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Abstract

Optimal sets of the smoothing parameter (α, β and
γ) are derived for a sampled data target tracker. A
constrained parameter optimization problem is for-
mulated for specific trajectories of the target, which
includes the noise in the measurement, the steady
state error and the transient response of the filter.
This work considers two classes of target trajectories,
circular and straight line maneuvers. Closed form ex-
pressions for the steady state error and the sum of
the square of the errors capturing the transient be-
havior are derived for a straight line trajectory where
the target moves with constant acceleration and a
circular trajectory with the target moving at con-
stant speed. The constrained optimization includes
besides the maneuver errors a metric of noise capac-
ity strength, expressed by the mean square response
of the filter to white noise. An optimal selection of α,
β and γ parameters is provided for various penalties
on the noise filtering.

1 Introduction

Target tracking and predicting is realized in track-
while-scan systems, which are sampled data filters,
based on previously observed positions containing
measurement noise. The performance of these filters
is a function of its noise smoothing behavior and its
transient system response. However, these are com-
peting metrics and a tradeoff is desired based on the
objective of the designer.

A filter developed in the mid 50’s, the α-β tracker, is
popular because of its simplicity and therefore com-
putational inexpensive requirements. This permits its
use in limited power capacity applications like pas-
sive sonobuoys. The α-β filter performance has been
described by Sklansky [1] and various improvements
have followed ([2], [3] and [4]). Sklansky’s early work
delineated an optimization process with the dual ob-
jectives of minimizing the noise ratio and steady state
maneuver error for a target on a circular trajectory.

Throughout this work closed form solutions are deter-
mined for the transient maneuver error, the steady
state error and the noise ratio of an α-β-γ filter to
gauge its tracking performance. These metrics are
exploited to optimally select the set of the smoothing
parameters which minimize the noise transmission ca-
pability and the tracking error. The evaluation of the
maneuver error is based on certain target trajectories
like straight line maneuvers and targets moving on a
circular path which are used to construct various cost
functions for the constrained optimization algorithm.

2 Performance Metrics

Unlike the α-β tracker, the α-β-γ filter is capable of
tracking an accelerating target without steady-state
error. Besides predicting the position, the velocity is
also predicted by the α-β-γ filter. Its equations are
given by:

xp(k + 1) = xs(k) + Tvs(k) +
1

2
T 2as(k) (1)

vp(k + 1) = vs(k) + Tas(k) , (2)

where the smoothed parameters are derived with the
previous prediction and the weighted innovation as
follows:

xs(k) = xp(k) + α(xo(k) − xp(k)) (3)

vs(k) = vp(k) +
β

T
(xo(k) − xp(k)) (4)

as(k) = as(k − 1) +
γ

2T 2
(xo(k) − xp(k)) (5)

Applying the z-Transform to Equations (1) to (5) and
solving for the ratio

xp

xo
leads to the transfer function

in z-domain which is

G(z) =
xp

xo

= (6)

α + (−2α − β + 1
4γ)z + (α + β + 1

4γ)z2

z3 + (α + β + 1
4γ − 3)z2 + (−2α − β + 1

4γ + 3)z + α − 1

The roots of the characteristic polynomial (CP), the
denominator of the transfer function, are required to



lie within the unit circle to guarantee stability. Jury’s
Stability Test [5] yields the constraints on the α, β
and γ parameters as follows:

0 < α < 2 , 0 < β , 0 < γ (7)

β < 4 − 2α , γ <
4αβ

2 − α
(8)

This volume in the α-β-γ space defines the constraints
for the subsequent optimization [6].

2.1 Noise Smoothing Performance

The noise filtering capability of the tracker is charac-
terized by the noise ratio, defined as the ratio of the
root mean square value (RMS) of the system response
to the RMS value of the noisy input, which is:

ρ ≡

√

x2
p

x2
o

(9)

Since, we require the tracker to reject measurement
noise, a small value of ρ implies an excellent filtering
of noise. If the input noise is assumed to be white
noise, the following relationship can be derived [6]:

ρ2 =
−(4ba2 + 2ab2 + 4b2) − 4b(1 + c)k1

2a(b + 2a − 4)b + a(1 + c)k2
(10)

k1 = k11c
2 + k12c + k13

k11 = 4a + 2a3
− ab + ba2

− 6a2

k12 = ba2 + ab2
− 6ab − 2a3 + 8a

k13 = 6a2
− 2ab2

− 4ba2 + 4a − 2b2 + 7ab

k2 = (b + 2a − 4)(c2a − ca − c2
− 2b + bc + 1) ,

where the transformation into the a-b-c space has
been introduced. In this space, the characteristic
polynomial is represented as

(z + c)(z2 + (a + b − 2)z + 1 − a), (11)

where the second order factor has a form which is
identical to the characteristic equation of the α − β
filter and the third pole is real and is located at
−c. Comparing the denominator of Equation (6)
with Equation (11), the following transformation is
derived:

α = 1 + c(1 − a)

β = a(1 + c) +
1

2
b(1 − c) (12)

γ = 2b(1 + c).

From Equation (12), we can infer that c equals −1
when γ = 0, and furthermore a and b degenerate to
α and β.

e =
4R sin3(ωT

2 )
√

sin2(ωT
2 )[((2 − α) cos ωT + α + β − 2)2 + α2 sin2 ωT ] + γ( γ

32 (cos ωT + 1) − α
4 sin2 ωT )

(16)

Therefore, Equation (10) reduces for the α-β filter
to the noise-ratio:

ρ2 =
2α2 + αβ + 2β

α(4 − β − 2α)
(13)

which differs from those derived by Sklansky [1] and
Benedict and Bordner [2]. Equation (10) gauges the
influence of noise on the output of the α-β-γ filter by
using the unique transformation of Equation (12).

2.2 Tracking Maneuver Errors

Besides rejecting the noise, the maneuver error needs
to be minimized. In this work, we endevour to de-
rive closed form expressions for the steady state er-
rors and the sum of the square of the errors which
captures the transient behavior of the α-β-γ filter.
This requires the specification of predefined target
trajectories. The two classes of trajectories used in
this work are straight line trajectories where the tar-
get is moving with constant acceleration and circu-
lar trajectories with the target moving at constant
speed. The maneuver error is defined as the differ-
ence between the prediction and the observed posi-
tion, which is called the innovation in the smoothing
equations (3)-(5). Similar to the transfer function
for the input-output relationship, the maneuver error
transfer function can be derived as follows:

eαβγ =
(z − 1)3xo

CP
. (14)

Equation (14) reduces to the α-β filter by setting γ
to zero.

eαβ =
(z − 1)2

z2 + (α + β − 2)z + (1 − α)
xo (15)

2.2.1 Circular Trajectories: Assuming
that the target traces a circular path while moving
at constant speed resulting in a constant angular
velocity, the maneuver error can be resolved into
components ex and ey in the x and y directions
respectively. Substituting the circular path tra-
jectory into Equation (14), we can show that the
magnitude of the steady-state maneuver error is
constant at all sampling instants, and only the phase
is changing with each interval [1]. The magnitude of
the steady-state error of a target on a circular path
is given in Equation (16). To determine the steady
state error for an α-β filter, we can substitute xo

in Equation (15), or set γ to zero in Equation (16).
Both lead to the maneuver error for the α-β filter,



e =
4R sin2(ωT

2 )
√

[(2 − α) cos ωT + α + β − 2]2 + α2 sin2 ωT
,

(17)
which is the same as that derived by Sklansky [1].

2.2.2 Straight Line Maneuver: Assuming
the target trajectory to be a straight line, the coordi-
nate system can always be placed such that one of the
axes is coincident with the trajectory and the prob-
lem thus reduces to single dimension. The observed
position for an accelerating target (as) with initial
velocity (v) can now be determined in the z-domain,
so that the definition of the error becomes:

eαβγ =
1
2asT

2z(z + 1) + vTz(z − 1)

CP
. (18)

From Equation (18) the steady-state error can be de-
rived by using the final value theorem [5]. Due to
the acceleration, the α-β filter exhibits a steady-state
error of:

eαβ(t → ∞) =
asT

2

β
, (19)

whereas the steady-state error of the α-β-γ filter van-
ishes.

The transient response can be characterized by a met-
ric which is defined as the sum of the square of the
tracking errors as time tends to infinity. This metric
can be defined in the discrete time domain as

J =

∞
∑

k=0

Te2(k) . (20)

It can be calculated by simulating the response of the
transfer function given in Equation (18) and summing
the resulting error. Instead, of using simulations, a
closed form expression can be derived using Parse-
val’s Theorem [5]. Similiar to the derivations of the
noise-ratio, the α-β-γ filter is transformed to the a-
b-c space, where the metric of Equation (20) can be
shown to be:

Jabc =
2(c − ca − 1)T 3v2

a(2a + b − 4)(c − 1)[c(a + b + ca) − (1 − c)2]

+
1
2a2

sT
5(c(a − 1) − 1)

ab(1 + c)[c(a + b + ca) − (1 − c)2]
. (21)

Equation (21) cannot be reduced to an α-β tracker by
simply substituting c with −1 because this tracker
exhibits a steady-state error for a target moving
with constant acceleration. Consequently, solving for
Equation (20) requires the subtraction of the steady-
state value, defined in Equation (19). The transient
response metric now reduces to:

Jαβ =
1
4a2

sT
5(2β + αβ + 2α2)

αβ3

+
v2T 3(α − 2)

αβ(2α + β − 4)
+

vasT
4

β2
. (22)

3 Design of Optimal Filters

Selection of the smoothing parameters within the re-
gion of stability is a function of the targets trajectory,
the noise in the measurement, the steady state error,
and the transient response of the filter. To arrive at
the optimal set of parameters, a constrained parame-
ter optimization problem is formulated. This is feasi-
ble since closed form expressions for various metrics
have been derived in Section 2. Based on these met-
rics, closed form solutions for the optimal parameter
are derived for certain target trajectories.

Defining a cost function which consists of two terms:
the first, is a function of the tracker error and the
second is a function of the noise ratio. This provides
us with the flexibility to include steady state error,
transient error etc. and permits us to weight them
based on their importance. Thus, the cost function
becomes:

f ≡ f(e, ρ, κ) (23)

where κ is a weighting factor to penalize the contri-
bution of one term relative to the other. The con-
straints for the optimization are defined by the sta-
bility region of the tracker defined by Equations (7)
and (8). Different metrics have been derived to cap-
ture the tracking error for specific maneuvers such as
straight line (Equation (21)) or circular target path
(Equation (16)). The choice of the appropriate cost
function depends on the goal of the optimization.

3.1 Circular Trajectory

To study the variation of the smoothing parameters
as a function of the relative importance of the steady
state error for a circular maneuver and the noise ratio,
a series of optimizations have been carried out. The
maneuver error e in Equation (23) is obtained for a
circular target path in steady state conditions. Sub-
stituting Equation (17) and (13) in the cost function
f , Equation (23) leads to the cost function

J = e2 + κρ2x2
o. (24)

Assuming that the smallest turn radius of a sub-
marine, for instance, with v = 3 knots speed is
45m, leads to the angular velocity of ω = v/R =
0.034 rad/sec, and furthermore, assume that the vari-
ance of the measurement noise is 200 m2. To illus-
trate the effect of changing the weighting parameter,
a series of optimizations are carried out and the re-
sulting set of α, β and γ respectively parameters are
plotted. Figure (1) illustrates that the optimal set of
parameters monotonically decrease with increasing κ
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Figure 1: Optimal Solution of α, β and γ for tracking

a circular path

until a final value for large penalty on the noise-ratio
is reached. The shape of the curve does not change
for circular maneuvers of different radii, since the in-
crease in the radius of the trajectory is equivalent to
increasing the weighting factor.

3.2 Straight Line Maneuver

In practice the tracker rarely reaches steady state be-
cause the target path is continuously changing. In-
cluding the transient response of the tracker in the
cost function leads to a more realistic metric. A
closed form solution is given for an α-β-γ and an α-
β tracker in Equations (21) and (22). We can now
modify Equation (24) by including the metric which
measures the transient performance, as follows:

f = Jαβ(γ) + κsse
2
αβ(γ)(t → ∞) + κρ2x2

o , (25)

where Jαβ(γ) is the transient error metric and
e2
αβ(γ)(t → ∞) the steady state error of the α-β

tracker or the α-β-γ tracker respectively. The weight-
ing factor κss adjusts the influence for the steady
state error. The effect of the velocity and acceler-
ation on the optimal set of the smoothing parameter
of an α-β tracker is shown in Figure (2). The three
curves in the graph correspond to objecitve functions
which weight the noise ratio to the tracking errors for
targets moving with constant velocity, constant accel-
eration and steady state tracking error for a constant
acceleration input.

The solid line in Figure (2) exhibits variation of the
optimal parameters as a function of the weighting pa-
rameter κ for targets with constant velocity. A closed
form expression of this optimal curve can be derived
as follows. The objective function in Equation (25)
reduces for the proposed case to:

f = Jαβ,v + κρ2x2
o , (26)
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Figure 2: Optimal Solution of α and β for a straight

line maneuver with certain values of κ

where Jαβ,v is the transient cost for constant velocity.
The optimal solution is obtained by searching for the
parameters where the gradient of f vanishes, which
can be rewritten as:

[

∂Jαβ,v

∂α

∂(ρ2)
∂α

∂Jαβ,v

∂β

∂(ρ2)
∂β

]

[

1

κx2
o

]

= 0 . (27)

Equation (27) can be satisfied only if the determi-
nant of the Jacobian matrix is zero since the vector
[1 κx2

o]
′ never vanishes. Equating the determinant

to zero, we can solve for β resulting in the equation:

β =
α2

2 − α
, (28)

which matches the optimal solution proposed by
Benedict and Bordner [2]. In addition to Equa-
tion (28), the optimal set of the parameters α and
β require satisfaction of one of Equations 27, which
for instance, is

0 = [2β(4βα+4α2
−4β+β2)]κ+2v2T 3(−α2+4α−4+β) .

(29)
This equation determines the location of the optimal
parameters on the curve given by Equation (28) as a
function of the weighting factor κ. In Figure (2) some
values of the weighting factor are shown. Very small
penalty on the noise ratio optimizes the settling time
of the tracker, which is, of course, the shortest if the
two poles lie at z = 0. This leads to an infinitisimaly
quick tracker response and is given at the smoothing
parameters α = β = 1. Increasing the penalty of the
noise ratio, moves the parameter α and β towards the
critically damped curve.

The optimal curve for constant acceleration is ob-
tained by setting the initial velocity and the steady
state weight to zero. Optimizing with respect to the
transient response of accelerating targets, results in



higher values for β as shown by the dash-dot line in
Figure (2). The equation describing this curve is ob-
tained by applying the same algorithm as for the case
of constant velocity maneuver. It can be shown that
the dash-dot line in Figure (2) is described by:

β1,2 = 3 −
5

2
α ±

1

2

√

(36 − 60α + α2) (30)

and the second equation that needs to be satisfied is:

0 = [4β3(4α2
−4β+β2+4βα)]κ+a2

s(α
2
−β)(2α−4+β)2 .

(31)

The dashed line in Figure (2), which corresponds to
a cost function which includes the steady state er-
ror, reveals that minimizing the steady state error of
the tracker by increasing the weight κss, forces β to
maximize. The two equations describing the optimal
solutions for the case where the objective function has
a strong penalty on the steady state error are derived
as follows:

β1,2 = 2 − 2α ± 2
√

(1 − 2α) (32)

0 = [(4α2
− 4β + β2 + 4βα)]2κ (33)

Figure (2) reveals that a better noise smoothening is
obtained with smaller values of β and α, conversely,
faster response is obtained with higher values of β.
The special case of constant velocity has its fastest
response at α = β = 1. Varying the weighting factor
κ can also be interpreted in changing the sensor noise
variance since both parameters multiply the noise-
ratio.

Similiar to the α-β filter, optimal sets of the smooth-
ing parameter of an α-β-γ filter are derived and may
be display likewise in the upper plot of Figure 1.

A closed form expression of the optimal set of parame-
ters can be derived for a straight line target trajectory
where the target is accelerating. Constructing a ma-
trix of the gradients of the terms of the cost function
with respect to a, b and c and equating the determi-
nant to zero and solving for the parameter b, leads to
the optimal solution in the a-b-c space:

b1 =
(1 + c)2(a − 1) + a2c

c(2 − a)
(34)

b2 =
(1 + c)(c + 1 − a)

c
(35)

It can be seen that b1 reduces to the optimal solution
of the α-β filter (Equation (28)) if c = −1, whereas b2

vanishes for this case. The two additional conditions
to be satisfied to arrive at the optimal values of the
parameters cannot easily be simplified.

4 Conclusion

This paper focuses on the optimal design of α-β-γ fil-
ters. To quantify the performance of these filters, var-
ious metrics are defined such as noise-ratio, steady-
state maneuver error and transient response metrics.
Closed form solutions are derived in the a-b-c space
which can be transformed into the α-β-γ space via
a nonlinear transformation. The maneuver errors are
defined for specific target trajectories like straight line
and circular path maneuvers. These are subsequently
used in conjunction with the noise-ratio to determine
a figure of demerit. In particular, a constrained pa-
rameter optimization problem is formulated, where α,
β and γ are bounded to lie within the stability vol-
ume. Variation of the tracker parameters for different
weights of the cost function are studied to provide the
designer with information for the optimal selection of
α, β and γ parameters. Furthermore, optimal closed
form solutions are derived for steady-state circular
and straight line path maneuvers, where straight line
maneuvers have the target moving at constant accel-
eration or constant velocity.
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