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a b s t r a c t

The focus of this paper is on the development of an input shaper/time-delay filter that permits the
precise tracking of a ramp input, while eliminating residual vibrations. Zero phase error velocity tracking
is often required in applications where moving parts have to be mated, such as manufacturing lines with
high production output. A closed form solution to a pre-filtering technique is presented which achieves
the desired characteristics. The performance of this technique is compared with other input shaper
designs in current literature, and is shown to achieve smaller settling time and maintain zero steady
state phase error without a priori knowledge of the initiation and termination of ramp profiles. The
technique is then physically applied to a rotary pendulum to demonstrate the consistency of its ramp
tracking and vibration reduction capabilities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Input shaping is a feedforward control technique that has been
used extensively to eliminate residual vibrations for systems
undergoing rest-to-rest maneuvers (Singer & Seering, 1990;
Singh & Vadali, 1993a; Sorensen, Singhose, & Dickerson, 2007).
This is achieved by convolving the reference step input with a
sequence of impulses that cancel the oscillatory dynamics present
in the target system. Additional impulses can be introduced into
the sequence to improve robustness to uncertainties in the model
parameters, at the cost of longer maneuver times. Various groups
(Rhim & Book, 2004; Tzes & Yorkovich, 1993) have also developed
adaptive input shaping schemes to improve the robustness while
minimizing the duration of impulse sequence.

While traditional input shaping schemes have been well
demonstrated for rest-to-rest maneuvers, there are instances
where constant velocity tracking is required. Constant velocity
motion is represented by a ramp signal, and the direct application
of input shaping schemes introduces a non-zero steady state phase
lag after the residual vibrations are eliminated. In some cases, this
phase error is permitted as it does not interfere with operation
requirements, such as in the control of high-speed electron
microscopy scanner head (Croft & Devasia, 1999), wafer scanner
(Butler, 2013), and high speed tape drives (Mathur & Messner,
1998). Masterson, Singhose, and Seering (2000) recognize the
delay generated in completing a prescribed scan when an input
shaper is used to eliminate residual vibrations. To satisfy the

constraint imposed by the scan time, they study the effect of
changing the scan velocity to compensate for the delay. For
applications where zero velocity tracking error is crucial to the
operation, traditional input shapers are no longer sufficient. Such
requirement arises when compliant industrial robots are used in
high throughput production lines. Kamel, Lange, and Hirzinger
(2008) discussed the need for zero phase error tracking during
mating operations between car wheels and the corresponding
chassis moving with constant velocity on an assembly line. The
wheels are handled by robotic end-effectors with built-in com-
pliance to avoid damaging the chassis. The same compliance also
introduces oscillations that are detrimental to the alignment, and
input shapers are used to minimize the vibrations.

Attempts to reduce or eliminate ramp tracking error have been
suggested in Masterson et al. (2000), Tomizuka (1987), Butterworth,
Pao, and Abramovitch (2008), and Kamel et al. (2008). Masterson
et al. (2000) developed a procedure for constant velocity scanning
with flexible sensors by increasing the reference scan velocity to
compensate for the phase lag due to input shapers, while maintain-
ing the total scan time. Tomizuka (1987) proposed a zero phase error
tracking algorithm, which relies on a priori knowledge of the
trajectory and is often referred to as a model inversion based
technique. Butterworth et al. (2008) compared the performance of
model inversion techniques on velocity tracking of an atomic force
microscope which is characterized by non-minimum phase behavior.
Dynamic inversion assuming an output with a desired smoothness
permits identifying a bounded smooth input which has been shown
to track a reference profile by Piazzi and Visioli for the end point
control of a flexible link (Piazzi & Visioli, 2011) and for the control of
an overhead crane (Piazzi & Visioli, 2002). Dynamic inversion has
also been demonstrated to work well for nonlinear systems with
affine input where the number of inputs and outputs is the same

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/conengprac

Control Engineering Practice

http://dx.doi.org/10.1016/j.conengprac.2015.03.008
0967-0661/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: dpeng2@buffalo.edu (D.-W. Peng),

tsingh@buffalo.edu (T. Singh), mmilano@buffalo.edu (M. Milano).

Control Engineering Practice 40 (2015) 93–101

www.sciencedirect.com/science/journal/09670661
www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2015.03.008
http://dx.doi.org/10.1016/j.conengprac.2015.03.008
http://dx.doi.org/10.1016/j.conengprac.2015.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.03.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.03.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.03.008&domain=pdf
mailto:dpeng2@buffalo.edu
mailto:tsingh@buffalo.edu
mailto:mmilano@buffalo.edu
http://dx.doi.org/10.1016/j.conengprac.2015.03.008


(Devasia, Chen, & Paden, 1996). Kamel et al. (2008) described several
methods for input shaping with predictive path scheduling for low
sampled systems in their efforts to damp oscillations in the robot end
effector. In all these cases, their designs are acausal and require
knowledge of the maneuver trajectory.

In this paper, a simple casual technique consisting of a shaped
ramp profile in conjunction with a shaped step profile is shown to
achieve precise ramp signal tracking. Traditional input shaping
schemes are readily applicable within the ramp-following frame-
work, allowing for improvements in robustness, as well as designs
for multi-mode systems in both the continuous and discrete
domain. Closed-form solutions are also available, allowing for
efficient implementations. Finally, the technique is applied to the
velocity tracking of a rotary pendulum for experimental validation.

2. Time-delay filter/input shaper

Input shapers (IS) and time-delay filters (TDF) are pre-filtering
techniques that are often used to eliminate residual vibrations in
rest-to-rest maneuvers. The IS design is derived in the time-
domain while the TDF is designed in the frequency domain. The
terms IS and TDF are used interchangeably in this paper, and in
figures they are labeled based on the employed design methods.
Time-delay filter relies on canceling the under-damped poles of
the system with zeros of the time-delay filter transfer function.
This section will briefly review the results from traditional TDF
design that are immediately applicable to the development of the
ramp-following time delay filters (RF-TDF), the reader is referred
to Singh (2010) for a more comprehensive treatment.

The general structure of a time-delay filter is shown in Fig. 1.
Specifically for a second order under-damped system

GðsÞ ¼ YðsÞ
UðsÞ ¼

ω2

s2þ2ζωsþω2; ð1Þ

a minimum of two terms in the time-delay filter P(s) is required to
cancel the poles of the system. The single-delay TDF (N¼2)
therefore assumes the form

PðsÞ ¼
XN�1

i ¼ 0

Aie
� sTi ¼ A0þA1e� sT1 ; ð2Þ

which is set to zero at the system poles s¼ �ζωþ jω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q
, to

obtain a closed form solution for the parameters of the time-delay
filter:

A0 ¼
eζπ=

ffiffiffiffiffiffiffiffiffiffi
1�ζ2

p

1þeζπ=
ffiffiffiffiffiffiffiffiffiffi
1�ζ2

p ; A1 ¼
1

1þeζπ=
ffiffiffiffiffiffiffiffiffiffi
1�ζ2

p ; T ¼ π

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2

q : ð3Þ

The resulting filter corresponds exactly to the solution of the
posicast controller (Smith, 1957) and the zero-vibration (ZV) input
shaper (Singer & Seering, 1990). The residual vibrations after the
final maneuver time TN�1 is completely eliminated when the
system parameters are known exactly. It is important to note that
the DC gain of any time-delay filter must be unity, i.e.

XN�1

i ¼ 0

Ai ¼ 1 ð4Þ

to ensure that the output amplitude is the same as the input
amplitude of the step after the final maneuver time. Fig. 2 shows
the response of a second order system to the filtered step input.

2.1. Robust design (TDF)

The performance of the time-delay filter depends on the knowl-
edge of the system model. Since the parameters of the system model
are seldom known exactly in practice, there is a need to synthesize
TDF that are insensitive to errors in these parameters.

2.1.1. Cascade design
Singh and Vadali (1993b) have shown that by placing multiple

zeros of the time-delay filter at the nominal location of the
uncertain poles of the system, one can achieve robustness in the
proximity of the nominal model. For instance, by cascading two
single TDF, the robust TDF with two delays is given as

PðsÞ ¼ ðA0þA1e� sT1 Þ2 ¼ A0
0þA0

1e
� sT1 þA0

2e
� s2T1 ð5Þ

where A0, A1 and T1 are the same as (2). Evidently from the above
equation, the final maneuver time is now 2T1, i.e. the increase in
robustness also increases the maneuver time. The formulation is
equivalent to adding an additional constraint forcing the deriva-
tives of the TDF at the nominal frequency or damping ratio to be
also zero (Singh & Vadali, 1993b). This is sometimes referred to as
zero vibration and derivative (ZVD) input shaper (Singer & Seering,
1990). Higher derivatives can also be forced to zero by cascading
additional single-delay TDF, which further improves the robust-
ness while increasing maneuver time. Larger maneuver time is
often undesirable in high-speed precision applications, thus the
trade-off between robustness and maneuver time must be care-
fully considered. For the remainder of this paper, the parameter-
ization given by (5) will be simply referred to as the robust TDF.

2.1.2. Minimax design
TDF with 2 delays introduces robustness based on the knowl-

edge of nominal model parameters. Alternatively, a minimax TDF
can be designed to improve the robustness within a domain of
uncertainty (Singh, 2010). Since the minimax TDF is a numerical
optimization based technique, only a special case is considered
here such that its applicability to the ramp-following time delay
filter can be assessed in subsequent sections.

The minimax TDF is designed for the same second order system
in (1) subjected to a unit step input. A uniform distribution for the
uncertainty in the natural frequency is assumed. The optimization
problem can be stated as

min
Ai ;Ti

max
ω

1
2
_y2
f þ

1
2
ω2ðyf �yref ;f Þ2 ð6Þ

subject to the following constraints on the TDF parameters:

XN�1

i ¼ 0

Ai ¼ 1 ð7Þ

0oTi�1oTi; ð8Þ
where the subscript f denotes value of the variable immediately
after the final maneuver time TN�1. The cost function (6) measures
the residual energy of the system response for normalized mass
m¼1, with corresponding stiffness ω2. The uncertain domain over
ω is discretized to produce a set of plant models. A unit step input
is shaped by the candidate time-delay filter, and the residual
energy is evaluated for each plant model. The maximum residual
energy over the specified range of uncertain ω is minimized,
resulting in a desensitized time-delay filter design. A two-delay
TDF (N¼3) is used here, and the minimax problem is solved with
MATLAB's fminimax function to obtain the parameters A0, A1, A2,
T1 and T2. While minimax design based on the present cost
function has been shown to reduce residual vibrations effectively
for rest-to-rest maneuvers (Singh, 2002), it will be illustrated inFig. 1. Traditional time-delay filter structure.
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Section 5 that the minimax technique fails to achieve the goal of
precise ramp tracking.

2.2. Multi-mode design (TDF)

TDF design techniques can be easily extended to higher order
system. Consider the multiple-mode system in the form

GðsÞ ¼ ∏
m

k ¼ 1

Gnum;kðsÞ
s2þ2ζkωksþω2

k

; ð9Þ

with 2m complex poles located at s¼ �ζkωk7 jωk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ζ2k

q
,

k¼ 1…m. Gnum;kðsÞ is the numerator for kth mode, under the
constraint that the overall DC gain for G(s) is unity. Then TDF's
for single-mode systems can be cascaded to cancel the individual
pole pairs in (9), i.e.

PðsÞ ¼ ∏
m

k ¼ 1
PkðsÞ ¼

XN�1

i ¼ 0

Aie
� sTi ; ð10Þ

where PkðsÞ is the TDF designed for the kth mode. Either (2) or (5)
can be used as Pk(s) depending on the desired level of robustness.
However, this procedure does not necessarily produce the smallest
possible maneuver time for a given system. Concurrent design for
multi-mode system shown in Singh (2010) can be used if minimal
maneuver time is desired.

2.3. Discrete design (TDF)

The concepts of time-delay filter for continuous systems can be
applied to discrete systems in the same fashion. Fig. 3 illustrates
the structure of the TDF in the discrete domain. Consider the
system of the form

GðzÞ ¼
Pm

i ¼ 0 biz
iPn

i ¼ 0 aizi
ð11Þ

The discrete time-delay filter can be posed as the design of a FIR
(finite impulse response) filter (Singh, 2010), i.e.

PðzÞ ¼
Xk
i ¼ 0

ciz� i; ð12Þ

which places k poles at the origin of the z-plane. The zeros of P(z)
can be selected by choosing appropriate ci's in order to cancel the
poles of the system G(z). To determine the parameters ci for the FIR

filter, an optimization problem can be posed as follows:

min
ci

J ¼
Xk
i ¼ 0

ðiþ1Þλ j ci j ð13Þ

subject to

Re
Xk
i ¼ 0

ciðσjþωj

ffiffiffiffiffiffiffiffi
�1

p
Þ� i

" #
¼ 0 8 j¼ 1;2;…;n

Im
Xk
i ¼ 0

ciðσjþωj

ffiffiffiffiffiffiffiffi
�1

p
Þ� i

" #
¼ 0 8 j¼ 1;2;…;n

Xk
i ¼ 0

ci ¼ 1

0ocio1 8 i¼ 1;2;…; k ð14Þ

which will place 2n zeros at the nominal location of the poles of
the system, i.e. zj ¼ σjþωj

ffiffiffiffiffiffiffiffi
�1

p
(Only one root from each complex

pair needs to be included in the constraints.). ðiþ1Þλ is the
weighting factor that increases the penalty non-linearly with time,
where λ is chosen to be 41. Similar to the design of TDF in the
continuous-time, robustness can be introduced by locating multi-
ple zeros of the FIR filter at the estimated location of the poles of
the system, which results in desensitizing the FIR filter to model-
ing errors. This can be accomplished by including additional
constraints as follows:

Re
Xk
i ¼ 0

iciðσjþωj

ffiffiffiffiffiffiffiffi
�1

p
Þ� i�1

" #
¼ 0 8 j¼ 1;2;…;n

Im
Xk
i ¼ 0

iciðσjþωj

ffiffiffiffiffiffiffiffi
�1

p
Þ� i�1

" #
¼ 0 8 j¼ 1;2;…;n: ð15Þ

Since the pulses are discrete, the parameters ci can be efficiently
solved as a linear programming problem (Singh, 2010). The ability
to handle multiple modes is implicit in this formulation.

3. Ramp-following TDF

Although time-delay filters are primarily used to eliminate
residual vibrations due to step inputs, they are applicable for any
kind of reference trajectories. When TDF is applied to a ramp
input, the shaped signal is a series of changes in slopes, such that
the final slope matches the slope of the original signal. The shaped
ramp signal effectively eliminates residual vibrations. However, a
phase lag is manifested between the steady state system response
and the input ramp signal, as shown by the dotted line in Fig. 7(b).
This issue leads to performance degradation when there is a need
for zero-phase tracking error in precision applications. The design
of a precise ramp-following time-delay filter (RF-TDF) therefore
relies on the knowledge of the steady state ramp tracking error,
which will be derived in this section.
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Fig. 2. Left: unfiltered step input (dash) and filtered step input (solid). Right: response of an underdamped second order system to step input (dash) and to the filtered input
(solid).

Fig. 3. Time-delay filter structure for discrete systems.
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First consider a general stable transfer function of the form

GðsÞ ¼ bmsmþbm�1sm�1þ⋯þb1sþb0
snþan�1sn�1þ⋯þa1sþa0

ð16Þ

where mon. Since TDF is an open loop control, the DC gain of the
system itself must be unity to result in finite ramp tracking error, i.e.

b0 ¼ a0: ð17Þ
For a ramp input, UðsÞ ¼ 1=s2, the steady state tracking error due to the
system dynamics is

hsys ¼ lim
s-0

sUðsÞ 1�GðsÞð Þ ð18Þ

hsys ¼
a1�b1
a0

ð19Þ

When the time delay filter PðsÞ ¼ PN�1
i ¼ 0 Aie� sTi is introduced, the

steady state ramp tracking error h can be derived as follows:

h¼ lim
s-0

s
1
s2

1�PðsÞ bmsmþ⋯þb1sþb0
snþan�1sn�1þ⋯a1sþa0

� �
ð20Þ

h¼ lim
s-0

snþan�1sn�1þ⋯þ am�bmPðsÞð Þsmþ⋯þ a1�b1PðsÞð Þs
s snþan�1sn�1þ⋯þa1sþa0
� �

 !

ð21Þ

þ lim
s-0

1
s

a0�b0PðsÞ
snþan�1sn�1þ⋯þa1sþa0

� �
: ð22Þ

Recall (4) and (17), such that

lim
s-0

PðsÞ ¼
XN�1

i ¼ 0

Ai ¼ 1; ð23Þ

Therefore

h¼ hsysþ lim
s-0

1
s

a0 1�PðsÞð Þ
snþan�1sn�1þ⋯þa1sþa0

ð24Þ

h¼ a1�b1
a0

þ lim
s-0

0
0

ð25Þ

Using L'Hospital's rule on the second term, we have

lim
s-0

d
ds

a0 1�PN�1
i ¼ 0 Aie� sTi

� �
d
ds

s snþan�1sn�1þ⋯þa1sþa0
� �¼ XN�1

i ¼ 0

AiTi; ð26Þ

which we define as htdf, the tracking error attributed to the pre-
filter. The steady state ramp tracking error due to the traditional
TDF can be represented as

h¼ hsysþhtdf ¼
a1�b1
a0

þ
XN�1

i ¼ 0

AiTi: ð27Þ

Since prefiltering a ramp input through a time-delay filter
designed to cancel the under-damped modes of the system results
in a steady-state error, one can augment the reference input with a
time-delay filtered step input of the size of the steady-state error.
This should, after the execution of the final-delay, result in zero-
error ramp following output profile.

A simple ramp-following time-delay filter can now be synthe-
sized as shown in Fig. 4 by exploiting the knowledge of the steady
state tracking error.

The first block in Fig. 4 splits the ramp signal into two terms to
achieve precise ramp tracking capability: the first term with a gain

of unity feeds through the ramp input, and the second term
produces a step input with the derivative s. The step is scaled by
h¼ hsysþhtdf to compensate for the steady state ramp tracking
error. Since both signals are subsequently modified to cancel the
system poles at the sub-TDF stage P(s), residual vibrations are
eliminated when the model parameters are known exactly. The
time-delay filter P(s) can be chosen to be either (2) or (5),
depending on the desired level of robustness. The idea behind
RF-TDF is summarized in Fig. 5.

For a second order system in the form of (1), it can be easily
shown that the steady state ramp tracking error reduces to

h¼ 2ζ
ω

þ
XN�1

i ¼ 0

AiTi ð28Þ

Kamel et al. (2008) have suggested adding the 2ζ=ωþPN�1
i ¼ 1 AiTi ¼ 0 term as a constraint in their optimization to produceFig. 4. Ramp-following time-delay filter structure.

Fig. 5. The ramp-following time-delay filter at a glance.

Fig. 6. Ramp-following time-delay filter structure for discrete systems. Note that an
is assumed to be 1 for the formulation of hsys and htdf in this paper.
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input shaper parameters with zero ramp tracking error for a second
order system. In essence, their approach attempts to account for the
amplitude compensating step in Fig. 4 by using only the parameteriza-
tion in Fig. 1. Constraining Eq. (28) results in negative value for some Ai
which results in large positive values for the complementary Ai's.
Naturally, these steps manifest as large amplitudes within short
sequences of impulses in their solution, making it difficult to provide
initial optimization guesses and physically implement the input shaper.

3.1. Robust design (RF-TDF)

Since the ramp-following time-delay filter presented is simply
a sum of filtered step and ramp inputs, typical methods employed
to improve robustness in traditional time delay filters can be
directly applied. Using the TDF parameters from (5) as the P(s)
term in Fig. 4 will desensitize the RF-TDF to uncertainties about
nominal system parameters. This will be referred to as the robust
RF-TDF for the remainder of this paper.

The minimax TDF design can also be used with the RF-TDF structure
shown in Fig. 4. The TDF parameters in P(s) are now the solutions to the
optimization problem equation (6). As later sections will show, the
minimax design in its present form is unsuitable in the context of RF-
TDF due to the lackluster ramp tracking capabilities.

3.2. Discrete design (RF-TDF)

As in the case of continuous-time RF-TDF designs, classic TDF
synthesized in the discrete domain, P(z), can be directly applied as a
part of the structure shown in Fig. 6 to allow for precise ramp signal

Table 1
Settling time to a unit ramp for various input shapers, with
simulation step size Δt ¼ 0:001 s.

Settling time (s)

CEM-IS (Kamel et al., 2008) 0.254a

RF-TDF 0.083
RF-TDF (Robust) 0.178

a CEM-IS shifts the reference signal backwards in time to achieve
precise ramp tracking, the settling time shown here includes the
shifting time.
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Table 2
Average tracking error of input shapers to the
reference signal in Fig. 9a.

Average tracking error

TDF (Robust) 0.025072
CEM-IS (Kamel et al., 2008) 0.0032127
RF-TDF 0.0026052
RF-TDF (Robust) 0.0058716
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Note that the time axes are scaled differently. (a) Shaped input to a multi-mode
system. (b) Reference signal tracking error.
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tracking while eliminating residual vibrations. The discrete design of
the RF-TDF will follow the same process outlined earlier for the
continuous RF-TDF. First consider the stable closed loop transfer
function of the form

GðzÞ ¼ bmzmþbm�1zm�1þ⋯þb1zþb0
znþan�1zn�1þ⋯þa1zþa0

ð29Þ

where mon. Again, assume the DC gain to be unity to obtain the
constraint:

1þ
Xn�1

i ¼ 0

ai�
Xm
i ¼ 0

bi ¼ 0: ð30Þ

The steady state tracking error of the system G(z) subjecting to a ramp
input UðzÞ ¼ Tsz�1=ð1�z�1Þ2 is

hsys ¼ lim
z-1

ð1�z�1ÞUðzÞ 1�GðzÞð Þ ð31Þ

hsys ¼ lim
z-1

Ts

z�1

z�1ð ÞQ ðzÞþ 1þPn�1
i ¼ 0 ai�

Pm
i ¼ 0 bi

h i
znþan�1zn�1þ⋯þa1zþz0

; ð32Þ

where Ts is the sampling time, and

Q ðzÞ ¼ zn�1þ
Xmþ1

k ¼ 2

1þ
Xk�1

i ¼ 1

an� i

" #
zn�k ð33Þ

þ
Xm
k ¼ 1

1þ
Xm
j ¼ 1

an� j

0
@

1
Aþ

Xk
i ¼ 1

am� iþ1�bm� iþ1
� �2

4
3
5zm�k:

ð34Þ
Applying (30) to Eq. (32), the ramp tracking error due to the system
dynamics reduces to

hsys ¼
Ts nþPn�1

i ¼ 1 iai�
Pm

i ¼ 1 ibi
� �

1þPn�1
i ¼ 0 ai

ð35Þ

To account for the time-delay filter PðzÞ ¼ Pk
i ¼ 0 ciz

� i, the b terms in
Q(z) are multiplied by P(z) and the remainder in (32) becomes

1þPn�1
i ¼ 0 ai�PðzÞPm

i ¼ 0 bi
h i

. In a process analogous to the

continuous-time case, the steady state error due to the TDF becomes

htdf ¼ Ts

Xk
i ¼ 0

ici ð36Þ

Hence the overall steady state ramp tracking error is

h¼ hsysþhtdf ð37Þ
for the discrete system. Again, the discrete RF-TDF shown in Fig. 6 is
completely analogous to its continuous counterpart and no elabora-
tion is necessary. The parameters for P(z) are the solutions to the
linear programming problem in (13).

While the derivative element ðz�1Þ=Ts in Fig. 6 in its present form
appears to require future knowledge, it can be made causal by
multiplying a unit shift z�1. The resulting RF-TDF will maintain the
same ramp-following characteristics with this modification, with the
final maneuver time delayed by one sampling period.

4. Performance metrics

For the purpose of this paper, the settling time is defined as the time
required for a second order system, subject to a unit ramp input in the
position, to reach within 5% of the desired velocity. Since the system is
simulated numerically, the settling time is subject to the time step used. A
small value of Δt ¼ 0:001 is used for the continuous domain designs in
this paper to obtain fairly representative values that can be used to
characterize and compare the performance of various input shapers.

Another performance measure for the input shapers is the
average tracking error, defined here as

1
tf �t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ tf

t0
yðtÞ�yref ðtÞ
� �� �2

dt

s
ð38Þ

where t0 and tf are the initial and final time respectively, with yref
being the reference input.

The robustness of the ramp following time-delay filters can be
quantified by using the residual energy of the system response
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Fig. 11. Discrete system TDF responses for multi-mode systems (sampling time
Ts¼0.05, weighting factor λ¼ 3). Note that the time axes are scaled differently.
(a) Discrete TDF for multiple modes. (b) Reference signal tracking error.

Fig. 12. Schematic of the Quanser rotary pendulum plant with motor arm angle θ

and pendulum angle ϕ. The motor arm and the pendulum are considered to be
rigid, with lengths La and Lp respectively. The stock module has been modified with
a slip ring to acquire encoder data from the pendulum while the motor is
continuously rotating.

Fig. 13. Experiment block diagram.
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with respect to a frame moving with the reference position,
evaluated immediately after the final maneuver:

1
2
mð _ytf � _yref ;tf Þ2þ

1
2
kðytf �yref ;tf Þ2 ð39Þ

where _yref ;tf is the reference velocity and _ytf is the velocity of the
system following the final maneuver time. Likewise, ytf and yref ;tf
denote the final positions. The sensitivities of the input shapers are
obtained by simulating the system in (1) across a range of uncer-
tainty in natural frequency, while assuming a normalized mass of
m¼1 and the corresponding stiffness of k¼ω2.

5. Discussion

Kamel et al. (2008) proposed an input shaping technique with
control error minimization for low frequency sampled systems, this is
different from their approach discussed earlier at the end of Section 3.
This input shaper design has been discretized such that the phase lag

to a ramp input is a multiple of the sampling period, allowing a
predictive path generator to shift the modified input backwards in
time. Their method has precise ramp following capabilities, and will be
referred to as the control error minimized input shaper (CEM-IS) to
serve as a basis of comparison for the design of RF-TDF in this paper.

5.1. Ramp signal

A second order system parameterized by (1) is simulated for a
unit ramp in continuous-time with various input shaping schemes.
Fig. 7a illustrates the reference input and shaped reference
profiles. The displacement jumps in the RF-TDF's require large
step inputs, which may lead to actuator saturation; this issue will
be addressed in Section 6.

Performance-wise, Fig. 7b shows that the RF-TDF's are able to
match the original signal at steady state without the use of
backwards time shift employed by CEM-IS. Table 1 shows that
RF-TDF's achieve shorter settling times than CEM-IS when pre-
dictive path scheduling is not applicable. This is significant since
the input ramp signal may be unanticipated in practice. The same
table also shows that the non-robust RF-TDF has a smaller settling
time than the robust RF-TDF, as expected. Fig. 8 demonstrates that
the minimax design based on the classic TDF cost function in (6) is
clearly not ideal when precise ramp tracking is required, as the
bias in phase persists across the region of uncertainty.

5.2. Finite rate signal

To illustrate the average tracking performance of the proposed
input shaper, a complex tracking profile with various ramp segments is
taken from Kamel et al. (2008) to benchmark the performance of
different input shapers. Fig. 9a illustrates the reference and the shaped
input profiles and Fig. 9b shows the corresponding evolution of the
tracking error of the second order system. Table 2 lists the root mean
square tracking error which shows that non-robust and robust RF-TDF
techniques presented in this paper outperformed the traditional robust
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TDF, while comparable to the CEM-IS scheme presented by Kamel et al.
(2008), which requires backwards time shifting to achieve the precise
ramp tracking capability.

5.3. Multi-mode and discrete system

To explore the suitability of the RF-TDF to multi-mode systems,
the following system is simulated:

GðsÞ ¼ s2þ2:4sþ22 500
s4þ1:3s3þ325:3s2þ255sþ22 500

ð40Þ

Fig. 10 shows that the RF-TDF successfully eliminates residual
vibrations while maintaining steady state zero ramp tracking error.
A closer examination of the signal plot shows that the shaped
ramp is slightly leading the original ramp signal at steady state –

such as to compensate for the hsys term that may have been
negligible in the ramp simulations for single mode systems.

The multi-mode system above is discretized with zero-order
hold and sampling time Ts¼0.05 s. Similar to the continuous-time
case, Fig. 11 shows that the RF-TDF designed in the discrete
domain also yields perfect tracking with zero residual vibrations
for this multi-mode discrete system.

The numerical simulation results are encouraging, as ramp
following time-delay filters successfully track ramp commands
with zero vibration and zero phase delay, particular when the
nominal parameters are known exactly. The RF-TDFs are also
shown to be comparable to CEM-IS in terms of the average
tracking performance, without requiring a priori knowledge of
the signal timing.

6. Experiment

The ramp-following time-delay filer is tested on a Quanser
ROTPEN-E rotary pendulum, with schematics shown in Fig. 12. The
module has a closed loop PD position controller at the motor arm
θ. The linearized model corresponding to the motor arm angle θ
and the pendulum angle ϕ is identified, and their transfer
functions are given by

ΘðsÞ
ΘdðsÞ

¼ 1959s2þ343:7sþ80 105
s4þ16:15s3þ2018s2þ943:4sþ80 105

; ð41Þ

ΦðsÞ
ΘdðsÞ

¼ �0:2817s2ðsþ5761Þ
s4þ16:15s3þ2018s2þ943:4sþ80 105

; ð42Þ

with reference motor arm angle θd as the input. Note that the PD
controller is a part of the identified system.

The objective is for the pendulum tip to track a constant
velocity profile in the θ plane, while eliminating any vibrations
introduced by the PD control and the pendulum. To evaluate the
overall tracking capability, consider the pendulum tip displace-
ment which can be quantified by the equation:

y¼ LaθþLpϕ; ð43Þ
where La and Lp are the lengths of the motor arm and the
pendulum respectively. To assess the repeatability of the RF-TDF
in ramp tracking capability, as well as its sensitivity to the
linearized model, the response data for the shaped ramp input is
collected for 150 runs. Each run starts from a random initial arm
position drawn from a uniform distribution between 71801, such
that the model inaccuracies can be captured. The same experiment
is repeated for the traditional TDF and unfiltered input for
comparison. The sampling period is Ts¼0.0001 s.

Since errors in the experimentally identified linearized models
(41) and (42) are expected, the steady state ramp tracking error for
this system, hexp (Fig. 13), should also be deteremined emperically.

This is accomplished by comparing the reference ramp signal to
the system response due to traditional TDF.

In any PD controlled system subjecting to step input, the
derivative action of the compensator initially demands a large
control signal, saturating the actuator. To alleviate this issue, a
separate second order filter is cascaded with its own time delay
filter to limit the input jerk (As shown in Fig. 13). The parameters
of this filter (ζ and ωn) are arbitrary and are tuned to satisfy the
actuator constraint in minimal time; the associated TDF is
designed correspondingly based on earlier discussions. The solid
line in Fig. 2 is representative of step responses to this type of
smoothing filter. This alternative usage of time-delay filter is in the
same spirit as the sinusoid filtered time-delay filter in Singh
(2010), and adopted here for its simplicity and compatibility with
the presented framework.

A representative response for the total displacement error,
ey ¼ yd�y, is shown in Fig. 14, where yd is the reference ramp
input. Note that the closed loop PD motor/arm response is much
faster than the pendulum, therefore its dynamics barely manifests
in the responses.

Fig. 15 shows the histograms of the residual amplitudes from
the experiments. The residual amplitude is defined as the first
amplitude peak of the error response of the pendulum, after the
final maneuver time of the RF-TDF. In terms of the residual
vibration of the pendulum ϕf, TDF output marginally outperforms
RF-TDF, with 96% vs 82% amplitude reduction. This metric only
captures the vibratory motion of the pendulum. When the ramp
tracking capability is considered, the total displacement error
amplitude ey;f shows that RF-TDF is consistently closer to zero
than either the unfiltered or the TDF case. This is due to the fact
that the TDF generates a large steady-state tracking error.

7. Conclusions

A simple technique that combines a shaped ramp input with a
shaped step input is proposed to achieve zero phase tracking of a
ramp profile. This technique has been illustrated in the continuous
and discrete time and the results have been compared to existing
techniques in the literature. The nature of its closed form solution
allows for efficient synthesis and testing of ramp following input
shapers/time-delay filters for desired applications. The scheme has
been implemented experimentally and shown to be a viable
option when vibration reduction with precise ramp tracking
capabilities are required specifications.
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