics in the presence of noisy discrete-time data.

There exists a significant body of literature which addresses the problem of

track-while-scan systems [16], [9], [2] and [1]. Sklansky [16] in his seminal paper ana-

lyzed the behavior of an α-β filter. His analysis of the range of values of the smoothing

parameters α and β which resulted in a stable filter constrained the parameters to

lie within a stability triangle. He also derived closed form equations to relate the

smoothing parameters for critically damped transient response and the ability of the

filter to smooth white noise using a figure of demerit which was referred to as the

noise ratio. Finally he proposed, via a numerical example, a procedure to optimally

select the α-β parameters to minimize a performance index which is a function of

5



CHAPTER 2. FILTER ANALYSIS 6

the noise-ratio and the tracking error for a specific maneuver. Following his work,

Benedict and Bordner [2] used calculus of variations to solve for an optimal filter

which minimizes a cost function which is a weighted function of the noise smoothing

and the transient (maneuver following) response. They show that the optimal filter

is coincident with an α-β filter with the constraint that β = α2/(2 − α).

Numerous researchers using assumptions of the noise characteristics develop

optimal filters [12], [14] and [7] which are commonly called Kalman Filters. Those

filters were first introduced in the 60’s by Kalman [10] and [11].

Kalata [8] proposed a new parameter which he referred to as the tracking index

to characterize the behavior of α-β and α-β-γ filters. The tracking index was defined

as the ratio of the position maneuverability uncertainty to the position measurement

uncertainty. He also presented a technique to vary the α-β-γ parameters as a function

of the tracking index.

In this chapter, a detailed analysis of the α-β-γ filter is carried out. Section 2

discusses the bounds on the smoothing parameters for a stable filter. This is followed

by a closed form derivation of the noise ratio for the α-β-γ filter in Section 3. In

Section 4, a closed form expression for the steady state errors and a metric to gauge

the transient response of the filter are derived followed by the optimization of the

smoothing parameters for various cost functions in Section 5. The chapter concludes

with some remarks in Section 6.

2.2 Stability Analysis

2.2.1 α-β Tracker

The α-β tracker is an one-step ahead position predictor that uses the current error

called the innovation to predict the next position. The innovation is weighted by the

smoothing parameter α and β. These parameters influence the behavior of the system
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in terms of stability and ability to track the target. Therefore, it is important to

analyze the system using control theoretic aspects to gauge stability and performance.

The form of the equations for the α-β tracker can be derived by considering the

motion of a point mass with constant acceleration which is described by integrating

Newtons First Law yielding x(t) = x0 + v0t + 1
2
at2, where v is velocity and a is

acceleration. If the acceleration is negligible and the equation of motion is written in

discrete time where the initial condition x0 and v0 are substituted by the smoothed

condition, the one-step ahead prediction equation for an α-β tracker is obtained :

xp(k + 1) = xs(k) + Tvs(k) (2.1)

The use of the equation of motion without neglecting the acceleration would lead to

the α-β-γ tracker discussed later on, in this work. Equation (2.1) states that between

each time step, a linear motion is assumed and the smoothed conditions xs and vs are

the initial conditions for each time step. The smoothed conditions are derived using

the innovation and the previous states according to Equations (2.2) and (2.3).

xs(k) = xp(k) + α(xo(k) − xp(k)) (2.2)

vs(k) = vs(k − 1) +
β

T
(xo(k) − xp(k)) (2.3)

The innovation in Equation (2.2) and (2.3) defined as (xo(k) − xp(k)) represents

the error between the observed and predicted position. As can be seen, α and β,

the smoothing parameter, change the dynamics of the system. The input-output

relationship between the observed and predicted position, G = xp

xo
, is referred to as

the system in this work.

Since the prediction equation, Equation (2.1), is in recursive form, it needs

to be initialized. The initialization procedure requires two observed target positions

to calculate the smoothed initial velocity. Therefore, the target position prediction

begins with the third time step. The initial predicted target position is defined to be

equal to the observed position at the second time step

xp(2) = xo(2) , (2.4)
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Figure 2.1: Target Track Initialization

leading to a zero initial innovation, which means that the smoothing parameter have

no influence of the initial prediction. The smoothed initial velocity is calculated by

the finite difference of the two observed target positions divided by the appropriate

time,

vs(2) =
xo(2) − xo(1)

T
(2.5)

According to Equation (2.2) the smoothed position at the second time step equals the

predicted target position at the same time. The first predicted position can therefore

be calculated by the following equation:

xp(3) = xo(2) + Tvs(2) , (2.6)

which is an extrapolation of the first two observed target positions. Figure (2.1)

illustrates the track initialization. It can be seen that the third predicted position is

on the straight line formed by the first two observations and the first and the third

position are equidistant from the second.
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The behavior of the system can be expressed in terms of the smoothing pa-

rameters α and β; furthermore, regions of stability and different transient response

characteristics can be specified in the α-β space. Writing Equation (2.1), (2.2) and

(2.3) in the z-domain and substituting xs and vs into the prediction Equation (2.1)

yields the transfer function of the system in the z-domain G(z) as follows,

G(z) =
xp
xo

=
α(z − 1) + βz

z2 + (α+ β − 2)z + (1 − α)
(2.7)

which can now be used to determine the region of stability of the α-β filter. Stability

requires that the roots of the characteristic polynomial lie within the unit circle in

the z-domain. The characteristic polynomial is given by the denominator of Equa-

tion (2.7). To prove that the roots lie within the unit circle, one can transform

Equation (2.7) into the w-domain, mapping the unit circle of the z-domain to the left

half plane of the w-domain and applying one of the known stability criteria in con-

tinuous domain. Another approach is to check the stability directly in the z-domain

using Jury’s Stability Test.

2.2.2 Jury’s Stability Test

The Jury’s Stability Test can be used to analyze the stability of the system without

explicitly solving for the poles of the system. Therefore, it is used to determine the

bounds on the parameters which result in a stable transfer function in the z-domain.

For a system with a characteristic equation P(z) = 0, where

P (z) = a0z
n + a1z

n−1 + ....+ an−1z + an (2.8)

and a0 > 0, we construct the table where the first row consists of the elements of the

polynomial P(z) in ascending order and the second row consists of the parameters in

descending order [13]. The table is shown in Table 2.1. where

bk =

∣

∣

∣

∣

∣

∣

∣

an an−1−k

a0 ak+1

∣

∣

∣

∣

∣

∣

∣

, k = 0, 1, 2, ..., n-1 (2.9)
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Row z0 z1 · · · zn−1 zn

1 an an−1 · · · a1 a0

2 a0 a1 · · · an−1 an
3 bn−1 bn−2 · · · b0
4 b0 b1 · · · bn−1
...

...
...

...
...

2n-5 p3 p2 · · ·
2n-4 p0 p1 · · ·
2n-3 q2 q1 q0

Table 2.1: General Form of Jury’s Stability Table

ck =

∣

∣

∣

∣

∣

∣

∣

bn−1 bn−2−k

b0 bk+1

∣

∣

∣

∣

∣

∣

∣

, k = 0, 1, 2, ..., n-2 (2.10)

qk =

∣

∣

∣

∣

∣

∣

∣

p3 p2−k

p0 pk+1

∣

∣

∣

∣

∣

∣

∣

. k = 0, 1, 2 (2.11)

Note, that the last row of the table contains only three elements. The Jury’s test

states that a system is stable if all of the following conditions are satisfied:

|an| < a0 (2.12)

P (z)|z=1 > 0 (2.13)

P (z)|z=−1











> 0 for even n

< 0 for odd n
(2.14)

|bn−1| > |b0|
|cn−2| > |c0|

· · ·
|q2| > |q0|

(2.15)

Exploiting this scheme for the characteristic polynomial of the α-β filter leads

to the following Jury’s table shown in Table 2.2. The condition that a0 > 0 is satisfied

since a0 = 1. To satisfy the constraint

|an| < a0 (2.16)
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Row z0 z1 z2

1 (1 − α) (α+ β − 2) 1

Table 2.2: Jury’s Stability Table of the α-β Filter

we require

|1 − α| < 1, (2.17)

which is equivalent to

0 < α < 2 . (2.18)

To satisfy the constraint

P (z)|z=1 > 0, (2.19)

we require

1 + (α + β − 2) + (1 − α) > 0 (2.20)

which can be rewritten as

β > 0 . (2.21)

To satisfy the constraint

P (z)|z=−1 > 0, for even n, (2.22)

we require

1 − (α + β − 2) + (1 − α) > 0 (2.23)

which can be rewritten as

2α + β < 4 . (2.24)

Equations 2.18, 2.21 and 2.24 defines the region where α and β may lie for the tracker

to be stable. Plotting the boundaries of these constraints, one arrives at the stability

triangle shown in Figure (2.2).
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The stability area can be divided by the critical damped curve into an over-,

and underdamped area as well as into areas with certain eigenfrequencies of the sys-

tem. The system is said to be critically damped if the poles are coincident. Therefore,

critical damping is obtained by solving the following equation.

z1 = z2, or (α + β − 2)2 = 4(1 − α) (2.25)

since,

z1,2 =
−(α + β − 2) ±

√

(α + β − 2)2 − 4(1 − α)

2
(2.26)

Solving Equation (2.25) leads to the following relationship

βd1,2 = 2 − α± 2
√

1 − α (2.27)

for critical damped response of the filter. The dashed line in Figure 2.2 corresponds

to the solution βd1 = 2 − α − 2
√

1 − α and the dash-dot line to the solution βd2 =

2− α+ 2
√

1 − α. Equation (2.27) is valid for all α ≤ 1, and the system is oscillating

if the poles in Equation (2.26) contain a non-zero imaginary part. This can be seen

by using the transformation between z- and s-domain.

z = esT = e(σ+jω)T = eσT ejωT (2.28)

We now show that, even though the smoothing parameters are chosen to be in the

overdamped area, the system can oscillate under certain circumstances. These circum-

stances need to be investigated to achieve a specific transient response. Furthermore,

expressions for the eigenfrequencies of the system will be derived.

The first part involves analyzing the space where α is less than one followed by

the analysis for the region where we consider α greater than one. All areas discussed

are also shown in Figure 2.2. Equation (2.26) shows that if the system is under-

damped, the z-poles become a complex conjugate pair. In this case, Equation (2.26)

can be rewritten as follows:

z1,2 = Aejψ, where A =
√

1 − α (2.29)

ψ = arctan
±

√

4β − (α + β)2

2 − α− β
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Figure 2.2: Regions of the α-β Tracker

Comparing Equation (2.28) with Equation (2.29) yields the following equation for

the eigenfrequency ω.

ω =
1

T
arctan

±
√

4β − (α + β)2

2 − α− β
(2.30)

Equating ω to zero, which corresponds to the critically damped case, simplifies Equa-

tion 2.30, resulting in Equation 2.27. The effect of α and β on the eigenfrequency

can be easily interpreted using Equation 2.30 unlike Equation 2.26. Representing the

poles of Equation (2.28) as a vector in the complex domain, as shown in Figure (2.3),

various regions of the α-β space can be easily analyzed. The highest frequency is ob-

tained if the vector in Figure 2.3 lies on the real axis and points to negative infinity, so

that ωT = π implying ω = π
T

[ rad
s

] = 1
2T

[Hz] which in turn is on the critical damped

curve corresponding to βd2 . Equation (2.30) can be used to determine when the real

part of the poles changes sign, which corresponds the vector in Figure 2.3 subtending

an angle π/2 to the real axis which corresponds to a frequency of ω = 1
4T

[Hz]. If the

denominator of the argument in Equation (2.30) becomes zero, the real part is also

zero, and leads to the line βs = 2 − α illustrated by the dotted line in Figure 2.2.
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Figure 2.3: The Poles as a Vector in the Complex Domain

This divides the region for α less than one into an area where the poles have positive

and negative real parts as follows:

if β < βs → positive real part (Ia)

if β > βs → negative real part (Ib)

Although the regions IIa and IIb correspond to the overdamped area as shown in

Figure (2.2), the region IIb corresponds to oscillatory dynamics with a constant fre-

quency of ω = 1
2T

[1
s
]. Remembering that the vector in Figure 2.3 corresponding to

the critical damped curve βd2 lies on the real axes with a phase of π, any set of α and

β in the region IIb does not change the phase since it only changes the magnitude of

the vector. Within the region IIb the frequency of Equation (2.30) becomes complex

which if substituted in Equation (2.28), leads to a negative real pole. For example,

for the stability boundary we have,

β = 4 − 2α, 0 < α ≤ 1 (2.31)

which results in

ψ = arctan
( ±jα
α− 2

)

= jarctanh
( ±α
α− 2

)

. (2.32)
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The roots of the filter can now be represented as

z1,2 =
√

(1 − α)exp
[

−arctanh
( ±α
α− 2

)]

ejπ (2.33)

which corresponds to an oscillatory response with a frequency of ω = π
T

[ rad
s

] which

cannot be derived from Equation 2.26.

If α becomes greater than 1, the roots of Equation (2.26) are never negative,

so the above approach cannot be applied. When α > 1, Equation 2.26 leads to the

following two poles.

z1 = Ã1e
j0 and z2 = Ã2e

jπ, (2.34)

where

Ã1 = − α + β − 2

2
+

1

2

√

(α + β − 2)2 + 4(α− 1)

Ã2 =
α + β − 2

2
+

1

2

√

(α + β − 2)2 + 4(α− 1)

As can be seen in Equation (2.34), in the region α > 1, one pole is oscillating with

ω = 1
2T

and the other corresponds to an overdamped mode with zero frequency.

2.2.3 α-β-γ Tracker

The α-β tracker is obtained by neglecting the acceleration term in the equation of

motion of a point mass. Deriving a tracker which includes the acceleration, is a better

representation of the equation of motion, leading to the α-β-γ tracker.

The equation of the higher order one-step ahead prediction is the same as for

the α-β tracker with an additional term representing the influence of the acceleration.

xp(k + 1) = xs(k) + Tvs(k) +
1

2
T 2as(k) , (2.35)

The additional information about the acceleration allows us to predict the velocity of

the target as well. Equation (2.36).

vp(k + 1) = vs(k) + Tas(k) , (2.36)
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where the smoothed kinematic variables are again calculated by weighting the inno-

vation as follows:

xs(k) = xp(k) + α(xo(k) − xp(k)) (2.37)

vs(k) = vp(k) +
β

T
(xo(k) − xp(k)) (2.38)

as(k) = as(k − 1) +
γ

2T 2
(xo(k) − xp(k)) (2.39)

Similar to the α-β filter are the assumptions about the initial conditions of the α-β-γ

filter. Since the velocity is also predicted, Equation (2.36), the initialization requires

three observed target positions. Equations 2.4 and 2.5 are now used one time step

ahead:

xp(3) = xo(3) (2.40)

vs(3) =
xo(3) − xo(2)

T
, (2.41)

and the smoothed initial acceleration is calculated by the finite differnece of the two

initial velocities as follows:

as(3) =
vp(3) − vp(2)

T
=
xo(3) − xo(1)

T 2
. (2.42)

The first target position prediction is now available at the fourth time step:

xp(4) = xp(3) + Tvs(3) +
1

2
T 2as(3) (2.43)

vp(4) = vs(3) + Tas(3) . (2.44)

Depending on the target, the initial acceleration might be neglected and set to be

zero. Thus, the amount of required initial observed points reduces to the requirements

of an α-β filter.

Applying the Laplace Transform to Equation (2.35) to (2.39) and solving for

the ratio xp

xo
leads to the transfer function in z-domain which is

G(z) =
α + (−2α− β + 1

4
γ)z + (α + β + 1

4
γ)z2

z3 + (α + β + 1
4
γ − 3)z2 + (−2α− β + 1

4
γ + 3)z + α− 1

(2.45)
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Equation 2.45 can now be used to determine the bounds of α, β and γ for

stability. For this complex system, the Jury’s Stability Test is used as described in

Section 2.2.2, to determine the region of stability.

Writing the coefficients of the characteristic polynomial in Jury’s Table, and

calculating the determinants b2, b1 and b0 (Equation 2.9) yield the Table 2.3. The

Row z0 z1 z2 z3

1 α− 1 −2α− β + 1
4
γ + 3 α + β + 1

4
γ − 3 1

2 1 α + β + 1
4
γ − 3 −2α− β + 1

4
γ + 3 α− 1

3 α(α− 2) α(4 − 2α− β + 1
4
γ) − 1

2
α(α + β − 2 + 1

4
γ) − 1

2

Table 2.3: Jury’s Stability Table of the α-β-γ Filter

condition a0 > 0 is satisfied since a0 = 1. To satisfy the constraint |an| < a0, the

coefficients require |α− 1| < 1, which is equivalent to

0 < α < 2 . (2.46)

Substituting z = 1 and applying the constraint P (z)|z=1 > 0, requires satisfaction of

the inequality

1 + (α + β +
1

4
γ − 3) + (−2α− β +

1

4
γ + 3) + α− 1 > 0, (2.47)

which can be rewritten as

γ > 0 . (2.48)

Satisfying the constraint P (z)|z=−1 < 0, for odd n, yields

2α + β < 4 , (2.49)

which is the same constraint for α and β as for the α-β tracker. The final condition

|b2| > |b0| requires

|α(α− 2)| > |α(α− 2) + α(β +
1

4
γ) − 1

2
γ| (2.50)



CHAPTER 2. FILTER ANALYSIS 18

0

0.5

1

1.5

2

00.511.522.533.54

0

2

4

6

8

10

12

14

16

βα

γ

Figure 2.4: Stability Area of the α-β-γ Tracker

Observing Equation (2.50) and knowing the fact that α(α − 2) is always negative

within the stability area, we have:

α(β +
1

4
γ) − 1

2
γ > 0. (2.51)

This statement leads to the constraint on γ for which the α-β-γ tracker is stable,

which is

γ <
4αβ

2 − α
(2.52)

Figure (2.4) illustrates the bounding surfaces which include the stable volume in the

α-β-γ space based on Equation (2.46), (2.48), (2.49) and (2.52).

It is desirous to divide the stability volume into regions which are character-

ized by specific class of transient responses such as, underdamped, overdamped, and

critically damped. However, the difficulty of factorizing the characteristic polynomial

of the transfer function in the α-β-γ space prompt us to conceive of a new space

which we refer to as the a-b-c space. In this space, the characteristic polynomial is

represented as

(z + c)(z2 + (a+ b− 2)z + 1 − a), (2.53)
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where the second order factor has a form which is identical to the characteristic equa-

tion of the α-β filter and the third pole is real and is located at z = −c. Comparing

the denominator of Equation (2.45) with Equation (2.53) the following transformation

is derived:

α = 1 + c(1 − a)

β = a(1 + c) +
1

2
b(1 − c) (2.54)

γ = 2b(1 + c).

The usefulness of this transformation, becomes evident when one derives the stability

volume of the α-β-γ filter. Since, c is constrained to lie within −1 and 1, and the

a-b space resembles the α-β space, the stability volume in the a-b-c space is a prism

(Figure (2.5)) with a triangular cross-section which is derived from the α-β filter.

Mapping the stability prism in the a-b-c space to the α-β-γ space using Equation

(2.54), we rederive the stability volume illustrated in Figure (2.4).

Since, the pair of poles of Equation (2.53) which are functions of a and b are

responsible for oscillation of the system, the a-b-c space is divided by extruding the

lines which divide the stability triangle of the α-β filter (Figure 2.2), in the c dimen-
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sion. These surfaces, shown in Figure (2.5), are transformed using Equation (2.54)

to the α-β-γ space. Figure (2.6) shows the surfaces in the α-β-γ space corresponding

to each critically damped surface of the a-b-c space. Figure (2.7) shows the trans-

formation of the two surfaces dividing the stability area at a = 1 and b = 2 − a.

Observing Figures (2.6) and (2.7), illustrates the fact that for γ = 0, the third

order tracker reduces to the α-β tracker. Substituting γ = 0 in the transfer function

(Equation (2.7)), results in a pole zero cancellation at z = 1, resulting in a second

order tracker. From Equation (2.54), we can infer that c equals −1 when γ = 0, and

furthermore a and b degenerate to α and β. The cross-section at c = −1 therefore

corresponds to the α-β tracker. Note that c = 0 does not result in degenerating the

α− β − γ to the α-β filter.
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2.3 Performance of the Target Tracker

2.3.1 Noise Ratio

Measurement noise significantly effects the performance of target trackers. It is there-

fore, of interest to characterize the noise filtering strength of the trackers.

The process of tracking includes in both α-β tracker and α-β-γ trackers, mea-

surement noise and system noise. Therefore, expressions are derived to gauge the

influence of noise on the output of the filter.

In this section, we derive a closed form expression for the noise ratio parame-

terized in terms of the a-b-c parameters whose relationship to α, β and γ is uniquely

known.

Studying the effect of noisy signals requires a metric which measures the in-

fluence of the noise on the system. Since, the response of the system to a noisy input,

can reflect this influence, the noise ratio is defined as the ratio of the root mean

square value (RMS) of the system response to the RMS value of the noisy input. The
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noise ratio is defined as follows.

ρ ≡
√

√

√

√

x2
p(t)

x2
o(t)

(2.55)

Since, we require the tracker to reject measurement noise, a small value of ρ implies

an excellent filtering of noise. The mean-square of xp(t) can be derived in the time

domain using the standard integral over the time from −∞ to +∞.

x2
p(t) = lim

T→∞

1

T

∫ T

0
x2
p(t)dt (2.56)

Assuming the input is known, the response xp(t) of the system can be evaluated as

follows by using the transfer function, G(s).

x2
p(t) =

[

L−1{G(s)xo(s)}
]2
, (2.57)

where the L−1 represents the inverse Laplace Transformation and xo(s) is the Laplace

transformation of the input. The input noise is assumed to be white noise, so that

the value of the noise input at any time is independent of previous values. Therefore,

the sampled noise can be evaluated as a train of independent impulses, where the ∗
indicates the sampling.

x∗o(t) =
N

∑

n=0

xo(nT )δ(t− nT ) (2.58)

Using Equation (2.57) yields the response for the impulse train.

x2
p(t) =

[

N
∑

n=0

xo(nT )δ(t− nT )

]2
[

L−1{G(s)}
]2
, (2.59)

since, the impulse responses are uncorrelated. Thus the the mean square value of

the system response to each impulse equals to the mean square value of the system

response according to the complete impulse train, the RMS value of xp(t) can be

calculated by first deriving the response to each impulse and than determining the

ensemble avarage.

x2
p(t) =

N
∑

n=0

lim
T→∞

1

T

∫ T

0

[

xoδ(t− nT )(nT )L−1{G(s)}
]2
dt. (2.60)
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The averaged impulse value is taken over an arbitrary time interval nT < t < (n+1)T

to latter deriving the ensemble avarage. Since this interval is one sampling time unit

long the Equation (2.55) can now be derived as follows:

ρ2 =
1

T
lim
T→∞

∫ +∞

0

[

L−1{G(s)}
]2
dt (2.61)

Fortunately, the definition of the noise ratio reduced to find the integral of the inverse

Laplace transform of the transfer function G(s), of the tracker.

Equation (2.61) could be solved in the time domain by finding the Laplace

inverse of G(s) [16], or by integrating Equation (2.61) in the discrete domain (z-

domain) by rewriting the continuous time integral (Equation (2.61)) in the discrete

domain as :

ρ2 =
1

T

+∞
∑

n=0

Tg2(n) =
+∞
∑

n=0

g2(n) (2.62)

Applying Parseval’s Theorem [13] and the Residue Theorem to the sum of Equa-

tion (2.62) yield the final expression in the discrete domain.

+∞
∑

n=0

g2(n) =
1

2πj

∮

C
G(z)G(z−1)z−1dz =

p
∑

ν=1

Res
zν

[

G(z)G(z−1)z−1
]

, (2.63)

where p is the number of poles on or inside the unit circle. The discrete transfer func-

tions for the α-β tracker (Equation (2.7)) and for the α-β-γ tracker (Equation (2.45))

can be used to solve for the noise ratio. Note, that these transfer functions differ

from those used by Benedict and Bordner [2] and by Simpson [15] respectively. Since

the transfer function of the α-β-γ tracker can always be reduced to the α-β filter by

setting γ to zero, only the noise-ratio of the three parameter filter is derived in the

following section.

The derivations of the residues of the α-β-γ filter become difficult since the

poles within the unit circle contain third order roots. Therefore, it is convenient

to solve the residues in the a-b-c space introduced in Equation (2.54). The transfer

function, Equation (2.45), is rewritten in the a-b-c space as:

G(z) =
(1 + c+ a+ b)z2 + (−2 + bc− 2c+ ca− a)z + 1 + c− ca

(z + c)(z2 + (a+ b− 2)z + 1 − a)
, (2.64)
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where the poles are decomposed into a set of second order poles and one first order

pole such that:

z1 = −c (2.65)

z2,3 = −1

2
(a+ b− 2) ±

√

(a+ b− 2)2 − 4(1 − a). (2.66)

The line integral in Equation (2.63) is carried out along the unit circle guaranteeing

that all stable poles of G(z) lie within and the poles of G(z−1) lie outside the unit

circle. The three residues lying within the unit circle can be derived as follows:

Res
zν
f(z) = lim

z→zν

(z − zν) · f(z). (2.67)

From Equation (2.63), the noise-ratio can now be calculated by using the Equa-

tions (2.65) to (2.67) which leads to the following result:

ρ2 =
−(4ba2 + 2ab2 + 4b2) − 4b(1 + c)k1

2a(b+ 2a− 4)b+ a(1 + c)k2

(2.68)

k1 = k11c
2 + k12c+ k13

k11 = 4a+ 2a3 − ab+ ba2 − 6a2

k12 = ba2 + ab2 − 6ab− 2a3 + 8a

k13 = 6a2 − 2ab2 − 4ba2 + 4a− 2b2 + 7ab

k2 = (b+ 2a− 4)(c2a− ca− c2 − 2b+ bc+ 1)

Constant noise-ratio surfaces are obtained by solving Equation (2.68) for either a, b

or c. A simple solution for b as a function of f(a, c, ρ) exists, which consists of two

solutions of b, where one is always outside the stability prism. A typical constant

noise-ratio (ρ2 = 10) surface is shown in Figure (2.8). Applying the transformation

of Equation (2.54) to each point of the constant noise-ratio surface in the a-b-c space

yields the constant noise-ratio surface in the α-β-γ space shown in Figure (2.9).

As mentioned in the section of stability, the α-β-γ filter reduces to a two

parameter tracker if γ becomes zero inferring that c = −1 and a and b degenerate to

α and β. Thus, the noise-ratio of the α-β-γ filter reduces to the α-β filter by applying



CHAPTER 2. FILTER ANALYSIS 25

0

0.5

1

1.5

2
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rho2 = 10

ca

b

Figure 2.8: Constant ρ–Surface in the a-b-c Space

0

0.5

1

1.5 0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

β
α

γ
ρ2 = 10 

Figure 2.9: Constant ρ Surface in the α-β-γ Space



CHAPTER 2. FILTER ANALYSIS 26

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

α

β

ρ2 = 1

ρ2 = 3

ρ2 = 5

ρ2 = 10

ρ2 = 20

ρ2 = 50

Figure 2.10: Constant ρ curves in the α-β Space

these conditions to Equation (2.68).

ρ2 =
2α2 + αβ + 2β

α(4 − β − 2α)
(2.69)

The line of constant noise-ratio for the α-β filter is also included in the Figures 2.8 and

2.9 by setting c = −1 and respectively γ = 0. However for clarity, the constant noise

ratio curves are plotted in the α-β space for various noise ratios as shown in Figure

2.10. Equation (2.69) is different from those derived by Sklansky [16] and Benedict

and Bordner [2]. For some reasons Benedict and Bordner use a different transfer

function G(z), to represent the impulse response of the filter. To prove the veracity

of Equation (2.69), numerical simulations are carried out. Results of simulating an

α-β filter for normally distributed white noise are used to calculated the noise ratio by

calculating the ratio of the root-mean-square value of the output and input. Table 2.4

displays the simulation result for the parameter set α = 0.5 and β = 0.7. As is clear

from the table, the solution of Sklansky and Benedict and Bordner do not match the

results of the simulation while Equation 2.69 matches the simulated results.
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Simulation Sklansky Benedict & Bordner Proposed (Eq. 2.69)
1.9540 1.2058 0.7391 1.9565

Table 2.4: Noise-ratio of different Approaches

Finally, various constant noise-ratio surfaces are shown in Figure (2.11), where

ρ2 is chosen to ρ2 = 1, 5, 50. Different viewpoints in the α-β-γ space and a-b-c space

are selected to better reveal the shapes of these surfaces.

2.3.2 Maneuver Error

Numerous metrics can be used to gauge the performance of a tracker, such as: the

steady state tracking error, the transient response of the tracker, the noise ratio,

besides others. In this work, we endevour to derive closed form expressions for the

steady state errors and the sum of the square of the errors which captures the transient

behavior of the filter for the α-β and the α-β-γ filters for two classes of trajectories.

The first is a circular trajectory with the target moving at constant speed and the

second is a straight line trajectory where the target moves with constant acceleration.

These metrics can then be exploited to determine optimal sets of parameters for any

cost function which are weighted combinations of these metrics.

The Tracking Error

The tracking error of the two or three parameter filter is defined as the difference

between the observed and the predicted position. Since the performance of the filter

due to the maneuver error is developed in the discrete complex domain, a error-input

transfer function needs to be derived.

The innovation in the smoothing Equations (2.2) and (2.3) represents the

maneuver error of the filter. Substituting the innovation with the error e(k), and

transforming the prediction Equation (2.1) and the smoothing Equations (2.2) and
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(2.3) into the z-domain, yields the relationship between the maneuver error and the

predicted position, which is:

e

xp
=

(z − 1)2

α(z − 1) + βz
. (2.70)

Furthermore, the transfer function of the maneuver error and the observed position

can be obtained by substituting the predicted position with the transfer function of

the α-β filter given in Equation (2.7). Thus, the desired relationship becomes:

eαβ =
(z − 1)2

z2 + (α + β − 2)z + (1 − α)
xo (2.71)

Extending this approach to the α-β-γ filter, described by Equations (2.35) to (2.45),

leads to the following maneuver error transfer function:

eαβγ =
(z − 1)3

z3 + (α + β + 1
4
γ − 3)z2 + (−2α− β + 1

4
γ + 3)z + α− 1

xo . (2.72)

Likewise in the transfer function G(z) of Equation (2.45), the maneuver error transfer

function of the α-β-γ filter reduces to the maneuver error transfer function by setting

γ to zero, which leads to a pole-zero cancellation at z = 1.

Circular Trajectory

The tracking error of a filter following a circular trajectory can be resolved into

components ex and ey in the x and y directions respectively. The net error magnitude

is given by:

e(t) =
√

e2x(t) + e2
y(t) . (2.73)

Assuming that the target traces a circular path while moving at constant speed result-

ing in a constant angular velocity, the target’s position can be described in the time

domain using the projection of a rotating phasor, via the cosine and sine function.

The position can also be written in the complex domain as:

xo(t) = Rejωt

yo(t) = jRejωt
(2.74)



CHAPTER 2. FILTER ANALYSIS 30

Substituting Equation (2.74) into the error transfer function (Equation (2.72)), and

substituting z = ejωT , the steady state values of the errors can be represented as,

ex(nT ) = Reαβγ(z = ejωT )ejωnT = R̂ej(ωnT+ψ)

ey(nT ) = jReαβγ(z = ejωT )ejωnT = jR̂ej(ωnT+ψ) ,
(2.75)

where R̂ =
∣

∣

∣Reαβγ(e
jωT )

∣

∣

∣ , ψ = arg
{

Reαβγ(e
jωT )

}

.

Equation (2.75) states that the magnitude of the maneuver error for a circular path

is constant at all sampling instants, and only the phase is changing with each time

step. To derive an expression for the tracking error for an α-β-γ filter, we substitute

the corresponding transfer function F (ejωT ) into equation 2.75. The maneuver error,

Equation (2.73), of a circular target path of an α-β-γ tracker can now be simplified

to the following equation:

e =
4R sin3(ωT2 )

√

sin2(ωT2 )[((2 − α) cos ωT + α + β − 2)2 + α2 sin2 ωT ] + γ( γ32(cos ωT + 1) − α
4 sin2 ωT )

.

(2.76)

To determine the steady state error for an α-β filter, we can substitute the

corresponding transfer function F (ejωT ), or set γ to zero in Equation (2.76). This

leads to the maneuver error of the α-β filter.

e =
4R sin2(ωT

2
)

√

[(2 − α) cosωT + α+ β − 2]2 + α2 sin2 ωT
, (2.77)

where the maneuver error of the α-β filter is the same as the closed form expression

derived by Sklansky [16]. Sklansky [16] proposed simplifying the expression for ωT �
π by neglecting the term under the radical, reducing Equation (2.77) to:

e ≈ arT
2

β
, (2.78)

where ar is the centripetal acceleration given by Rω2.
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Straight Line Maneuvers

Besides the circular maneuver, the straight line maneuver is one which needs to be

studied carefully. This section presents derivation of closed form expression for steady

state errors and the sum of the square of the errors for α-β and α-β-γ filters.

Unlike the derivation of the error for the circular path, the error for a straight

line trajectory can be simplified by assuming that the target path is coincident with

one of the reference axis reducing the problem to a single dimension. Assuming

constant acceleration along the straight line and zero initial position, the targets

position is given by:

xo(t) =
1

2
ast

2 + vt ⇔ xo(z) =
asT

2z(z + 1)

2(z − 1)3
+

vTz

(z − 1)2
(2.79)

where as is the acceleration and v is the initial velocity. The choice of constant

acceleration is made to illustrate the ability of a higher order tracker to track the

target without a steady state error. Simulating the α-β tracker for this maneuver,

results in a steady state error, in contrast to the α-β-γ tracker which exhibits no steady

state error. Similar to the derivation of Equation (2.75), the maneuver error for a

straight line is obtained by substituting the z-transform of xo into Equation (2.72).

The maneuver error for the α-β tracker and the α-β-γ trackers are:

eαβ =
1
2
asT

2z(z + 1) + vTz(z − 1)

(z2 + (α + β − 2)z + 1 − α)(z − 1)
(2.80)

eαβγ =
1
2
asT

2z(z + 1) + vTz(z − 1)

z3 + (α + β + 1
4
γ − 3)z2 + (−2α− β + 1

4
γ + 3)z + α− 1

. (2.81)

The steady state error is obtained by applying the final value theorem [13] to Equa-

tion (2.80) and (2.81), which for the α-β tracker leads to the interesting result,

eαβ(t→ ∞) = lim
z→1

(z − 1)eαβ(z)

=
asT

2

β
(2.82)

which is coincident with the maneuver error for a circular path with high sampling rate

as derived by Sklansky [16] (Equation (2.78)). As can be seen from Equation (2.81),
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the steady state error of the α-β-γ tracker

eαβγ(t→ ∞) = 0 (2.83)

vanishes for the case of constant acceleration.

The transient response can be characterized by a metric which is defined as

the sum of the square of the tracking errors as time tends to infinity. This metric can

be defined in the continuous and discrete time as

Jc =
∫

∞

0
e2(t)dt , (2.84)

J =
∞
∑

k=0

Te2(k) . (2.85)

This metric can be calculated by simulating the response of the transfer function given

in Equation (2.80) and (2.81), and summing the resulting error square = (u − y)2,

where y is the system response and u is the true target position. Instead using

simulations, a closed form expression can be derived using Parseval’s Theorem [13].

Rewriting Equation (2.85) and using Parseval’s Theorem and the Residue Theorem

we have:

J =
1

2πj

∮

C
e(z)e(z−1)z−1dz =

p
∑

ν=1

Res
zν

[e(z)e(z−1)z−1] , (2.86)

where the line integral is carried out along a closed curve C, which is also given by

the sum of the residues at the singular points within the closed curve C. Similar to

the derivations of the noise-ratio, the closed curve C is the unit circle which includes

all the stable poles of e(z).

As shown in Equation (2.82), the α-β tracker exhibits a non-zero final value,

so that the metric defined in Equation (2.85) is not finite. However, subtracting the

steady state error from the transient error yields a finite solution for the metric. To

derive the finite metric which characterizes the transient behavior of the α-β filter

tracking a constant acceleration profile, a new error transfer function is defined as

eαβ(z) =
1
2
asT

2z(z + 1) + vTz(z − 1)

(z2 + (α + β − 2)z + 1 − α)(z − 1)
− asT

2

β

z

z − 1
, (2.87)
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where the z-transform of the steady state error is subtracted from the transfer function

of the filter. Solving Equation (2.86) by solving for the residues of the three poles of

eαβ(z) yields a closed form equation for the metric for the α-β tracker.

Jαβ =
v2T 3(α− 2)

αβ(2α + β − 4)
+

1
4
a2
sT

5(2β + αβ + 2α2)

αβ3
+
vasT

4

β2
(2.88)

The first expression in Equation (2.88) is the transient cost function, corresponding to

a constant velocity target motion. The second expression corresponds to the metric

for a target path which is parameterized by constant acceleration and zero initial

velocity. These two expressions are labeled as follows:

Jαβ,v =
v2T 3(α− 2)

αβ(2α + β − 4)
, Jαβ,a =

1
4
a2
sT

5(2β + αβ + 2α2)

αβ3
. (2.89)

Since the α-β-γ filter tracks the target without steady state error, the metric

defined in Equation (2.85) is finite. Thus, the cost function of an α-β-γ tracker for

an accelerating target along the straight line given in Equation (2.86) is obtained by

using the error transfer function (Equation (2.81)). Since, the derivations of the cost

function in the α-β-γ space is more complex than in the a-b-c space, Equation (2.81)

is transformed to the a-b-c space, where the error transfer function becomes:

e(z) =
1
2
asT

2z(z + 1) + vTz(z − 1)

(z + c)(z2 + (a+ b− 2)z + 1 − a)
. (2.90)

A closed form expression of the metric is now obtained in the a-b-c space which is

Jabc =
2(c− ca− 1)T 3v2

a(2a+ b− 4)(c− 1)[c(a+ b+ ca) − (1 − c)2]

+
1
2
a2
sT

5(c(a− 1) − 1)

ab(1 + c)[c(a+ b+ ca) − (1 − c)2]
. (2.91)

Like the α-β filter, the first term is the contribution to the metric of the tracker

performance for a constant velocity input and the second term represents the cost for

a constant acceleration target. Equation (2.91) cannot be reduced to an α-β tracker

by substituting c with −1, since this results in the second term being divided by zero,

resulting in an infinite value for Jαβγ which is consistent with our intuition since the

integral of a constant value is infinity.
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The different metric definitions given in Equation (2.76), (2.88) or (2.91) can

now be used in an optimization process to find an optimal set of smoothing parameters

α, β and γ for a specific maneuver.

2.4 Design of Optimal Filters

We have derived regions of stability for the α-β and the α-β-γ filters. Selection of

the smoothing parameters within the region of stability is a function of the trajec-

tory of the target, the noise in the measurement, steady state error, and the transient

response of the filter. To arrive at the optimal set of parameters, a constrained param-

eter optimization problem is formulated. This is feasible since closed form expressions

for various metrics have been derived in Sections 2.3.1 and 2.3.2. Furthermore, closed

form solutions for the optimal parameter are derived for certain target trajectories.

Define a figure of demerit which consists of two terms: the first, is a function

of the tracker error and the second is a function of the noise ratio. This provides us

with the flexibility to include steady state error, transient error etc. and permits us

to weight them based on their importance. Thus, the cost function becomes:

f ≡ f(e, ρ, κ) (2.92)

where κ is a weighting factor to penalize the contribution of one term relative to the

other. The constraints for the optimization are defined by the stability region of the

tracker. As was shown in the Section 2.3.2, there are different metrics to capture

the tracking error for specific maneuvers such as straight line or circular target path.

The maneuver error can be characterized by transient response and/or the steady

state error. The choice of the appropriate cost function depends on the optimization

purpose.
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2.4.1 Circular Trajectory

The first task attempted in this work was an extension of the optimization of a cost

defined by Sklansky [16] for the design of a filters for tracking submarines. To study

the variation of the smoothing parameters as a function of the relative importance

of the steady state error for a circular maneuver and the noise ratio, a series of

optimizations were carried out. The maneuver error e in Equation (2.92) is obtained

for a circular target path in steady state conditions. Substituting Equation (2.77)

and (2.69) in the cost function f , Equation (2.92) leads to the cost function

J = e2 + κρ2x2
o. (2.93)

Assuming that the smallest turn radius of a submarine with v = 3 knots speed is

45 m, leads to the angular velocity of ω = v/R = 0.034 rad/sec. Assume that

the variance of the measurement noise is 200 m, and weight the noise ratio by κ in

Equation (2.92). The cost function (Equation 2.93) is illustrated in Figure (2.12),

where κ = 1
100

and the sampling rate is assumed to T = 3s. The contour plot

(Figure (2.13)) illustrates the location of the minima. To illustrate the effect of

changing the weighting parameter, a series of optimizations are carried out and the

resulting set of α-β parameters are plotted. Figure (2.14) illustrates that the optimal

set of parameters monotonically decrease with an increase of κ. It can be seen that for

large values of the weighting factor, the smoothing parameters asymptotically tend to

α = 0.0032 and β = 0, which can be shown by setting the maneuver error in the cost

function to zero and solving for the optimal α-β. The shape of the curve does not

change for circular maneuvers of different radii, since the increase in the radius of the

trajectory is equivalent to increasing the weighting factor. The optimal smoothing

parameters are displayed in the α-β space in Figure (2.15) where the cost function is

a weighted combination of the noise-ratio and the steady-state maneuver error when

the target follows a circular path. Figure (2.15) shows various values of the weighting

factor κ along the line of optimal solutions. It can be seen that the optimal solutions

lie in the underdamped region only.
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Figure 2.12: Cost Function of a specific submarine motion
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Figure 2.14: Optimal Solution of α and β for tracking a circular path
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Figure 2.16: Optimal Solution of α, β and γ for tracking a circular path

Extending the same procedure to an α-β-γ tracker, leads to similar results for

the optimal smoothing parameter. The change of the parameters versus the weighting

factor is shown in Figure (2.16).

2.4.2 Straight Line Maneuver

In practice the tracker rarely reaches steady state because the target path is contin-

uously changing. Including the transient response of the tracker to the cost function

leads to a more realistic metric. Section (2.3.2) contains the development of the

transient error cost function for tracking a straight path. A closed form solution is

given for an α-β tracker (Equation (2.88)), and an α-β-γ tracker (Equation (2.91)).

Depending on the target path the tracker can exhibit a steady state error. We can

now modify Equation (2.93) by including the metric which measures the transient

performance, as follows:

f = Jαβ(γ) + κsse
2
αβ(γ)(t→ ∞) + κρ2x2

o , (2.94)

where Jαβ(γ) is the transient error metric and e2
αβ(γ) the steady state error of the

α-β tracker or the α-β-γ tracker. The weighting factor κss adjusts the influence
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for the steady state error. The transient error cost function in Equation (2.88) and

(2.91) are sorted as a function of velocity and acceleration. The effect of the velocity

and acceleration on the optimal set of the smoothing parameter of an α-β tracker is

shown in Figure (2.17). Three different sets of cost functions are used in this figure.

The three curves in the graph correspond to objecitve functions which weighs the

noise ratio to the tracking errors for targets moving with constant velocity, constant

acceleration and the steady state tracking error for a constant acceleration input.

The solid line in Figure (2.17) exhibits variation of the optimal parameters as

a function of the weighting parameter for targets with constant velocity. A closed

form expression of this optimal curve can be derived as the following algorithm shows

below. The objective function (Equation (2.94)) for the proposed case reduces to:

f = Jαβ,v + κx2
oρ

2 . (2.95)

The optimal solution is obtained by searching for the parameter where the gradient

of f vanishes. In this two parameter case the following equations need to be satisfied:

df

dα
=

dJαβ,v
dα

+ κx2
o

d(ρ2)

dα
= 0

(2.96)

df

dβ
=

dJαβ,v
dβ

+ κx2
o

d(ρ2)

dβ
= 0

Which can obviously be rewritten in the matrix form as:






dJαβ,v

dα
d(ρ2)
dα

dJαβ,v

dβ
d(ρ2)
dβ













1

κx2
o





 = 0 (2.97)

Equation 2.97 can be satisfied only if the determinant of the Jacobian matrix is zero,

since the vector [1 κx2
o]

′ never vanishes. Equating the determinant to zero, we can

solve for β resulting in the equation:

β =
α2

2 − α
, (2.98)

which matches the optimal solution proposed by Benedict and Bordner [2]. In addition

to Equation (2.98), the optimal set of the parameters α and β requires satisfaction of
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one of Equation (2.96), which for instance, is

0 = [2β(4βα + 4α2 − 4β + β2)]κ+ 2v2T 3(−α2 + 4α− 4 + β) . (2.99)

This equation determines the location of the optimal parameters on the curve given by

Equation (2.98) as a function of the weighting factor κ. In Figure (2.17) some values

of the weighting factor are shown. Very small penalty on the noise ratio optimizes

the settling time of the tracker, which is, of course, the shortest if the two poles lie

at z = 0. This leads to an infinitisimaly quick tracker response and is given at the

smoothing parameter α = β = 1. Increasing the penalty of the noise ratio, moves the

parameter α and β towards the critically damped curve.

The optimal curve for constant acceleration is obtained by setting the initial

velocity and the steady state weight to zero. Optimizing with respect to the transient

response of accelerating targets results in higher values for β as shown by the dash-dot

line in Figure (2.17). The equation describing this curve is obtained by applying the

same algorithm as for the case of constant velocity maneuver. It can be shown that

the dash-dot line in Figure (2.17) is described by:

β1,2 = 3 − 5

2
α± 1

2

√

(36 − 60α + α2) (2.100)

and the second equation that needs to be satisfied is:

0 = [4β3(4α2 − 4β + β2 + 4βα)]κ+ a2
s(α

2 − β)(2α− 4 + β)2 . (2.101)

The dashed line in Figure (2.17) which corresponds to a cost function which

includes the steady state error reveals that minimizing the steady state error of the

tracker by increasing the weight κss, forces β to maximize. The two equations de-

scribing the optimal solutions for the case where the objective function has a strong

penalty on the steady state error are derived as follows:

β1,2 = 2 − 2α± 2
√

(1 − 2α) (2.102)

0 = [(4α2 − 4β + β2 + 4βα)]2κ (2.103)
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Figure 2.17: Optimal Solution of α and β for a straight line maneuver

Observing Figure (2.17) reveals that a better noise smoothening is obtained with

smaller values of β and α, conversely, faster response is obtained with higher values

of β. The special case of constant velocity has its fastest response at α = β =

1. The three discussed objective functions containing constant velocity, constant

acceleration and steady state are illustrated in the subplots of Figure (2.18). A

change in the variance can easily translated into a change of the weighting factor

since those parameters appear as constants in the same metric.

The equation of the transient error cost functions of an α-β-γ tracker is also

divided in two fractions depending only on the velocity and the acceleration. Two

sets of the optimal smoothing parameter are shown in Figure (2.19), which have been

derived by the constrained parameter optimization algorithm. The upper plot uses

constant acceleration input without initial velocity, whereas the lower plot shows the

optimal solution for a combined cost function with an acceleration of 0.03m/s2 and a

velocity of 3 knots. As also observed in Figure (2.17), higher parameter cause a faster

system response. Conversely, for better noise smoothening, the optimal parameters
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Figure 2.18: Optimal Solution of α and β for a straight line maneuver with respect

to different objectives

are decreasing. A closed form expression of the optimal set of parameter can be

derived for a straight line target trajectory where the target is accelerating. Define a

matrix of the gradients of the terms of the cost function with respect to a, b and c,

we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dJabc,v

da

dJabc,a

da
d(ρ2)
da

dJabc,v

db

dJabc,a

db
d(ρ2)

db

dJabc,v

dc

dJabc,a

dc
d(ρ2)

dc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.104)

where the previously introduced transformation into the a-b-c space is carried out

(Equation (2.54)). Equating the determinant of Equation 2.104 to zero and solving

for the parameter b, leads to the optimal solution in the a-b-c space:

b1 =
(1 + c)2(a− 1) + a2c

c(2 − a)
(2.105)

b2 =
(1 + c)(c+ 1 − 1)

c
(2.106)

It can be seen that b1 reduces to the optimal solution of the α-β filter (Equation (2.98))



CHAPTER 2. FILTER ANALYSIS 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Weighting Factor κ

S
m

oo
th

in
g 

P
ar

am
et

er

acc = 0.03 m/s2    v = 0 m/s

α
β 
γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Weighting Factor κ

S
m

oo
th

in
g 

P
ar

am
et

er

acc = 0.03 m/s2    v = 1.54 m/s

α
β 
γ

Figure 2.19: Optimal Solution of α, β and γ for a straight line maneuver with two

different Cost Functions

if c = −1, whereas b2 vanishes for this case. The two additional conditions to be

satisfied cannot easily be simplified.

Since the sensor noise of a sonobuoy is fixed to some number, the optimal

solutions of the α, β and γ parameters are derived for a constant initial velocity and

changing acceleration of a target moving along a straight line. The objective function

for this case contains the transient maneuver error cost (Equations (2.88) or (2.91))

and the noise-ratio (Equations (2.68) or (2.69)). We arrive at the optimal solutions

shown in Figure (2.20) by using a numerical constrained optimization. For clarity

the α-β filter is first explored. The dash-dot line in this figure represents the optimal

parameters for zero acceleration given in Equation (2.98). Results are shown for three

different initial velocities, 1, 3 and 20 knots, where the circle emphasizes zero acceler-

ation, which lies on the dash-dot line. Increasing the initial velocity results in higher

values for α and β. Since the target is capable to accelerate and decelerate, optimal

solutions are derived for positive (solid line) and negative acceleration (dashed line).

Whereas the optimal parameters for a target with positive acceleration result in a



CHAPTER 2. FILTER ANALYSIS 44

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

α

β

20 knots

3 knots
1 knot

Sensor Noise

σ2 = 200 m

a = −4 m/s2

a = 4 m/s2

Stability        
critically damped
zero acceleration
negative acc.    
positive acc.    

Figure 2.20: Optimal α and β parameters at constant sensor noise and changing

acceleration

jump to the overdamped region, the decelarating target starts without a discontinu-

ity. Each case in Figure (2.20) is derived for a figure of acceleration between −4m
s2

and 4m
s2

. Negative initial velocity results in the same optimal solutions, whereas the

positive and negative acceleration curves are interchanged.

Similar results are obtained for the α-β-γ filter. Figure (2.21) shows the change

of the smoothing parameters versus the acceleration. It can be observed that for zero

acceleration the filter reduces to the α-β filter since the α-β filter is able to track a

non-accelerating target. Increasing the acceleration results in increasing γ and since

the rate of changing the velocity increases, β also increases.
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Figure 2.21: Optimal α, β and γ parameters at constant sensor noise and changing

acceleration

2.5 Remarks

This chapter has focused on the design of α-β-γ filters. The issue of determination

of stability volume is first addressed. A simple technique to simplify the procedure

to determine the stability bounds on the α, β and γ filters is proposed. This in-

cludes parameterizing the characteristic equation of the α-β-γ filter via a nonlinear

transformation to what is referred to as the a, b, c space. In this space, the charac-

teristic equation appears to be the product of the characteristic equation of an α-β

filter and a first order pole which is only a function of the parameter c. One can

now easily determine the bounds on the parameters with knowledge of the bounds

on the parameters of an α-β filter. Therefore the stability volume in the a-b-c is a

prism which can be transformed into the α-β-γ space. To quantify the performance
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of α-β-γ filters, various metrics are defined such as the noise ratio which is a figure

of demerit to represent the noise filtering capability of the tracker. A closed form

solution to the noise ratio is arrived at in the a-b-c space which reduces to the noise

ratio for the α-β filter when γ is equated to zero. The resulting solution is shown

to be different from that derived in the literature. Numerical simulations are carried

out to evaluate the veracity of the derived solution. Closed form equations to char-

acterize the transient performance of the α-β-γ tracker for straight line and circular

maneuvers are also derived. These are subsequently used in conjunction with the

noise ratio to determine the optimum set of the tracker parameters based on a cost

function which is a weighted combination of the noise ratio, the transient response

metric and the steady state error. Variation of the tracker parameters for different

weights of the cost function are studied to provide the designer with information for

the optimal selection of the α, β and γ parameters.



Chapter 3

Fuzzy Logic Approach of Target

Tracking

The fuzzy logic theory overcomes the difficulty of defining an explicit relationship

between the current system states and the actions required to achieve a certain sys-

tem performance by using linguistic rules. These rules could be determined with an

experts knowledge or simply by stating the required cause effect relation in common

language, which has the form of if-then statements. Furthermore, the rules could be

learned during some kind of training algorithm [17].

This chapter uses a simple fuzzy controller to introduce the fuzzy elements

interactions before exploring a more sophisticated representation of the fuzzy algo-

rithm. The rule base of the proposed fuzzy filter is determined by an analogy to the

optimal solution of the rest-to-rest maneuver of a second order system [6], where we

propose a relationship between the damping and stiffness determined by the rest-to-

rest maneuver to the smoothing parameter α and β.

47
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3.1 Principles of the Fuzzy Algorithm

3.1.1 Fuzzy Logic on an Example

The interaction between the fuzzy elements is first shown on an single–input–single–

output example, followed by description of a general fuzzy logic algorithm. Suppose

one is interested in keeping a constant flow out of a valve, one would open the valve

if the flow slows down and vice versa. The appropriate rules may formulated as:

• r14: IF flow is zero THEN valve opening is large

• r23: IF flow is small THEN valve opening is medium

• r32: IF flow is medium THEN valve opening is small

• r41: IF flow is large THEN valve opening is zero

A human operator might use these rules since he is capable of distinguishing between

the linguistic terms small, medium etc. Since the flow rate and the valve position are

quantified using crisp values, these rules cannot be applied directly to the system.

However, what one human operator determines the flow to be small, in contrast,

others state that the flow exhibits medium behavior. The resulting valve opening

depends on characterizing the current flow. The above two operators might negotiate

between the valve positions medium and small, which again are uncertainties of the

operator. Certain human operators also have different belief about the linguistic

terms small, medium, etc. These vague informations are modelled in the fuzzy theory

by assigning the input variables (here the flow) to memberships of linguistic terms

as opposed to declaring the input to a fixed value in the input space on which a

mathematical model calculates the required control. The membership functions, µA,

are defined over the entire universe of discourse such that every input has a specific

membership of a fuzzy set like large, medium, etc. The membership functions of

the above example are defined as triangular shapes over the universe of discourse
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Figure 3.1: Input and Output Membership function of the Example

[0, 3] as shown in Figure (3.1). The shape of the membership functions is arbitrary

and changes are reflected in different behavior of the fuzzy system. The membership

functions and the applied fuzzy algorithm may be represented in the continuous or

discrete space depending on the computational cost. Throughout this work only the

discrete representation is considered, whereas the continuous representation could be

applied in similar formulations.

For reasons of generality and brevity it is convenient to introduce a label for

each rule. Since each input could possible be related to every output, a matrix of

rules with the size of [number of input membership functions × number of output

membership functions] is constructed. Thus, the four given example rules are labeled

as shown above. The first rule, r14, for instance, shows that the first input membership

function is combined with the fourth output membership function. This labeling

scheme is also convenient with the use of confidences of each rule. A confidence of

a rule expresses the belief in this rule, and is a gain between zero and one. If more

than one rule is applied to one input membership function, the confidences should be
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normalized such that the sum equals one. This is not necessarily required, but its use

permits scaling the output. The general form of the fuzzy rule can now be written

as:

rij : IF x is Ai THEN y is Bj (cij) , (3.1)

where x and y are the input and output variables of dimension m and n. Each input

and output set contains pm and qn membership functions. For a single input–single

output fuzzy system the rule and confidence matrixes are of size [p1 × q1], whereas

for multi–input–output fuzzy systems the rule and confidence matrixes are of size

[p1 · p2 . . . pm × q1 · q2 . . . qn] thus avoiding higher order matrixes.

Since the input and often the output are crisp values, processing the crisp

values using linguistic rule bases requires the input to be fuzzyfied and the output to

be defuzzyfied. This procedure assigns a certain numerical value refered to as degrees

of membership functions (µAi) and vice versa for degrees on output memberships

(µBi) a crisp output value. Since both schemes differ from each other, they are

discussed separately. The input fuzzyfication assigns degrees of active membership

functions to a crisp value. As shown as in Figure (3.2), Part A the example input, x,

has non-zero membership in the input set zero and small with the degree of µA1(x̂)

and µA2(x̂). To explain the output defuzzyfication we need to construct first the

fuzzy output according to the fuzzy inference. Since this example input activates

the membership functions of zero (i = 1) and small (i = 2), which means that all

rules r1j and r2j, where j = 1 . . . q, need to be evaluated. According to the example

rules there are two rules r14 and r23. The first rule suggests: If the input is zero

then the output should be large, which means that the output membership function

large is activated. Since the input has a fractional membership of the input set

zero, the corresponding membership of the output set large needs also be adjusted.

For purpose of demonstration the simple truncation algorithm is applied, where the

output set large is truncated to the membership of the input set µA1(x̂). Similarly

the second fuzzy influence can be constructed. Part C in Figure (3.2) visualizes this
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Figure 3.2: Fuzzy Example Algorithm

algorithm. Note, that a multivariable input space is mapped in a hyper membership

set, where the inputs are combined with respect to each rule. Furthermore, since rule

r14 and rule r23 are firing, a compromise between these two suggested outputs needs

to be achieved. During this step, the and operation is carried out which is either

the algebraic (Addition) or logic (Maximum) operator. Combining the two fuzzy

influences with the addition operator yields the fuzzy output shown in Figure (3.2),

Part D. This linguistic (fuzzy) output is quite certain that the output should be

somewhat medium and also somewhat large, let us say somewhat between medium

and large. The human operator might be able to interpret this linguistic terms as

opposed to most technical applications requiring a crisp value. This final step of

defuzzyfication loses all the important information about the fuzzy output by reducing

it to one crisp value, the defuzzyfied output.
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3.1.2 A General Fuzzy Logic Approach

The above example of a fuzzy algorithm contains a lot of motivation for use of fuzzy

systems instead of equations describing the same process. However, implementing

the fuzzy algorithm in a lot more complex requiring a more sophisticated process.

Figure (3.3) recalls the steps taken by the fuzzy decision process.

The fuzzyfication maps the crisp value x̂ into the fuzzy set µA(x). A common

approach is the singleton fuzzyfication where a binary membership is used. Equa-

tion (3.2) represents the singleton method.

µA(x) =











1 if x = x̂ (continuous) or nearest xd (discrete)

0 otherwise
(3.2)

The fuzzy influence combines the input sets with the output sets based on the

fuzzy rules, which results in the fuzzy set with the membership µrij(x,y) for each

rule and the fuzzy rule base µR(x,y) combining the separate rules. The individual

membership functions are calculated as:

µrij(x, y) = µAi(x) ∩ µBj(y) ∩ cij , (3.3)

where ∩ is the AND-operator. If x is multivariate, each input set needs to be related

to the other according to:

µAi =
m∩
k=1

µAi
k
(xk) (3.4)

Combining the individual sets with the OR-operator (∪) yields the input-output-

relation:

µR(x, y) = ∪
i,j
µrij(x, y) , (3.5)
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Algebraic Mamdani

AND Product Min
OR Summation Max

Table 3.1: Common Fuzzy Intersections

where the indices i and j are within the range 1 to p1 · p2 . . . pm and 1 to q1 · q2 . . . qn.
The fuzzy intersection AND may be a algebraic product operator or a the logic

minimum operator. Whereas, the OR intersection can be derived using the addition

or maximum operator. These are the most popular fuzzy intersection, where the logic

operators in the literature referred to as Mamdani intersection. Table 3.1 summarizes

the most popular fuzzy intersections.

The fuzzy rule base Equation (3.5) can now be used to generate the fuzzy

output distribution for a given input set µA(x̂) obtained by the fuzzyfication process.

This procedure is known as the compositional rule of inference, which may be written

as:

µB(y) = µA(x̂) ◦ µR(x,y) , (3.6)

where “◦” is the composition operator and µB(y) is the degree of output membership

functions. The composition procedure is similar to the example in Figure (3.2) where

the suggested output by each rule is truncated and than added to get the final output

distribution. Therefore, the composition operator performs a comparison of the two

membership functions and summarizes over all possible values of x̂. The composition

operator for fuzzy sets defined on a continuous domain in a more general expression

may be written as:

µB(y) =
∫

x

µA(x̂)µR(x,y)dx (3.7)

and similarly in the discrete domain as:

µB(yd) =
∑

xd

µA(x̂d)µR(xd,yd) (3.8)

For a singleton fuzzyfication Equation (3.8) reduces to:

µB(yd) = µR(xdc, yd) , (3.9)
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where xdc is the discrete value closest to the input x̂.

Figure (3.4) illustrates the rule base given in Equation (3.5) for the fuzzy

example introduced above. The universe is discrete, and the AND and OR operators

are represented with the algebraic operations. The relational matrix represents the
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Figure 3.4: Relational Matrix of the above Example

shape of the fuzzy input and output sets and shows the underlying fuzzy algorithm.

Observing the relational matrix in Figure (3.4), illustrates the mapping of the input

space to the output space with respect to the four example rules (four spikes). The

influence of the rule confidences on the relational matrix is also shown in Figure (3.4),

where the confidence of the rule r14 is reduced to c14 = 0.5. Thus, the weight of

the output according to this rule reduces and the spike of the relational matrix is

therefore scaled down. If the input is singleton fuzzyfied, Equation (3.9) can be

applied, which means that the fuzzy output is given by the appropriate column of

the discrete relational matrix. Figure (3.5) shows such a slice through the relational

matrix at the crisp input value of 1.25.

As mentioned before, the fuzzy, imprecise output, µB(yd) needs to be trans-
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Figure 3.5: Discrete Fuzzy Output Membership

formed to a crisp value using a defuzzyfication scheme. The most popular defuzzy-

fication is the center of gravity defuzzyfication, which is defined for the continuous

and discrete domain as follows:

y(x) =

∫

Y µB(y)ydy
∫

Y µB(y)dy
y(xd) =

∑

Y d µB(yd)yd

∑

Y d µB(yd)
. (3.10)

Exploiting the Equation (3.10) and applying algebraic operators, reduces the calcu-

lation of the output to [4]:

y(xd) =

∑

Xd µA(xd)
∑

i µAi(xd)wi
∑

Xd µA(xd)
, (3.11)

where wi are the weights similar to the joints of an Associative Memory Network

(AMN). The relationship between the confidences and the weights can be shown to

be:

wi =
q

∑

j

cijy
c
j , (3.12)

where ycj is the center of the jth output membership function. For a singleton input
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fuzzyfication Equation (3.11) reduces to:

ys(x =
p

∑

i

µAi(x̂)wi =
p

∑

i

q
∑

j

µAi(x̂)cijy
c
j (3.13)

This representation is less computational expensive as opposed to storing the rela-

tional matrix and carrying out the matrix operations.

3.2 The Fuzzy Algorithm in Target Tracking

Unlike the fixed gain α-β filter the fuzzy logic based α-β filter changes the smoothing

parameter, α and β, as a function of the maneuver error and error rate with the

tracking performance comparable to a Kalman filter, but without modeling a target

system and a sensor noise model. Furthermore, the computational cost is less than

that of the Kalman filter. Moreover, the fuzzy algorithm reaches a decision by con-

sidering several different situations at the same time resulting in a more human like

decision.

3.2.1 The Fuzzy Logic Inputs

The maneuver error is now defined as the difference between the observed position

and the predicted position of the target. Since, the filter estimates the targets future

position, the maneuver error at the current time influences the choise of the appro-

priate smoothing parameter α and β. The maneuver error at the current time may

be written as:

e(k) = xo(k) − xp(k) . (3.14)

Besides the information “How close the prediction is to the true target position”, the

change of the maneuver error is also an important fact since different action must be

taken whether the maneuver error is about to increase or decrease. The error rate is

defined as follows:

∆e(k) = e(k) − e(k − 1) . (3.15)
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For purpose of generality of the target tracker, normalization of the maneuver error

and error rate are desired. Chan [5] introduced an effective normalization scheme,

where the normalization denominater is variable and depends on the magnitude of

the error. The following three situations may occur:

1. The magnitude of the error is less than the difference between the current and

previous observed position.

E(k) =
xo(k) − xp(k)

xo(k) − xo(k − 1)
(3.16)

2. The magnitude of the error is greater than the difference between the current

and previous observed position.

E(k) =
xo(k) − xp(k)

|xo(k) − xp(k)|
(3.17)

3. The predicted position equals the current observed position and the current and

previous observations are the same.

E(k) = 0 (3.18)

Plotting the Equations (3.16) to (3.18), yields the normalized error shown in Fig-

ure (3.6), which is a saturation function with changing slope and symmetric about

the origin. Since the normalized maneuver error lies within the interval [−1, 1], the

maximum absolute maneuver error rate is 2. Similar to the above normalization

scheme the error rate is also transformed into the interval [−1, 1] according to the

following equations:

∆E(k) =



























































E(k) − E(k − 1)
E(k − 1)

if |E(k) − E(k − 1)| < |E(k − 1)|

E(k) − E(k − 1)
|E(k) − E(k − 1)| if |E(k) − E(k − 1)| > |E(k − 1)|

0 if E(k) − E(k − 1) = E(k − 1) = 0

(3.19)
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This normalization scheme might be applied for each dimension separately, where

every normalized error and error rate contains the information about the relative

position of prediction and observation (sign of the error). In a multivariable dimen-

sional space one could calculate the magnitude of the error and the error rate, and

use those to determine the appropriate α and β. This is proposed by Chan [5] and

the corresponding error magnitude are defined as:

Ẽ(k)2 =

∑n
i Ei(k)

2

n
(3.20)

∆Ẽ(k)2 =

∑n
i ∆Ei(k)

2

n
, (3.21)

where the summations are carried out over the number of dimensions. These error

and error rate magnitude lie within the interval [0, 1]. On the contrary, the relative

position of the prediction to the observation and the direction of changing the error

are important to choose an appropriate control. Figure (3.7) illustrates the four

situations. The predicted position “A” in Figure (3.7) exhibits a positive maneuver

error and a positve error rate increases the error of the next time step, whereas a

negative error rate decreases the next error. On the other hand, a positive error rate

for the predicted position “B” in Figure (3.7) decreases the maneuver error of the

next time step. Likewise, a negative error rate induces the opposite effect.
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Hence, a normalized representation of the error and error rate is given in Equa-

tions (3.16)-(3.18) and Equation (3.19), a general set of input membership functions

can be defined. With regard to the normalization scheme, the input membership

functions are generated as shown as in Figure (3.8). The fact that large errors are

mirrored into the normalized bounds −1 and +1 leads to a larger region of sup-

port (ROS) of the negative-large (nl) and positive-large (pl) membership functions.

Furthermore, the other membership functions shrink around zero together.
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Figure 3.9: Rest-to-Rest Maneuver

3.2.2 The Fuzzy Logic Rule Base

The fuzzy logic rule base is built by combining the input membership sets via the

linguistic rules with the output membership sets. The linguistic rules are of the form

of Equation (3.1), where every possible input combination should be covered. In case

of the seven error and seven error rate input sets shown in Figure (3.8), a minimum

of 49 rules is required. To increase the modelling capability a input combination of

the maneuver error and error rate may call different output membership functions

at the same time with the use of continous confidences [4]. Determining the rules

is difficult and might be done with the help of experts knowledge about the system

[5]. In Chans work this expert’s knowledge is used to determine the specific amount

of the smoothing parameter α and β. The proposed fuzzy filter exploits an analogy

from system control theory, the rest-to-rest maneuver of a second order system [6],

to define appropriate rules.

The rest-to-rest maneuver requires a mass at rest to move as quickly as possible

to another desired position of rest. The control law is modelled in the form of a

non-linear spring-damper system shown in Figure (3.9). The coordinate system is

fixed at the desired final position of rest, so that the first rest is expressed as an

initial condition, and the controller of the rest-to-rest maneuver is designed to exhibit

Lyupanov stability. The results of this work [6] are used to determine the 49 rules as

explained in the following section.

The transfer function of a spring-mass-dashpot system shown in Figure (3.9)
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Figure 3.10: States and Control of the Rest-to-Rest Maneuver

can be represented in continuous time domain as:

G(s) =
x(s)

u(s)
=

m

s2 + 2ζω0s+ ω2
0

, (3.22)

where ω0 and ζ are the undamped eigenfrequency and the damping ratio. The transfer

function of Equation (3.22) is later used to define a relation between the smoothing

parameter α and β, and the undamped eigenfrequency and the damping ratio. The

non-linear control law is defined in [6] as follows:

u = −(k1 + k2(x− x(0))2)x− (c1 + c2(x− x(0))2)ẋ , (3.23)

where the constants k1, k2, c1 and c2 are determined to satisfy the above mentioned

performance. The solution of the original problem, the rest-to-rest maneuver, with an

initial position error and zero initial velocity is shown in Figure (3.10). We can infer

from Figure (3.10) that the stiffness increases from a non-zero value and the damping

starts at zero. The closer the mass to the final position, the higher the stiffness

and damping. This knowledge may now be used to determine the rules according

to which the control action is taken. A convinient structure of writing these rules is

shown in Table (3.2). Within this table all possible input combinations are captured,

since the normalized error, Equations (3.16)–(3.18), is entered in the first row and the

normalized error rate, Equation (3.19), is entered in the first column. The original
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Figure 3.11: States and Control of the Rest-to-Rest Maneuver for non-zero initial

position and velocity

rest-to-rest maneuver, explained above, is represented in Table 3.2 at the row ∆E

equals zero, where large errors require small stiffness and damping and zero error

requires large stiffness and damping. For similar reasons, the column with zero error

rate requires large stiffness and damping, trying to keep the error and error rate small.

As shown as in Figure (3.7) positive error and negative error rate exhibits the same

situation as negative error and positive error rate. Thus, the Table 3.2 is mirrored

symmetrical about the two main-diagonals, which is emphasized by the light and dark

gray table entries. The gray table entries are determined by the use of the modified

rest-to-rest maneuver, where the initial rest position is changed to different values

of initial position and velocity. For instance, the rule of positive medium normalized

error and positive medium normalized error rate are obtained by setting the initial

velocity and the initial position to 0.5 as shown in Figure (3.11). The rule table entry

in the upper right and lower left rectangulars are obtained with the same method.

Underlying to this method is the following rule observed by Figure (3.7):

• If the error decreases by itself (positive error and negative error rate and vise

versa), do not apply a large control (small stiffness and damping), only if the

error is small and the error rate is large increase the damping of the system to
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Entries E
ω0–ζ nl nm ns ze ps pm pl

nl S–L M–L L–L L–L S–L Z–M Z–S
nm S–M M–M L–L L–L M–M Z–S S–Z
ns Z–S S–M M–L L–L M–M S–Z M–Z

∆E ze Z–Z S–S M–M L–L M–M S–S Z–Z
ps M–Z S–Z M–M L–L M–L S–M Z–S
pm S–Z Z–S M–M L–L L–L M–M S–M
pl Z–S Z–M S–L L–L L–L M–L S–L

Table 3.2: Fuzzy Rule Base (Compare the linguistic Terms with Figure (3.8))

prevent overshoot!

• If the error increases by itself, increase the damping moderate to counteract

this situation

With the knowledge of the fuzzy rule base, Table 3.2, and the membership sets defined

in Figure (3.8) the fuzzy relational matrix can now be derived according to Equa-

tion (3.5). Using the singleton input-fuzzyfication and the Center of Gravity Method

to defuzzyfy the controllers output, the control surfaces shown in Figure (3.12) can

be calculated.

Since the fuzzy controller is defined in terms of stiffness and damping, it is

required to express those terms as smoothing parameter α and β. For this purpose

we recall the transfer function of the α-β filter derived in Chapter 2. The discrete

transfer function, Equation (2.7), shall be mapped into another discrete domain where

the terms stiffness and damping are defined. Thus, the area of the unit circle of the

z-domain is transformed into the left half plane, often refered to as the w-domain.

This mapping is described by the following equation:

z =
1 + w

1 − w
. (3.24)

Applying this transformation to the transfer function of Equation (2.7), yields the
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Figure 3.12: Stiffness and Damping Control Surface
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transfer function of α-β filter with respect to the w-domain.

G(w) =
−(2α + β)w2 + 2αw − α

(4 − 2α− β)w2 + 2αw + β
(3.25)

The w-domain exhibits similar behavior to the continous s-domain since their stabil-

ity regions are both defined in the left half plane. This similarity is used to relate

the stiffness and damping to the smoothing parameter α and β. Comparing the char-

acteristic polynomial of Equation (3.22) with this of Equation (3.25) leads to the

following relationship:

α =
4ζω0

2ζω0 + ω2
0 + 1

β =
4ω2

0

2ζω0 + ω2
0 + 1

(3.26)

Applying the transformation Equation (3.26) to the control surface shown in Fig-

ure (3.12) yields finally to the input-output-relationship between maneuver error and

error rate and the smoothing parameter α and β, which is shown in Figure (3.13).

During this mapping we assumed the direct relationship between stiffness and eigen-

frequency.

3.3 Summary

This chapter proposed a Fuzzy Logic Algorithm applied to the standard α-β filter

developed in Chapter 2. Unlike the fixed gain α-β filter, the fuzzy logic approach

adapts the smoothing parameter α and β as a function of the maneuver error and error

rate. Thus, the adaptive α-β filter is capable of tracking various types of maneuvers

whereas the fixed α-β filter can only be optimized for one trajectory and certain

sensor noise.

The fuzzy logic algorithm is first illustrated via single–input–single–output

example and is discussed in detail in section 3.1.2 following the scheme illustrated in

Figure (3.3). It is shown how the fuzzy relational matrix can be created using the

input and output membership sets and the fuzzy rules. Finally, the relational matrix

is used to calculate the output fuzzy set (µB) which is defuzzyfied for further usage.
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The final section discusses the implementation of the fuzzy logic algorithm

into the target tracking process. The linguistic rule base is determined by an analogy

to the rest-to-rest maneuver, where the system variables, stiffness and damping, are

derived. A relationship between those system variables and the smoothing parameters

α and β is proposed to conclude with the control surfaces shown in Figure (3.13).



Chapter 4

Tracker Testbed

4.1 Parameters for the Testbed Setup and Simu-

lation Execution

There are three types of parameters for our testbed. They are sensor field parameters,

trajectory generation parameters, and simulation parameters.

The first type relates to the characteristic of sensors field. The testbed sensor

field is a two-dimensional sensor array with three parameters, the dimension of the

sensor array, the distance between two sensors, and the detection range of each sensor.

The dimension of the sensor array determines the number of sensors in each direction.

The testbed sensor array has same number of sensors in both X and Y directions. If

a value ’n’ is assigned to the dimension of sensor array, the total number of sensors

would be ’n x n’. The X and Y distances are measured one center point to the other.

Each sensor has a circular detection field with its boundary determined by a user-

specified radius. Thus, detection range and distance control the density of the sensor

field. Using these three parameters, the sensor field could be adjusted to approximate

real situations having different sensor deployment patterns. In our testbed the initial

detection range is 1 kilometer. The distances between two sensors are set to be 2,

68
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5, and 10 kilometers for dense, medium, and sparse deployment cases, respectively.

The sensor measurement noise variances in position (range) and direction (angle) are

assumed to be provided by the manufacturer. These noises will be added to the true

trajectory sampling points during the execution of simulation.

The second type includes target initial position, initial velocity, initial acceler-

ation, and its radius of turn. Based on the magnitudes of the initial velocity in axes

X and Y, the initial direction is also derived. With these parameters specified, four

types of trajectory could be generated.

1. Straight line with constant velocity: Target travels with the initial velocity and

remain the same direction throughout the simulation time.

2. Straight line with constant acceleration: Target travels with the initial acceler-

ation, and remain the same direction throughout the simulation time.

3. Single gradual turn with constant angular velocity: With the radius of turn

specified, the initial velocity is converted into constant angular velocity. Target

travels in circle with this constant angular velocity throughout the simulation

time.

4. Single gradual turn with constant angular acceleration: With the radius of turn

specified, the initial velocity is converted into the initial angular velocity. The

magnitude of acceleration is converted into angular acceleration. Target travels

in circle with constant angular acceleration throughout the simulation time.

5. Interactive: Other than these options, the fifth type of trajectory generation

is also provided. In order to simulate different cases of target maneuvers, the

testbed allows the user to define trajectories interactively by using mouse click

points. These points are way-points along the simulated true trajectory which

is formed as a spline fit to these points. Within the sensor field specified in the

previous section, the user provides a series of mouse click points to define the
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way-points and thus the trajectory for a target. Each point, with coordinates

X and Y, stands for the location of a target at certain simulation time. The

time between two consecutive points is set to one unit. The total simulation

time is equal to the total number of points specified in the sensor field with the

first point excluded. Therefore, with different spacing and direction between

connective points, the user could provide different variations of acceleration

in X and Y directions, which facilitate the simulation of highly maneuvering

target.

The third type includes the parameters relavent to simulation, such as sim-

ulation time, sampling time, and number of Monte Carlo runs. Simulation time

determines the total time of each simulation run. Sampling time is the time duration

between two consecutive sensor scans.

4.1.1 Filter initialization for Simulation

In order to initialize the filters, at least two measurements are needed. That is,

the filters will not be activated until the first two measurements are obtained. The

initialization steps are carried out under the following conditions. First, if the first few

points of target trajectory locate outside the sensor detection range, these points will

be trimmed and not considered for filter simulation. Second, if the first measurement

is in the sensor detection range, while the next measurement is not obtained at the

second sampling time, the second measurement should be derived by interpolation.

4.1.2 Noise Measurement Generation in Simulation

In order to simulate a realistic measurement scenario, zero mean and user specified

variances for each sonsor are used to generate noise. Adding noise to each true lo-

cation point generates the noisy measurements of each target point. For example, if

at certain simulation time the target point is at (X, Y), the measurement of sensor
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n would be (X + Randn(0, σ2
n), Y + Randn(0, σ2

n)), where Randn(0, σ2
n) stands for

Gaussian distributed random number with zero mean and variance σ2
n for the sen-

sor n. If a target point is located within the overlapping range of different sensors,

the measurements from different sensors need to be fused. Since the sensor mea-

surement noise variances in position and direction are given in Polar coordinate, the

transformation of noise to the Cartesian coordinate is necessary.

Consider a two-dimensional radar system that measures range (Ro) and az-

imuth angle (ηo), and tracks in the x, y Cartesian coordinate system. The measure-

ments are formed through the equations [3]:

xo = Rocosηo, yo = Rosinηo, (4.1)

Then, the measurement covariance matrix is

Rc =

∣

∣

∣

∣

∣

∣

∣

σ2
xo

σ2
xoyo

σ2
xoyo

σ2
yo

∣

∣

∣

∣

∣

∣

∣

, (4.2)

where, using a first order expansion,

σ2
xo

= σ2
Ro
cos2ηo +R2

osin
2ηoσ

2
ηo

σ2
yo

= σ2
Ro
sin2ηo +R2

ocos
2ηoσ

2
ηo

σ2
xoyo

=
1

2
sin 2ηo[σ

2
Ro

−R2
oσ

2
ηo

]

σ2
Ro
, σ2

ηo
= range and azimuth angle measurement variances, respectively.
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4.1.3 Pairwise Sensor Fusion

In the proposed testbed, two α-β trackers, one for the X dimension the other for the

Y dimension, are used for the overall sensor field. This is a decoupled-filter approach

being used as an initial prototype for simplicity. Decoupled filters offer improved

computational simplicity although, for Cartesian coordinates, they ignore the X-Y

coupled errors. After studying the optimal and sub-optimal fusion techniques for α-β

tracker, [18] provide optimal forms for an α-β fusion tracker. One of these forms

employs a ”data compression” or measurement fusion approach, which we use here.

Equations below demonstrate the procedures and calculations needed for pairwise

measurement fusion, an approach which yields a variance-weighted fused measure-

ment.

• Z1 = measurement from sensor 1

• Z2 = measurement from sensor 2

• ZF = fused measurement

• σ2
1 = noise variance of measurement from sensor 1

• σ2
2 = noise variance of measurement from sensor 2

• σ2
F = noise variance of fused measurement

ZF = Z1 +W (Z2 − Z1),where,W =
σ2

1

σ2
1 + σ2

2

, (4.3)

σ2
F =

σ2
1σ

2
2

σ2
1 + σ2

2

, (4.4)
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4.1.4 Position Estimation of Filters in Simulation

Within the five types of filters, only the Chan’s α-β filter combines the errors from

both X and Y directions to update the α and β values. The other filters, including

the proposed α-β filter, calculate errors in x and y direction separately and therefore

update the filter gains separately in each direction. In the proposed α-β filter, error

in each direction serves as the ”crisp” input of the fuzzy logic controllers. Two fuzzy

logic controllers, one for generating the stiffness value, the other for the damping

value, are used. The new α and β values are calculated based on the stiffness and

damping values and used to predict the target position for the next simulation time.

4.1.5 Performance Measures for Simulation Output Analysis

In order to compare the performance of different filters, three performance measures

are adopted. To compare the accuracy of position prediction, the mean and variance

of prediction errors are calculated. The prediction error is obtained by taking the dif-

ference of the predicted position and target true position. To compare the complexity

of computation, the ”floating point operation count” is calculated. It indicates the

cumulative number of floating point operations at each time step for a specific filter.

4.2 The Functional Structure and the GUI

The simulation environment of this testbed consists of three major components, which

are the parameter setup, the trajectory generation and the simulation execution. The

simulation execution component is further decomposed into noise generation, filter

execution, and result analysis. These components are constructed using MATLAB

M-files and supported with graphical user interface (GUI). This main structure of the

Testbed is shown in Figure (4.1).

The steps for using the testbed are illustrated in the flow chart of Figure (4.2)
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Trajectory GenerationParameter Setup Simulation Execution

Filter SimulationNoise Generation Result Analysis

Main Program

Figure 4.1: System Structure of Simulation Testbed

Start Setup Parameters

Select Sensor Field Types

Select Trajectory Types

Generate Trajectory

Select Filter Types

Result AnalysisRun Simulation Stop

Figure 4.2: Flowchart of Simulation Testbed

and each step is explained below.

1. The Testbed can be started with executing the file start.m at the Matlab

prompt and the initial menu shown in Figure (4.3) pops up. From there the

user has three options: (i) reading the manual, (ii) entering the simulation setup

or (iii) informing about the Testbed designers.

2. Entering the simulation setup, the users obtains the trajectory dialogue box

shown in Figure (4.4). This interface gives various possibilities explain as ex-
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plained in the following steps.

3. In the “Model Parameter” dialogue box (Figure (4.5)), the users specifies the

values of target initial velocity, acceleration, radius of turn, sensor range and

direction noises, simulation time, sampling time, and number of Monte Carlo

runs.

4. Select sensor field type: In the “Sensor Spacing” list box, users select sensor

deployment spacing from three options: dense, medium, or sparse.

5. Select trajectory type: In the “Maneuver” list box, user selects trajectory gen-

eration type from five options: straight line, single gradual turn, straight line

with speed up, single gradual turn with speed up, or interactive.

6. Generate trajectory: After the “Generate Case” button is clicked,a cross-hairs

presents the user to specify the trajectory starting point (for cases 1, 2, 3, 4

discussed in section 4.1) or traveling points (case 5 in section 4.1).

7. Select filter type: In the “Tracker” list box, users select either one of the filters

or all filters for simulation and benchmark. They could be the α-β filter, the

α-β-γ filter, the Chan’s α-β filter, the Proposed α-β filter, or the Kalman filter.

8. Run simulation: A mouse click on the “Simulation” button triggers the execu-

tion of simulation.

9. Result analysis: The duration of the simulation is emphasized by the “waitbar”

shown in Figure (4.6). If the simulation is complete, the “Result Analysis” di-

alogue box (Figure (4.7)) displays the performance measures, error mean, error

variance, and floating point operation count, for each filter. Users could fur-

ther click on the buttons “Error Plot” and “Trajectory Plot” to view graphical

representation of the tracking performance.
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Modules Major Supporting Files Descriptions
Main
Program

start.m testbed start up program

generate field.m major user interface with:

• sensor field

• sensor field type, trajectory
type, and filter type selection
list boxes

• parameter setup, trajectory
generation, simulation execu-
tion buttons

Parameter
Setup

model parameters.m user interface for setting up the
parameters

set parameter.m update the parameter values when
changed

Trajectory
Generation

generate case.m generate trajectory

Noise
Generation

noise measurement.m generate noise measurement and
add to the true trajectory

Filter
Simulation

run simulation.m main file for simulation execution

alphabeta tkr.m α-β filter
alphabetagamma tkr.m α-β-γ filter
chan alphabeta tkr.m Chan’s α-β filter
proposed alphabeta tkr.m Proposed α-β filter
kf tkr.m Kalman filter
fuzzyengine.m fuzzy controller of proposed filer
alphatkr.fis fuzzy controller of α for Chan’s

filter
betatkr.fis fuzzy controller of β for Chan’s

filter
Result
Analysis

result analysis.m display simulation results for filters

calculate error meanvar.m calculate estimation error mean and
variance

Table 4.1: File Structure
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Figure 4.3: The Startup Menu
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Figure 4.4: Layout of the Simulation Setup
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Figure 4.5: Layout of the Model Parameter Dialogue
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Figure 4.6: Waitbar, indicates a running simulation

Figure 4.7: Layout of the Result Analysis



Chapter 5

Results

Following the analysis of the standard α-β-(γ) filter, the development of a fuzzy logic

modified α-β filter and the GUI Testbed, we may now discuss the filter performance

with respect to realistic target trajectories of a submarine.

The first section concentrates on the proposed fuzzy logic filter, where basic

filter results are shown, for instance, the selected smoothing parameter. The following

section describes certain benchmark test, comparing the five tracking filter, (i) fixed

α-β filter, (ii) fixed α-β-γ filter, (iii) Chan’s FL α-β filter, (iv) Kalman filter and

(v) proposed FL α-β filter. The tests are carried out as Monte-Carlo simulation for

different target trajectories.

5.1 The Proposed Fuzzy Gain α-β Tracker

In this section, we shall discuss the proposed fuzzy logic target tracker, in particuler,

the choice of the smoothing parameter α and β, and the influence of limits of the

discrete universe of discourse for the fuzzy output sets shown in Figure (3.8).

Consider the single gradual turn of the submarine shown in Figure (5.1). The

limits of the discrete universe of discourse are selected as shown in Table 5.1 after

81
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numerous iterations.

Stiffness Damping

lower upper lower upper
0.25 0.35 0.54 0.89

Table 5.1: First Set of the Limits of the Fuzzy Output Membership Sets

As will be shown later, these limits change the region where the α and β

parameter are active. We will first analyze the tracker for a benchmark maneuver

shown in Figure (5.1), where the RMS error is 253 [m]. This figure illustrates the true

trajectory by “x”s, the noisy measurements by squares and the estimated trajectory

by circles. The effect of initialization of the filter can be seen in addition to the

effects of missing observations. The missing observation occurs when the submarine

is outside the sensor range and is indicated by missing “squares” corresponding to

the “x”s. The target tracker predicts future location of the target along the direction

prior to the missing observations for every sampling instant. This can be seen in

Figure (5.1) from the 7th to the 12th sampling instant. When a target is detected

later, the tracker accomodates the error in the prediction and uses the measurement

to change the prediction of the future trajectory as shown at the 13th time instant.

The choice of the dynamic α and β parameters depends on the maneuver error

and error rate. Figure (5.2) illustrate the change in the α-β parameters within the

stability triangle for the trajectory illustrated in Figure (5.1) based on the proposed

fuzzy rules. It can be seen that the α-β parameters lie far from the point α=β=1,

which corresponds to the fastest tracker response. This is to accomodate for the noise

in the measurement. At the start of the tracking process, the tracker is characterized

by the parameter set α=β=1. It is interesting to note that the fuzzy logic α-β

scheduler places the parametes in the vicinity of the optimal α-β paramters (α =

0.5377 and β = 0.2018) as determined for a straight line maneuver with position

noise variance of 200 [m] and direction noise variance of 3 [degree]. It should be noted

that the “optimal” solution is optimal only for a target moving aloing a straight line
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with constant velocity and since realistic targets do not satisfy those constraint, the

fuzzy logic perturbs the filter parameters to accomodate maneuvering targets and the

measurement noise.

Finally, the effect of the changing the limits of the discrete universe of discourse

is shown on the next example. The limits are changed to the sets shown in Table 5.2.

Stiffness Damping

lower upper lower upper
0.2 0.8 0 1.3

Table 5.2: Second Set of the Limits of the Fuzzy Output Membership Sets

Figure (5.3) shows the region where the filter parameters reside for the tra-

jectory illustrated in Figure (5.1). Figure (5.4) illustrates the performance of the

filter for the current universe of discourse of the output sets. It is clear that the

predicted track is not as smooth as in the previous case since the system dynamics

are characterized by very fast response which results is a more aggressive filter which

can potentially amplify measurement noise. The limits of the discrete universe of

discourse of the output membership sets can be used to adapt the tracker to differ-

ent targets. By increasing the stiffness one could probably track highly maneuvering

targets more easily.

5.2 Benchmark Tests

Benchmark tests are carried out to perform comparison between different target

tracker where the Testbed (Chapter 4) can be used. Within the Testbed five tar-

get tracker have been installed which are listed below.

Tracker 1: Fixed parameter α-β filter

Tracker 2: Fixed parameter α-β-γ filter
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Tracker 3: Chan’s fuzzy logic modified α-β filter [5]

Tracker 4: Proposed fuzzy logic modified α-β filter

Tracker 5: Kalman filter

These tracker labels are used in the following tables for brevity. Each tracker has been

introduced in Chapter 4. One requirement on the Testbed was to simulate realistic

target trajectories, which now may be used to perform the benchmark test. These

tests evaluate the performance of the target trackers for a fixed trajectory, where

the observed data vary with different measurement noise with every Monte Carlo

run. The target tracker performance is basically evaluated on four realistic target

maneuvers of a submarine, which are:

Maneuver 1: Targets moving with constant speed on a straight line

Maneuver 2: Targets moving with constant acceleration on a straight line

Maneuver 3: Targets moving with constant speed on a single gradual turn

Maneuver 4: Targets moving with constant acceleration on a single gradual turn

The four benchmark target maneuvers are shown in Figure (5.5). In addition, three

sensor distributions are provided for each maneuver which are (i) dense, (ii) medium

and (iii) sparse as illustrated in Chapter 4. The following discusses the target tracker

performance for those three sensor distributions and the four benchmark trajectories

listed above. The simulations have been performed over 50 Monte Carlo runs with a

sensor noise characteristic of 200 [m] position and 3 [deg] of direction variance. The

target trajectories are generated with a fixed sampling time of 60 seconds over a time

window of 1200 seconds, which means 20 successive scans.
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Figure 5.5: The Four Benchmark Target Maneuvers including Example Noise

Dense Sensor Field

The sensor distribution of a dense sensor field is shown in the Chapter 4, where the

number of missed observations is possibly low. The simulation results are listed in

Table 5.3.

Since the smoothing parameter α and β are optimal parameters calculated

for a target moving with constant speed on a straight line and the corresponding

sensor noise characteristic, the fixed gain α-β filter exhibits the lowest maneuver error.

Both, the Kalman and the fixed gain α-β-γ filter are designed to track accelerating

targets. Simulations of the Kalman filter without modeling the acceleration as process

noise has shown excellent performance for this maneuver, whereas the maneuver error

increases in case of accelerating targets. As shown in Section 5.1, the fuzzy logic

modified smoothing parameters are in the region of the optimal α-β parameters,

which leads to a similar maneuver error as the fixed gain filter. The fixed gain α-β-γ

tracker is as expected, the filter with the lowest maneuver error since its parameter

are chosen to perform optimal. The Kalman filter also exhibits a low maneuver



CHAPTER 5. RESULTS 88

Filter Maneuv. 1 Maneuv. 2 Maneuv. 3 Maneuv. 4

Mean Var. Mean Var. Mean Var. Mean Var.

1 141 12792 211 25386 251 22259 436 120538

2 168 20286 189 24348 225 19276 397 94391

3 185 21779 227 52676 275 44510 333 57686

4 149 13563 204 23780 253 24382 439 113478

5 198 36173 190 27188 246 25604 376 95828

Table 5.3: Simulation Results for a dense Sensor Field at 60 [s] sampling time

Error Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

Mean 224 222 271 223 263

Var. 2853 33360 67674 30171 35603

Table 5.4: Simulation Results for a dense Sensor Field at 30 [s] Sampling Time

error since the Kalman filter is designed for accelerating targets. Even for the single

gradual turn, the fixed gain α-β-γ filter exhibits a reasonable performance. In the

case of targets traveling with constant speed all five target tracker exhibit similar

performance. Whereas tracking targets with constant acceleration yields different

performances of the five target trackers. In general, the maneuver error is higher than

for the other maneuvers for Maneuver 4, and the fixed gain α-β and the proposed

fuzzy logic modified gain α-β filter show a higher maneuver error, whereas the Kalman

filter and Chan’s fuzzy logic gain modified α-β filter show relatively low maneuver

errors. However, decreasing the sampling time from 60 seconds to 30 seconds, yields

an improvement of the performance. Table 5.4 shows the maneuver errors for a

sampling time of 30 seconds. Decreasing the sampling time increases the number of

successive scans, which in turn yields a better performance.
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Filter Maneuv. 1 Maneuv. 2 Maneuv. 3 Maneuv. 4

Mean Var. Mean Var. Mean Var. Mean Var.

1 381 108535 700 411456 749 541677 1523 1635908

2 1786 9770645 1135 1159524 1050 1159934 1612 2200747

3 583 307365 1172 1386552 753 562431 1249 1443696

4 378 111253 666 402310 687 522226 1548 1845937

5 405 123283 1173 990780 809 488069 1629 2054990

Table 5.5: Simulation Results for a medium Sensor Field at 60 [s] sampling time

Filter Maneuv. 1 Maneuv. 2 Maneuv. 3 Maneuv. 4

Mean Var. Mean Var. Mean Var. Mean Var.

1 1682 1227601 1841 2060016 3392 7071981 7892 64618001

2 3031 12065839 3743 22692198 5159 31505394 10126 175835941

3 2412 4627991 3058 13744394 6152 55393143 12519 231254121

4 1619 1205443 1613 1948927 3572 7245144 7799 65240824

5 4335 25675807 3473 11642534 8251 64635098 12914 255547298

Table 5.6: Simulation Results for a sparse Sensor Field at 60 [s] sampling time

Medium and Sparse Sensor Field

The simulations with a medium or sparse sensor field are similar to those of the

dense sensor field. The differences are in generating the target trajectory. Since the

distances between the sensors becomes larger, a longer target trajectory is required

to obtain successive scans. The simulation results are listed in Tables 5.5 and 5.6.

The proposed target tracker exhibits an excellent performance for a medium or

sparse sensor field. However, increasing the sampling time leads to a similar behavior

mentioned for the dense sensor field. The question arises how the sampling time

may be included in the fuzzy logic α-β scheduler since certain sampling times exhibit
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Tracker 1 Tracker 2 Tracker 3 Tracker 4 Tracker 5

FLOPS 470 974 (941) 2287 8282

Table 5.7: FLOPS used by the Target Tracker for 20 scans

different performances. Future work proposes a sampling time depending mapping

between the control system parameters stiffness and damping and the smoothing

parameter α and β.

Floating Point Operations

Measuring the computational cost accurately is not a feasible procedure in MATLAB,

which provides a counter for floating point operations (flops) where the most impor-

tant operations are counted (for example: additions and subtractions are counted as

one flop). The used flops of every target tracker is listed in Table 5.7, where the target

trajectory consists of 20 points. As expected, the fixed α-β filter requires less com-

putational effort than the other, and the Kalman filter requires the most resources

because of its complexity. The value of Chan’s fuzzy logic filter differs from the

proposed because Chan’s filter is coded using the MATLAB Fuzzy Toolbox, where

the fuzzy evaluation at every sampling time is not counted as flops. For reasons

of flexibility, the proposed fuzzy logic filter does not require this toolbox, and each

fuzzy evaluation is counted as 54 flops. Thus, one fuzzy evaluation might be counted

as 54, and for 20 evaluations Chan’s flops need to be increased by approximately

54flops × 20 = 1080flops.

5.3 Remarks

This chapter has illustrated the target tracking process for the Anti-Submarine War-

fare. Different tracking filter have been used to conduct performance comparison for
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some benchmark target trajectories and three sensor field distributions. The first

section has shown that the proposed fuzzy logic scheduler selects α and β within a

optimal region. Furthermore, the active region of the fuzzy logic may be adopted

to achieve certain performances by changing the limits of the discrete universe of

discourse of the fuzzy output functions stiffness and damping.

The similarities in choosing the smoothing parameters of the “optimal” fixed

gain and fuzzy logic modified gain α-β filter are reflected in the simulation results,

where the proposed fuzzy tracker mostly improves the performance of the fixed α-β

filter. Finally, it has been shown that tracking within a medium or sparse sensor field

becomes more difficult since we lack observed data. Whereas, the proposed fuzzy

logic gain modified α-β filter has shown acceptable tracking performance where the

maneuver error is been small compared to the other filter.



Chapter 6

Conclusion and Recommendation

The examination of the applicability of Fuzzy Mathematics and Logic for association

and tracking applications has shown, first of all, that such methods are fundamentally

viable, at least for target tracking. The literature review of Phase I has shown that

such methods have frequently if not consistently demonstrated comparable of better

performance when compared to either fixed coefficient or Kalman type filters, for

a variety of problem types. This is not to say that such methods are categorically

better for association and tracking problems. Typical tradeoffs on target tracker

are expected to depend on a variety of parameters such as the number of targets,

target maneuverbility, environment and sensor characteristics such as resolution and

sampling rate among possibly other parameters. In this work five target tracker have

been tested on several target trajectories by performing Monte Carlo simulations.

It has been shown that the proposed fuzzy logic gain modifying α-β filter exhibits

acceptable performance.

The focus on this work has centered on the modern-day Anti-Submarine War-

fare problem and a particular type of sensing (sonobuoys) and target environment.

In that particular environment, this research has examined the use of fuzzy logic

methods for adaptive parameter control for widely known α-β filter. In essence, this

approach generates a pseudo-adaptive filtering scheme in which the filter coefficients

92



CHAPTER 6. CONCLUSION AND RECOMMENDATION 93

are set by the fuzzy logic controller at each simulation time interval according to

problem condition and estimated error and error rate. A distinctive aspect of this

work is on a detailed research of the fixed α-β-γ filter to characterize its performance.

The α-β-γ filter has analyzed with the intention of eventually developing a fuzzy α-

β-γ filter and to characterize the α-β filter which is a subset of the α-β-γ filter. This

aspects and the employment of such an approach, to our knowledge, has not been

previously researched. The results are briefly listed below:

• proposing a simple technique to simplify the performance derivations of the

α-β-γ filter via a non-linear transformation

• introducing the stability prism in the a-b-c space

• arriving at a closed form solution of the noise-ratio in the a-b-c space

• evaluating the veracity of the closed form solution of the noise-ratio for the α-β

filter which is different from those derived in the literature

• deriving closed form solutions to characterize the transient performance of the

α-β-γ filter

• performing an optimization to provide the designer with information for the

optimal selection of the α, β and γ parameter

• determining a fuzzy rule base by an analogy to the rest-to-rest maneuver in

terms of stiffness and damping

• proposing a control-theoretic relationship between the smoothing parameter α

and β and the rule base parameter stiffness and damping

The Testbed has been developed as a graphical user interface controlling var-

ious kinds of simulation parameter. The Testbed performance entails:

• realistic simulation of the sensor field
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• generating realistic target trajectories

• user selectable target tracker

• build-in metrics for comparison
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Appendix A

Kalman Filter Process Noise

The performance of the Kalman filter is highly depended on the model approximat-

ing the real system. In this work a second order decoupled Kalman filter has been

used. Which means that the Kalman filter is designed to track targets with constant

velocity, and the acceleration is modeled as process noise. The uncertainty of the

submarine motion due to the unknown acceleration makes it difficult to determine a

specific value for the process noise. The influence of the process noise assumption on

the mean tracking error is shown in Figure (A.1), where a trajectory without missing

observations has been simulated over 50 Monte Carlo runs. As expected, the ma-

neuver error is high if the process noise is set to be zero, since the model does not

contain any assumptions about an accelerating target. As is clear from Figure A.1,

the assumed variance of the process noise has a significant effect on the resulting

mean tracking error. It can be seen that a specific value of the process noise results

in a minimum tracking error for a target maneuvering with constant acceleration.

The selection of the process noise is an open research issue which the authors hope

to address in the future.
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Figure A.1: The Influence of the Process Noise on the Maneuver Error Mean


